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ABSTRACT

When magnetohydrodynamic turbulence evolves in the presence of a large-scale mean magnetic field, an anisotropy develops relative to that
preferred direction. The well-known tendency is to develop stronger gradients perpendicular to the magnetic field, relative to the direction
along the field. This anisotropy of the spectrum is deeply connected with the anisotropy of estimated timescales for dynamical processes and
requires reconsideration of basic issues such as scale locality and spectral transfer. Here, analysis of high-resolution three-dimensional simu-
lations of unforced magnetohydrodynamic turbulence permits quantitative assessment of the behavior of theoretically relevant timescales in
Fourier wavevector space. We discuss the distribution of nonlinear times, Alfv�en times, and estimated spectral transfer rates. Attention is
called to the potential significance of special regions of the spectrum, such as the two-dimensional limit and the “critical balance” region. A
formulation of estimated spectral transfer in terms of a suppression factor supports a conclusion that the quasi-two-dimensional fluctuations
(characterized by strong nonlinearities) are not a singular limit, but may be in general expected to make important contributions.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0005109

I. INTRODUCTION

In standard Kolmogorov theory, turbulence is assumed to
be isotropic so that all relevant correlation functions and their
spectral decompositions are invariant under proper rotations.1,2

Magnetohydrodynamics (MHD) and magnetized plasma turbu-
lence are different in that their dynamics can become anisotropic
when a large-scale magnetic field is present.3–6 At this point, the
assignment of characteristic timescales required for turbulence clo-
sures (e.g., Refs. 7 and 8) or even the heuristic identification of
timescales in turbulence phenomenologies9–11 becomes more diffi-
cult and even somewhat ambiguous from a theoretical perspective.
How are timescales distributed in wavevector space when the energy
is anisotropically distributed? What does scale locality imply when
turbulence is anisotropic? What are the relevant relationships among
the different theoretically constructed timescales? Here, we will dis-
cuss several issues that come into play regarding these timescales,
favoring physical relevance over complete mathematical rigor.

We begin with the idea of a nonlinear timescale snl, which is tra-
ditionally defined in terms of the scalar magnitude of the wavevector,
in view of isotropy along with Kolmogorov’s assumption of scale local-
ity. The structure of the usual estimate arguably remains valid, even
for anisotropic spectra.11 Within the inertial range, the time depen-
dence is dominated typically by the random sweeping of inertial-range
fluctuations by large eddies,12–14 both in hydrodynamics15 and in
MHD.16 However, this does not directly influence spectral transfer or
the nonlinear time, since it corresponds, essentially, to a local spatial
translation.11,12 Another timescale of relevance in MHD, and one that
has been the subject of intense discussion, is the Alfv�en timescale, asso-
ciated with small-amplitude propagating waves, or under certain spe-
cific conditions, large-amplitude fluctuations.17 More generally than in
the propagating wave scenario, wave-like couplings associated with the
Alfv�en timescale act to suppress nonlinear behavior. This occurs due
to the potentially rapid changes in the phases of Fourier components
that are induced by Alfv�enic couplings.18,19 This effect, which occurs
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in an anisotropic fashion, reduces the third-order correlations neces-
sary for spectral transfer. The competition that exists between Alfv�en
and nonlinear effects, as well as the balance of local and nonlocal
effects, are issues that have pervaded discussions of MHD and plasma
turbulence for decades.

Here, we examine these issues directly by employing MHD simu-
lation. We evaluate the basic timescales throughout Fourier space in a
simulation with anisotropy induced by a large-scale mean magnetic
field. For clarity of presentation, just one run, employing the incom-
pressible model, and with a fixed uniform externally supported mag-
netic field, is the basis for most of what is reported here. However, the
results, while not “universal” in any meaningful sense, are expected to
remain relevant for useful and familiar regions of parameter space,
such as low cross helicity, small magnetic helicity, near-unit Alfv�en
ratio, unit magnetic Prandtl number, etc. (see Ref. 20 for details). One
additional simulation, with a variation in initial data, is discussed in
Appendix B. We also employ standard methods to estimate quantities
related to turbulence activity, such as contributions to spectral transfer
in different regions of wavevector space. This strategy will enable an
evaluation not only of the instantaneous kinematic state of the energy
spectrum (a focus of many prior studies; e.g., Refs. 21 and 22), but also
the greater or lesser concentrations of dynamic turbulence activity, a
subject that has been less well-described previously. The results
obtained with this strategy will be employed to inform discussion of
several approaches to explaining anisotropic spectral distributions of
energy, such as multi-component models,23–26 reduced-MHD
(RMHD) models,27–30 critical balance,10,31–34 and diffusion models,35

all of which require consideration of elements of the classic isotropic
model for context.1,2,36

The outline of the paper is as follows. We briefly describe the
simulation used in Sec. II and present the basic results on spectra and
timescales in Sec. III. The wavevector distribution of energy and the
so-called nonlinearity parameter are examined in Sec. IV. In Sec. V, we
employ these quantities to estimate the spectral transfer rates for
anisotropic MHD, and examine their spectral distribution as well as
their distribution across the nonlinearity parameter. We conclude with
discussion in Sec. VI. Appendix A provides the background to moti-
vate our formulation of the anisotropic spectral transfer rates while
Appendix B briefly describes results from a run initialized with fully
isotropic fluctuations.

II. SIMULATION DETAILS

We employ a pseudospectral three-dimensional (3D) incom-
pressible MHD code with 10243 resolution in a periodic box of dimen-
sionless side 2p for this study, where the unit length, L0, is
arbitrary.37,38 Our results are primarily obtained from an undriven,
freely decaying run whose initial fluctuations are toroidally polarized
(i.e., in the same sense as linearized Alfv�en waves), with some, less
detailed references to a second run for which the initial fluctuations
are isotropically polarized (toroidal and poloidal modes excited). Here,
we focus on a single run with a mean magnetic field B0 ¼ 1ẑ (in
Alfv�en units), and initial total energy and Alfv�en ratio both equal to
unity. This corresponds to an initial value of db=B0 ¼ 1, where db is
the root mean square magnetic fluctuation.

Toroidally polarized Fourier modes are excited initially in a band
3 � k � 7 in units for which the longest allowed wavelength in the
periodic box corresponds to a wavenumber of unity. This initial

population has a spectral knee at k¼ 3 and at higher k an abbreviated
�5=3 spectral slope. Here, k is the magnitude of the wavevector k. The
initial cross helicity and magnetic helicity are both very close to zero.
The simulation is run using a second-order Runge–Kutta scheme for
8000 timesteps with a step size of 2:5� 10�4. Therefore, the entire
run proceeds for about two large-scale nominal nonlinear times. The
kinematic viscosity � and resistivity l are assigned equal values of
7:3� 10�4. These represent reciprocal Reynolds number and mag-
netic Reynolds number, respectively, at scale L0.

We emphasize that the results presented here are based on a sin-
gle snapshot from this simulation. We have repeated the analysis for
a similar run initialized with isotropic fluctuations (toroidal þ poloi-
dal polarization) and obtained consistent results, discussed below.
Numerous other simulations of a similar nature were carried out and
were found to present similar properties with regard to resolution,
energy decay, and in general the dynamical features of decaying,
unforced MHD.39 We therefore believe that the present results are
quite typical. However, we caution the reader that true universality is
not expected in MHD turbulence due to the multiplicity of control-
ling parameters (see Ref. 20), and therefore extrapolation of the pre-
sent observations to widely varying parameters should be undertaken
with caution.

III. SPECTRA AND BASIC TIMESCALES

The context of the following analysis is established by examining
the time history of key global quantities and wavenumber spectra,
which are shown in Figs. 1 and 2, respectively. The evolution of kinetic
and magnetic energies (Ev and Eb, respectively), mean-squared electric
current density (magnetic enstrophy) hj2i, and kinetic enstrophy hx2i
are illustrated in Fig. 1. The enstrophies both peak near about t¼ 1.5,
and accordingly this corresponds to the time of peak dissipation rate.
By t¼ 2, we expect that the turbulence is fully developed and that the
expected period of von K�arm�an similarity decay is established.20,39,40

Therefore, we carry out the remainder of our analyses at this time, at
which the value of db=B0 is about 0.8.

FIG. 1. Time evolution of kinetic and magnetic energies, mean current density, and
enstrophy (Ev ; Eb; hj2i; and hx2i, respectively).
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Figure 2 shows the omnidirectional wavenumber spectra of mag-
netic energy Eb and kinetic energy Ev at t¼ 2. We define the omnidi-
rectional spectrum of total energy as EomniðkÞ � EvðkÞ þ EbðkÞ, so
that the total energy per unit mass is

Ð
EomniðkÞdk. An estimate of the

MHD Kolmogorov dissipation wavenumber kg ¼ hj2 þ x2i1=4=
ffiffiffi
�
p 41

is marked on the plot as a vertical line. An inertial range with an
approximate powerlaw slope of �5=3 is apparent, extending from
about k¼ 7 to about k¼ 30, falling short of kg by a factor of 2–4 as is
typical of fluid models with scalar dissipation coefficients (e.g., Refs.
42–44). The steepening of the inertial-range spectrum becomes signifi-
cant at about k¼ 50, and the spectrum has dropped substantially, by
approximately two orders of magnitude, prior to reaching the dissipa-
tion wavenumber near k¼ 160. We note that this gradual falloff of the
spectrum, and the lack of a clear spectral “break” are typical in well-
resolved decaying MHD simulations,45 in contrast to the rather
sharper termination of the spectrum often seen in the solar wind (e.g.,
Ref. 46). This is because the MHD fluid model in this paper does not
capture the collisionless-plasma effects on nonlinear dynamics that
come into play at kinetic scales in the solar wind (e.g., Ref. 47).

To proceed, we examine the basic timescales. First, we consider
the nonlinear timescale, defined as local in the wavenumber, following
Kolmogorov’s assumption of the dominance of local transfer. It is then
standard practice to define snlðkÞ � ½kdvðkÞ��1, where dvðkÞ is the
characteristic speed at scales ‘ � 1=k. Using the omnidirectional total
energy spectrum, with dvðkÞ2 � kEomniðkÞ, yields

snlðkÞ ¼ 1= k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kEomniðkÞ

ph i
: (1)

This definition maintains the plausible approximation that the
nonlinear couplings are mainly local in the magnitude of the
wavevector.11,48–52

We add here a few remarks regarding the suitability of the above
formulation of snl for the anisotropic dynamics being considered here.

While it is possible to introduce estimates that take fuller account of
anisotropy,35,61 these treatments are complex and do not address the
very basic dependence on physical timescales we emphasize here. We
note, however, two features of anisotropy that are incorporated in the
present study. First, to test for possible effects due to polarization
anisotropy, we bracketed our results with two extreme cases: the
results in the main body of the paper were obtained using initially
toroidal (transverse) polarizations, while those in Appendix B were
obtained using initially isotropic polarization. The similarity of the
results obtained (see below) suggests that modifying the definition of
the nonlinear time to take polarization anisotropy into account would
make little difference. Second, our assumption of the Kolmogorov
idea of scale locality implies that the nonlinear time associated with a
wavenumber k receives contributions from all the energy in the
k¼ constant shell. If the spectrum is anisotropic (see Sec. IV), only the
populated parts will contribute. In that sense, the model accommo-
dates spectral anisotropy as well. Furthermore, we develop a separate
treatment for the exceptional case of resonant spectral transfer.6 Recall
that for these interactions the energy contributions to snl come only
from energy near the kz¼ 0 axis, and thus the nonlinear timescale is
determined in a highly anisotropic manner (see Sec. VC and
Appendix A).

The dependence on jkj of this standard, scale-local nonlinear
time is shown in Fig. 2 (see also Refs. 53 and 54). There is no angular
dependence with this definition, and nonlinear time so-defined is con-
stant on shells with a given modulus of wave vector. At this modest
Reynolds number, the inertial range spans only about one decade, as
was seen also in the energy spectra. Here, the expected inertial-range
behavior snlðkÞ � k�2=3 is seen only over a rather narrow approximate
range of k¼ 7 to k¼ 35. For k> 100, the scale-local nonlinear time
sharply increases due to rapidly decreasing spectral energy density.
But in any case, the approximation of locality is questionable as the
dissipation scale is approached. Similarly, this definition of local non-
linear timescale is not relevant to the lowest few wavenumbers at the
energy-containing scales, as the granularity of the excited modes
comes into play and the strength of nonlinear couplings depends on
the specific energy distribution in that range.

The principal antagonist to nonlinear effects in incompressible
MHD turbulence with a large-scale magnetic field is the Alfv�en propa-
gation effect4 that interferes—anisotropically—with couplings that
drive turbulence. The associated Alfv�en timescale sAðkÞ ¼ 1=jkzB0j is
shown in Fig. 3, where the distribution of sAðkÞ is illustrated over the
kz � kx plane defined by ky¼ 0. Along the kz¼ 0 axis (the 2D axis)
the value is formally infinite, but is depicted with the same color inten-
sity as the neighboring kz¼ 1 modes for visualization purposes.
Constant Alfv�en-time contours are parallel to the kx axis, by definition.
The other contours in Fig. 3 will be presently discussed below and are
included for later referencing. See Ref. 55 for similar results based on
Fourier-space ratios of linear and nonlinear accelerations, rather than
timescales.

IV. WAVEVECTOR DISTRIBUTION OF ENERGY AND
NONLINEARITY PARAMETER

A more detailed view of the energy spectrum is afforded by
examining the distribution of energy in parallel and perpendicular
components of the wavevector. We define the modal energy spectral
density as EmodðkÞ ¼ ½jvðkÞj2 þ jbðkÞj2�=Dk3, where vðkÞ and bðkÞ

FIG. 2. Omnidirectional spectra of magnetic (Eb) and kinetic (Ev) energies, and
nonlinear timescale snl , at t¼ 2.0. Here, snlðkÞ ¼ 1=½k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kEomniðkÞ

p
� (see the text).

The dissipation wavenumber kg is shown as a vertical line. Reference lines with
k�5=3 and k�2=3 slopes are plotted in dotted green.
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are the (periodic domain) Fourier coefficients of velocity and magnetic
field, respectively, and Dk3 is the fundamental Cartesian volume ele-
ment for the simulation (equal to unity in our case). Figure 4 shows a
map of EmodðkÞ in a two-dimensional (2D) cut through the wavevec-
tor space, for the simulation at t¼ 2.0. The particular selected plane,
Emodðkx; ky ¼ 0; kzÞ, spans one perpendicular direction, kx, and the
parallel direction, kz. In the figure, lines of constant spectral density are
shown, the pattern of distribution further emphasized by plotting
colors associated with ranges of energy density. The following analyses
and figures correspond to t¼ 2.0 as well.

The top panel shows a large range of wavevectors, extending
beyond the dissipation scale in the high kx (perpendicular) direction,
and spanning about ten orders of magnitude in spectral density. The
bottom panel shows a close-up of the same distribution, concentrating
on the region closer to the origin with kx � 40 and kz � 40, covering
the inertial range.

The distribution is highly anisotropic, extending more deeply
toward the perpendicular direction, as expected given the well-known
tendency for MHD turbulence to produce stronger gradients perpen-
dicular to an externally supported uniform magnetic field.5,6,57 One
may note, for example, that the contour labeled as (8:8� 10�10)
extends to nearly kx¼ 100 at kz¼ 0, while the same contour, at kx¼ 0,
extends only to about kz¼ 45.

The bottom panel of Fig. 4 emphasizes the range of wave vectors
that would typically be included in the inertial range. The contours are
almost vertical at high kz > 25 and indicate peaks in the spectral den-
sity at kz¼ 0 for all values of kx. Therefore, one immediately concludes
that the “quasi-2D” modes (kz 	 k) are the most energetic, and in
some ways may be dominant. We explore this further below. Note
that, in general, for MHD, one would define quasi-2D modes as those
with kz 	 k and snlðkÞ 	 sAðkÞ.58 In a continuum, there may be

quasi-2D modes with nonzero kz 	 k (see Fig. 13), but for our dis-
crete case and our particular simulation parameters, the quasi-2D
requirements are satisfied only for the kz¼ 0 modes.

Also plotted in the panels of Fig. 4 are contours on which the
computed nonlinearity parameter

vðkÞ ¼ sAðkÞ
snlðkÞ

; (2)

takes on the values of unity. This parameter provides a measure of the
relative strength of local-in-scale nonlinearity and local Alfv�en wave
propagation (see, e.g., Refs. 10, 28, and 34). The idealized “equal-
timescale curve” assumes inertial-range Kolmogorov scaling,

FIG. 3. Alfv�en timescale sAðkÞ ¼ 1=jkzB0j in the kz � kx plane. For kz¼ 0, we
set the Alfv�en time equal to the neighboring value at kz¼ 1: 1=B0. The Higdon56

curve (kz ¼ k2=3x ), the v ¼ sA=snl ¼ 1 curve (critical balance10), and the dissipa-
tion wavenumber kg are plotted as dashed red, dash-dotted black, and dotted green
curves, respectively. The latter two contours are constructed from the simulation
data at t¼ 2.

FIG. 4. Top: Contours of the modal energy spectrum in the kz � kx plane. The
Higdon curve, the v¼ 1 curve, and the dissipation wavenumber are plotted as
dashed dark-red, dash-dotted black, and dotted green curves, respectively. Bottom:
A blow-up of the region near the origin, covering the inertial range of wavenumbers.
The dark-red dotted, dashed, and dash-triple-dotted lines show the Higdon curves
with proportionality constant a equal to 0.5, 1, and 2, respectively.
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associated with the Higdon56 formula kzL0 � ðkxL0Þ2=3, and was later
adopted by Goldreich and Sridhar10 as a central element of the critical
balance phenomenology. The contours of kz ¼ ak2=3x (in dimension-
less units), associated with snl ¼ constant� sA, are also shown for dif-
ferent values of the proportionality constant a (see caption).

A significant feature of the spectra in Fig. 4 is the lack of any
apparent preferred regions in wavevector space. In particular, there is
no discernible enhancement of energy density near the Higdon/criti-
cal-balance curve, or along any curve of that order, such as the
kz ¼ 2ðkxÞ2=3 curve that is illustrated (see also discussion of Figs. 2
and 3 in Ref. 55). We also note that there is no discernible deficit of
spectral power along either the quasi-2D axis kz¼ 0 or along the “slab”
axis kx¼ 0. Note that the latter observation is pertinent to all values of
wavenumber, not only the initially excited range including jkj < 7.
Therefore, for example, the small-scale quasi-2D modes are populated
by the cascade on the same timescales as those over which the rest of
the anisotropic spectral distribution is formed.

Figure 5 provides complementary information by illustrating the
distribution of the nonlinearity parameter in the same 2D cut through
k-space. Here, the nonlinearity parameter is computed from the actual
spectral distribution, and not from an assumed Kolmogorov power
law. As in the previous figure, this accounts for why the computed
v¼ 1 line does not coincide (outside the inertial range) with the ideal-
ized Higdon curve, which does adopt the assumption of a canonical
�5=3 power law spectrum in the perpendicular wavenumber.

One may observe in Fig. 5 that there is a concentration of values of
v greater than unity near the kz¼ 0 axis, i.e., at or near the quasi-2D
region of k-space. Here too, the formally infinite values of v on the 2D
axis have been replaced with values found at the juxtaposed modes with
kz¼ 1. We recall then that the energy density is substantial in these
modes, and actually somewhat larger than modes found at higher kz
closer to the v¼ 1 curve. This provides a clear suggestion of the difficulty
in asserting that v¼ 1 is a kind of upper attainable limit of the nonlinear
strength. However, this is not a quantitative statement, as it falls short of
an assessment of the relative importance of regions of the spectrum with
different v values. Analysis of that type is provided below.

V. NONLINEAR TRANSFER-RATE ESTIMATES

In the previous two sections we examined the anisotropic distri-
bution of energy due to an externally supported mean magnetic field,
and we computed the basic physical timescales at the instant at which
the analysis is performed. To proceed to an understanding of the
dynamics, one must go further. Several options exist.

One approach is to compute, based on the known state of the sys-
tem, the scale-to-scale transfer rates using a scale-filtering approach.59

Studies of this type have been done for isotropic MHD;51,52,60 the
extension of such studies to the anisotropic case has been less fre-
quently studied. However, for the anisotropic case, there are some
models based on physical assumptions consistent with those adopted
here,35,61 while examination of transfer across surfaces such as planes
and cylinders also led to conclusions61 broadly consistent with the
ideas adopted here.

We note that while computing scale-to-scale transfer directly is
extremely valuable for addressing questions such as the validity of
Kolmgorogov locality, it does not immediately provide insights into
the role of the various physical timescales in producing the computed
effects. In particular, if we wish to develop or test phenomenological

theories10,23,41,62 or closures,8,10,63–65 it will be necessary to understand
how the fundamental timescales enter the dynamics.

Similar challenges exist for the interpretation of the 3D form of
the Kolmogorov–Yaglom–Politano–Pouquet laws.20,66–68 This rela-
tionship provides a direct connection between third-order correlations
and total energy-transfer across an arbitrary closed surface in scale
space.69 However, third-order laws are notorious for their slow con-
vergence, and in any case require additional analysis to connect their
empirically obtained values to physical parameters and timescales.
This is particularly germane here because the applied magnetic field
does not change the formal structure of the third-order laws, but
rather appears in the hierarchy on the same footing as the fourth-
order moments.20 Consideration of higher-order moments would

FIG. 5. Top: Nonlinearity parameter v ¼ sA=snl. Bottom: A blow-up of the region
near the origin. In both panels, the dissipation wavenumber and the v¼ 1 and
Higdon curves are plotted as described in Fig. 3.
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complicate the present study in which the goal is to quantify the roles
of the nonlinear and wave timescales in spectral transfer.

In view of these issues, in what follows, we pursue a different and
simpler approach, emphasizing potential insights into the role of the
fundamental timescales in inducing spectral transfer of energy. We
employ existing frameworks of turbulence phenomenologies, plausibly
generalized to the anisotropic case, to probe the relative strength of
nonlinear and linear effects, and to understand the role of the associ-
ated timescales in controlling spectral transfer.

A. Elementary estimates

The simplest estimate of energy transfer ignores both the influ-
ence of Alfv�enic propagation and the anisotropic distribution of
energy in the wavevector. In effect, one averages the nonlinear effects
and the energy distribution over angle, leaving a dependence on the
wavenumber alone. Such a direction-averaged estimate of the (local)
energy spectral-transfer rate may be written as dv2ðkÞ=snlðkÞ
¼ kEomniðkÞ=snlðkÞ. In the steady state, this rate, in units of energy per
unit mass per unit time, will be balanced by the global dissipation rate
e ¼ �hj2 þ x2i. This approach is fully equivalent to the classic
Kolmogorov theory, since all information about anisotropy is lost
through averaging. Such an approach has been successfully applied to
solar wind observations to provide useful estimates of rates of cascade
and dissipation.46,70,71 It is not necessary to plot this spectral transfer
rate in regions of wavevector space as has been done above in Fig. 5,
since the pattern would consist simply of concentric circular regions.

A modified estimate, also incomplete, is one that includes anisot-
ropy of the energy distribution, but no explicit account of the Alfv�enic
timescale. To take this step, we maintain Kolmogorov’s scale-locality
in computation of the nonlinear timescale and quantify its effect on
the anisotropic spectral distribution of energy. This estimate of a “local
pseudo-cascade rate” may be expressed as

dv2ðkÞ
snlðkÞ

¼ Dk3EmodðkÞ
snlðkÞ

; (3)

and is illustrated in Fig. 6. This is, in effect, an estimate of spectral
transfer acting at a given wavevector if the mean magnetic field is sud-
denly extinguished while the spectrum remains anisotropic. In the
following, we denote the turbulence strength at wavevector k as dvðkÞ,
estimated using Eq. (3).

Several properties of the quantity plotted in Fig. 6 are appar-
ent. The first is that it is anisotropic in the plane, but also that its
anisotropy is identical to that of the modal energy spectrum itself,
which was shown in Fig. 4. This is due to the fact that the
Kolmogorov nonlinear timescale, as defined in Eq. (1), is isotropic.
For this reason, the quantity depicted in Fig. 6, even if it has the
dimensions of the energy cascade rate (per unit mass), is not useful
as a measure of the anisotropy of the cascade. Such a measure must
include the influence of the Alfv�en propagation effect (see Fig. 3),
which is known to suppress spectral transfer in the parallel direc-
tion in k-space.6,23

B. Triple correlations and introduction of the Alfv�en
time

An improved estimate of local cascade rates may be constructed
based on timescales. We begin with the formulation of the spectral

transfer rate in terms of nonlinear time and the lifetime of triple corre-
lations as formulated by Kraichnan4 and subsequently extended into a
“golden rule.”11,36,62 Note that the triple correlations are so named
since they involve triple products of Elsasser-field components, and
are responsible for inducing turbulent energy transfer across the iner-
tial range. The essential statement, formulated for the isotropic case, is
that the spectral transfer time may be defined by the relation
sspðkÞs3ðkÞ ¼ s2nlðkÞ, which is equivalent to Kraichnan’s observation
that in the steady state the transfer rate

eðkÞ ¼ s3ðkÞ
dvðkÞ½ �2

snlðkÞ2
; (4)

must be independent of scale. In this expression, the direct proportion-
ality on the lifetime of triple correlations s3 is a physical requirement,

FIG. 6. Top: Estimate of the local pseudo-cascade rate of energy dv2ðkÞ=snlðkÞ.
Bottom: A blow-up of the region near the origin. In both panels, the dissipation
wavenumber and the v¼ 1 and Higdon curves are plotted as described in Fig. 4.
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one that may be amply motivated by examining the structure of
moment hierarchies appearing in closures such as the eddy damped
quasi-normal Markovian approximation.11,72 Furthermore, the only
other timescale available on the right side of Eq. (4) is the nonlinear
time snl. It follows that the effective spectral transfer rate is

s�1sp ¼ s3=s
2
nl: (5)

At this point, we introduce anisotropic effects. While the nonlinear
time (assuming scale locality) is a function only of the magnitude jkj,
there is a possibility to introduce on physical grounds a directional
dependence in s3. This introduces a wavevector directional depen-
dence in the spectral transfer rate 1=ssp.

To proceed, we approximate the lifetime of the triple correla-
tions.4 A standard approach is to assume that the total rate of decay of
the triple correlations is the sum of contributions from individual
rates.11,48,62 Here, the available rates are those derived from nonlinear
effects and the Alfv�en propagation effect. Specifically, allowing for the
directionality of Alfv�en propagation, we may write

1
s3
¼ 1

sA
þ 1

snl
; (6)

which yields

s3ðkÞ ¼
sAðkÞsnlðkÞ

sAðkÞ þ snlðkÞ
; (7)

where as before, sAðkÞ ¼ ðk 
 VAÞ�1 ¼ ðkzB0Þ�1 for Alfv�en speed
VA. This leads to a locally defined anisotropic spectral-transfer rate
(see Appendix A)

1
sspðkÞ

¼ s3ðkÞ
s2nlðkÞ

¼ vðkÞ
1þ vðkÞ

1
snlðkÞ

: (8)

This way of writing the spectral transfer rate (in terms of the nonline-
arity parameter v) makes it clear that the combination

rðkÞ ¼ vðkÞ
1þ vðkÞ (9)

acts as a suppression factor which, when multiplying the nonlinear
rate 1=snl, reduces the net transfer rate, due to the Alfv�en propagation
effect. We note that the suppression factor admits no singularity for
any value of applied magnetic field B0, but instead r! 1 when the
Alfv�en time diverges (for zero B0 or for the quasi-2D regions of the
spectrum). The variation of the suppression factor in the wavevector
plane for our example simulation is shown in Fig. 7.

The above approximate formulation of the spectral transfer rate
1=ssp achieves the desired connection with basic timescales and per-
mits contact with several existing theoretical frameworks; it is illus-
trated in Fig. 8, computed from the standard simulation described
above. It is evident that the very strong values of the spectral transfer
rate are concentrated near the 2D plane defined by kz¼ 0, consistent
with the behavior of the suppression factor in that region. In particu-
lar, this characterization holds for values of perpendicular wavenum-
ber that were not excited initially.

C. Estimates of local strength of energy transfer

The above anisotropic triple decay time is appropriate for intro-
duction into estimation of amodal rate of energy transfer, that is semi-

local in wavevector space. This will have dimension energy per unit
mass per unit time. If constructed in a physically reasonable way, this
would provide a phenomenological (non-rigorous) estimate of the
contributions to the total energy transfer rate due to the energy resid-
ing near a wavevector k.

There are several ways to proceed to develop cascade rate esti-
mates that incorporate anisotropic spectral transfer. The most formal
approaches are those based on adaptations of third-order laws.66 An
example is Ref. 73, which assumed a two-component slabþ2D model
of turbulence geometry to estimate such rates. In principle, with suffi-
cient data coverage, it is also possible to apply the third-order cascade
law for arbitrary geometry (see, e.g., Refs. 74 and 75) provided that the
system is steady and homogeneous. Such approaches rely on relatively

FIG. 7. Top: Suppression factor for anisotropic spectral transfer r ¼ v=ðvþ 1Þ. At
kz¼ 0, we have v!1, and therefore we set r equal to unity there. Bottom: A
blow-up of the region near the origin. In both panels, the dissipation wavenumber
and the v¼ 1 and Higdon curves are plotted as described in Fig. 4.
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delicate third-order statistics, and do not necessarily reveal dependence
on underlying physical timescales.

In Appendix A, beginning from first principles and adopting a
minimal set of approximations, including scale locality, we develop a
justification for an estimation of cascade strength in an anisotropic
inertial range. Two distinct approaches are needed when there is a sig-
nificant mean magnetic-field, corresponding first to the case of non-
resonant transfer, and then to the case of resonant transfer.6,23 In mak-
ing this distinction, it becomes relevant to distinguish two separate roles
of modes contributing to any particular triadic interaction: participating
modes experience an exchange of energy, while a spectator mode acts
to drive this exchange while its energy remains unchanged.35,76

The case of non-resonant transfer, which will also be relevant
when there is no substantial mean magnetic field, will be based on the
timescales discussed above and a generalization of the argument lead-
ing to Eq. (4). The corresponding spectral transfer estimate is

êðkÞnon-res ¼
dv2ðkÞ
sspðkÞ

¼ s3ðkÞ
s2nlðkÞ

dv2ðkÞ ¼ vðkÞ
1þ vðkÞ

dv2ðkÞ
snlðkÞ

: (10)

For resonant transfer, the argument is modified so that the non-
linear rate, and the triple correlation time of the spectatormode is used
in the approximation, rather than the corresponding timescales associ-
ated with the on-shell participating mode.35 The spectator modes for
resonant transfer are quasi-2D and have approximately zero wave fre-
quency, so the suppression factor v=ð1þ vÞ ! 1 for these couplings.
Furthermore, scale-local resonant transfer is not driven by the entire
k-shell, but only by the 2D energy near B0 
 k � 0. Consequently, we
estimate the resonant energy transfer as

êðkÞres ¼
dv2ðkÞ
snl2DðkÞ

; (11)

where snl2DðkÞ ¼ ½kdv2DðkÞ��1 is the quasi-2D on-shell nonlinear
timescale. Here, dv2DðkÞ is estimated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kE2DðkÞ

p
where E2D is the

contribution of 2D modes (defined by kz¼ 0) to the total energy in the
k-shell (see Fig. 13). We call attention to the fact that for resonant
transfer, the triple decay time is equal to the nonlinear time (snl2DðkÞ)
that drives the process. In addition, the resonant transfer is strictly in
the perpendicular direction (see Appendix A).

To illustrate these two contributions to energy transfer, we
employ data from the standard simulation used above. First, we plot
estimates of the associated nonresonant contribution in Fig. 9 in the
same planar cut through the wavevector space employed above. In Fig.
11, we plot the estimated resonant energy transfer using the same data
and in the same wavevector plane.

We observe in Fig. 9 that the estimated nonresonant energy
transfer, like other quantities depicted above, is anisotropic with larger
values extended in the perpendicular direction. For example, the
energy transfer estimate at kx¼ 100 and kz¼ 0 is larger than the value
at kx¼ 0 and kz¼ 50. Furthermore, the contours of equal estimated
energy transfer differ greatly from the v¼ 1 and Higdon curves that
are superimposed on the figure. This is consistent with a lack of paral-
lel transfer in regions, where sA < snl, and stronger parallel transfer
for sA > snl. As a general comment, it is difficult to identify specific
features of the estimated nonresonant energy transfer that correspond
to either the v¼ 1 curve or the Higdon curve.

Figure 10 shows profiles of the nonresonant energy-transfer rate
estimate along lines in the (kx, kz) plane. Each curve is for a fixed per-
pendicular wavenumber kx and is plotted as a function of parallel
wavenumber kz. The curves each show maximum values at kz¼ 0. It is
therefore clear that the strongest estimated spectral transfer is found
along the 2D (kz¼ 0) plane for all plotted values of perpendicular
wavenumber, which are chosen to span the inertial range. In addition,
each curve is annotated with a � symbol at the (pair of) values of par-
allel wavenumber corresponding to the value v¼ 1 for the nonlinear-
ity parameter. Also indicated by � symbols are the intersections of
each line with the Higdon curve (in dimensionless terms, kz
¼ 6k2=3x ). It is apparent that the values of estimated nonresonant
energy-transfer at these special values of kz are systematically lower

FIG. 8. Top: Anisotropic spectral transfer rate 1=ssp ¼ s3ðkÞ=s2nlðkÞ ¼
v

vþ1
1
snl
,

where ssp is the spectral transfer time and s3 is the triple correlation time (see the
text). At kz ¼ 0, we have v!1, and therefore we set the factor v

vþ1 equal to
one. Bottom: A blow-up of the region near the origin. In both panels, the dissipation
wavenumber and the v¼ 1 and Higdon curves are plotted as described in Fig. 4.
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than the estimated energy transfer on the 2D axis. In fact, at kx¼ 8
and kx¼ 15, the energy transfer at the 2D plane is approximately five
times greater than that found at the intersection with v¼ 1. At higher
perpendicular wavenumbers, the contrast is less dramatic, but one still
finds about a factor of two larger estimated energy transfer at zero par-
allel wavenumber as compared to the position of unit nonlinearity
parameter v¼ 1.

The estimated resonant transfer (Fig. 11) exhibits a qualitatively
similar anisotropy to that seen in the nonresonant estimates (Fig. 9).
Contours of equal estimated transfer are elongated in the perpendicu-
lar direction, indicating a steeper decline in contributions to the

cascade in the parallel direction. Such a distribution of turbulence
activity is consistent with the real-space expectation that the cascade
produces gradients that are steeper in directions perpendicular to the
mean magnetic field.

To further identify the role of the nonlinearity parameter v in
organizing the turbulence, Fig. 12 shows two distributions of turbu-
lence parameters over v, including modes with 0 � kx � 200 and
�100 � ky; kz � 100. In each case, occurrences along the 2D plane
(where v is formally infinite) were treated as though their v value is
the same as for the nearby kz¼ 1 modes). The left panel shows the dis-
tribution of fluctuation energy in ranges (bins) of v that have equal
width in log-space. The energy in the initially populated energy-
containing modes is excluded by employing high-pass wavenumber
cutoffs, to avoid biasing the distribution with the (isotropic) initial
data. Two values of the cutoff, kc > 7 and kc > 11, are employed, and
the results for each of these is shown. It is apparent that the distribu-
tion, while peaked at a value slightly less than v¼ 1, is also asymmetric
and skewed toward larger values. As indicated in the figure, 50% of the
energy lies below (above) a value of v that is very close to unity.
However, due to the skewness of the distribution, the energy-weighted
mean value of v is approximately 2 and changes very little for the two
high-pass wavenumber thresholds. This weighted mean is computed

as hvi ¼
P

i
viwiP
i
wi
, where vi is the value of v at the center of the ith bin

and wi is the percentage of energy in the bin.
A similar picture emerges on inspection of the right panel of Fig.

12 that shows the distribution over v of the local estimates of nonreso-
nant energy transfer ênon-res, again for the same two high-pass wave-
number cutoffs. Once more the distribution is peaked near v¼ 1 and
here is even more strongly skewed. 50% of the values are found below
about 1.4. The weighted mean value of v in this case is a little greater
than 2. This result is qualitatively similar to that obtained by Refs. 32
and 34, with some possibly significant differences in the details of the

FIG. 9. Top: Estimate of nonresonant energy transfer �̂ðkÞnon�res ¼ dv2ðkÞ=
sspðkÞ ¼ vðkÞ

1þvðkÞ
dv2ðkÞ
snlðkÞ . At kz¼ 0, we have v!1, and therefore we set the factor

v
vþ1 equal to one. Bottom: A blow-up of the region near the origin. In both panels,
the dissipation wavenumber and the v¼ 1 and Higdon curves are plotted as
described in Fig. 4.

FIG. 10. Horizontal slices along (parallel wavenumber) kz of the non-resonant spec-
tral transfer rate of energy êðkÞnon�res ¼ v=ðvþ 1Þ � dv2ðkÞ=snl, through the
kz � kx plane shown in Fig. 9, for different values of (perpendicular wavenumber)
kx. The locations where the Higdon and v¼ 1 curves intersect these slices are
marked with “�” and “�” symbols, respectively.
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simulations and in the analysis. However, the distributions shown
here reveal quantitatively the energy content and spectral transfer rates
prevailing in modes with different values of v. The present diagnostics
suggest that a wide range of values of the nonlinearity parameter are
realized in anisotropic MHD turbulence, with substantial contribu-
tions from values of v well above unity. These results are consistent
with those from a run with isotropically polarized fluctuations (see
Appendix B).

As a final point, we should emphasize that the treatment of spec-
tral transfer in this section has consisted of estimating a scalar transfer
rate: contributions from each point in k-space to the total energy
transfer due to activity at that point. We have not made an attempt to

further model this as a directional vector flux, as defined in Eq. (A7) of
Appendix A. The vector flux model would be required to demonstrate
steady flux across scales by integrating the normal component over a
closed surface in wavevector space. See Ref. 35 for an anisotropic
MHDmodel of this type based on k-space diffusion.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have examined in some detail the relationship
between spectral anisotropy and physical timescales in a computation
of MHD turbulence. This is a topic that has been extensively discussed
in other studies from a variety of perspectives and often with a motiva-
tion oriented toward establishing or promoting a particular theoretical
framework. Previous works on closely related topics have often
adopted approaches that we intentionally avoid here. First, in the pre-
sent work, we examine the simulation results in terms of simple esti-
mates of timescales and transfer rates, reporting the analysis with a
minimum of critical commentary. This stands in strong contrast to
analyses that adopt approximations based on assumptions about time-
scales in order to derive particular models of turbulence. Examples of
this would include Montgomery and Turner’s derivation of RMHD, in
which dynamical timescales are assumed to be slow in comparison
with Alfv�en timescales;23 Goldreich and Sridhar’s critical balance the-
ory, which asserts that turbulence evolves such that Alfv�en and nonlin-
ear timescales remain nearly equal;10 and weak turbulence theory,
which requires Alfv�en times to be shorter than nonlinear times.77 We
make none of these approximations here. Second, as noted in Secs. III
and V, and discussed in Appendix A, we have not adopted the most
rigorous available frameworks for quantifying spectral transfer. For
the problem at hand, this would correspond to the several possible
forms of the Kolmogorov–Yaglom–Politano–Pouquet third-order laws
that are available for application to the MHD simulation.66–68 These
are extremely powerful tools but they do not provide direct informa-
tion about the available physically relevant timescales. Such informa-
tion is contained in higher-order correlations. Finally, we remind the
reader that the present results are based on analysis of a single snap-
shot from a simulation initialized with toroidally polarized fluctua-
tions, and we have made no attempt to claim any form of universality
concerning the results.

To confirm the robustness of our results, we repeated our analyses
for a simulation initialized with isotropic fluctuations (with toroidal
þ poloidal polarization) and obtained similar results (see Appendix B).
Therefore, it is our impression that the results presented here are of
a fairly typical character for the class of initial data that we have
examined. This corresponds, roughly speaking, to low cross-helicity,
incompressible “Alfv�enic” turbulence, and, within limitations of
incompressible MHD, does not differ greatly from parameters often
chosen to simulate solar-wind-like conditions at 1AU (e.g., Refs. 21,
78, and 79).

The main results of the paper are the estimates of the anisotropic
distributions of estimated spectral transfer rates and rates of energy
transfer (shown in Figs. 8–11), as well as the distributions of energy
and its transfer rate across the nonlinearity parameter v and the sup-
pression factor r (shown in Fig. 12). As mentioned above, these results
pertain only to the specific case of homogeneous MHD turbulence
with a mean magnetic field of moderate strength. The results may be
summarized succinctly with the statement that the distributions of
estimated transfer rates are relatively featureless. There are no strong

FIG. 11. Top: Estimate of resonant energy transfer �̂ðkÞres ¼ dv2ðkÞ=snl2DðkÞ,
where snl2DðkÞ ¼ 1=½k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kE2DðkÞ

p
�. Only 2D modes contribute to nonlinear time on

the entire k-shell (see the text). Bottom: A blow-up of the region near the origin. In
both panels, the dissipation wavenumber and the v¼ 1 and Higdon curves are
plotted as described in Fig. 4.
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enhancements in any part of k-space beyond a local peak of nonlinear
activity near the 2D axis, which is globally perpendicular to the direc-
tion of the externally applied field. This is broadly consistent with
expectations based on derivations of the RMHD model28,29,80 and, at
least superficially, appears to stand in contrast to certain interpreta-
tions of critical balance that anticipate a special role for modes having
equal nonlinear and Alfv�en timescales. Further examination of the
relationship of nonlinear and Alfv�en timescales was performed by
looking at the distributions of energy and spectral energy transfer in
bins of the nonlinearity parameter v ¼ sA=snl and the suppression

factor r ¼ v=ð1þ vÞ. The distributions are peaked near v¼ 1 (or
equivalently, r ¼ 0:5), but are skewed toward larger values of v corre-
sponding to strong nonlinearity. The broad distributions of the non-
linearity parameter admit numerous values and an average (weighted
by energy and its spectral transfer rate) that exceeds unity. It is there-
fore difficult to argue in favor of theoretical developments, such as cer-
tain interpretations of critical balance, that postulate that v¼ 1 is a
limiting maximum value (e.g., Refs. 10, 30, 32, 34, 81, and 82).

A brief comment on the local (as opposed to global) anisotropy is
in order. It is well-known31,83,84 that the analysis of anisotropy using
structure functions parallel and perpendicular to locally computed
average magnetic fields gives results with a higher anisotropy. It is also
established that this effect is sensitive to phase coherence or intermit-
tency, and disappears when the fields are “Gaussianized.” This
enhancement is therefore fundamentally of higher order than classical
second-order spectra (see Ref. 84). However, our interest in the present
paper is in classical spectra (and underlying correlation functions) and
these are only well defined in a fixed coordinate system in which the
preferred reference direction is fixed.

The interested reader might find additional useful information
about effects that are studied using the local, random coordinate sys-
tem in, e.g., Refs. 30, 32, and 34. The issue of the appropriate mean
fields to use when analyzing spectral anisotropy has received substan-
tial attention (e.g., Refs. 30, 31, and 85–91). Clearly, there are both
technical and conceptual aspects to address regarding this issue and
we defer fuller consideration to future work.

While we have attempted to avoid adopting bias toward or
against any specific theoretical approach, it seems clear that the pre-
sent results favor a somewhat simplified description of anisotropy in
MHD associated with a mean magnetic field. The idea inherent in the
derivation of RMHD,29 namely that the 2D or quasi-2D modes repre-
sent the core nonlinearities of a turbulent system, appears to be largely
consistent with this single detailed numerical experiment. Both

FIG. 12. Left: Barplots show percentage of modal energy (left vertical axis) in bins of v, for two values of high-pass cutoff wavenumber kc; blue bars for kc > 7 and narrow red
bars for the kc > 11. The bins are equally spaced in the log-scale. Curves with “�” and “þ” symbols show cumulative percentage of energy (right vertical axis in brown color)
for the two cases. Arrows (") below the lower horizontal axis mark the weighted mean of v (see the text). Arrows (#) above the upper horizontal axis mark the weighted median
of v (where the cumulative percentage of energy is 50%). Regions shaded pale green, brown, and pink represent regions of weak, moderate, and strong nonlinearity/turbulence,
with the boundaries for the three regions set at v � 0:4; 0:4 < v � 2; and v > 2, respectively. Right: As above, with the modal energy replaced by the non-resonant spectral
energy transfer rate �̂non�res. Green axes at the bottom of each panel show the values of the suppression factor r corresponding to selected representative values of v.

FIG. 13. Diagram of a 2D cut through k-space, indicating locality of triadic interac-
tions on (near) a shell of radius k. Wavevectors for the quasi-2D modes58 lying on
this shell terminate in the region shaded in red.
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resonant and nonresonant estimated transfer rates point toward main-
tenance of anisotropic spectra with strong perpendicular real-space
gradients relative to the (suppressed) parallel gradients. The critical-
balance condition, v¼ 1, appears to be better interpreted as an order-
of-magnitude estimate of the extent of the spectra in the parallel direc-
tion, at least in this case where the measurements are made relative to
a global magnetic field. In this way, most of the realizable implications
of critical balance point to a dynamical description in terms of quasi-
2D or reduced-MHD. Such a description of anisotropic MHD turbu-
lence is a simplification relative to the chain of reasoning leading to
critical balance models, and we await further analyses that provide
support for the present viewpoint or alternatives. A more complete
discussion of the role of critical balance ideas in MHD turbulence is in
press.100 Related future work could examine similar distributions of
the timescales in high cross helicity simulations as well as in spacecraft
observations.53,90
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APPENDIX A: SPECTRAL TRANSFER AND SCALE
LOCALITY

Here, we develop some background to motivate our approach
to estimating semi-local contributions in wavevector space to spec-
tral transfer in anisotropic MHD turbulence. The spectral density of
energy SðkÞ evolves in incompressible MHD according to an equa-
tion of the same formal structure as the analogous equation for the
spectral density in incompressible hydrodynamics. Note that SðkÞ is
defined as the trace of the energy spectrum tensor, which in turn is
defined in terms of the Fourier transform of the two-point correla-
tion function of the turbulent fields (see, e.g., Refs. 1 and 92)
Specifically, the energy spectrum evolves as (e.g., Chap. 6 of Ref. 93)

@SðkÞ
@t
¼ NðkÞ � DðkÞ; (A1)

where NðkÞ ¼
Ð
dpdqTðk; p; qÞ is the nonlinear term representing

the net effect of all triadic interactions on the energy density at
wavevector k, T is the Fourier-space triple correlation, and D is the
dissipation term. Each term in Eq. (A1) is time dependent.

Energy conservation in the absence of dissipation corresponds
to the property thatð

dkNðkÞ ¼
ð
dkdpdqTðk; p; qÞ ¼ 0: (A2)

We have neglected possible sources at a very low jkj � 1=L, while
in the usual way, the dissipation is assumed to be effective only for
a very large kL. Then there exists an inertial range in which energy
is conserved by nonlinearities, even as it is transferred from scale-
to-scale. The net dissipation is e ¼

Ð
dkDðkÞ, and in the steady state,

this is equal to the transfer rate across any sphere of radius k lying
in the inertial range.

We gain insight by integrating the equation for the spectral
density equation (A1) over all jkj < k�, and defining

E<ðk�Þ ¼
ðk�
0
dq
ð
q2dXqSðqÞ and E>ðk�Þ ¼

ð1
k�
dq
ð
q2dXqSðqÞ;

(A3)

where the integral is expressed in spherical polar coordinates and
dX ¼ sin hdhd/ is the differential solid angle. Ignoring dissipation,
it is clear that

dE<
dt
þ dE>

dt
¼ 0: (A4)

In solving Eq. (A1), we are confronted with the classical closure
problem of turbulence. The second-order quantity S depends on the
third-order correlation T. Further development would show that
the time evolution of T depends on fourth-order correlations, and
so on. To proceed, various approximations can be made to solve
for, or bring closure to, this hierarchy (e.g., Ref. 7).

The principal complication lies in the nonlinear term
described in Eq. (A2), which, through the definition of the triple
correlation T, depends on convolutions of the (schematic) form

NðkÞ �
ð
dpdqdðpþq� kÞvðkÞvðpÞvðqÞ: (A5)

Here, dðpþq� kÞ is a Dirac delta function, and so only triads
with pþ q ¼ k contribute to the integral. The associated triadic
interactions have been studied and classified in a number of
studies.35,49,51,94–97

The development of models for the third-order correlations T
is a principal goal of turbulence theory. Rigorous treatments are dif-
ficult, and usually remain inexact (e.g., Refs. 94 and 98) A useful
approach, adopted here, is to justify and adopt phenomenological
models for the nonlinear effects, which includes the physics of the
cascade, and appropriate approximations.

To guide our reasoning, we refer to Fig. 13, which schematically
shows a 2D cut (in the kk–k? plane) through 3D wavevector space. A
set of wavevectors corresponding to a triadic interaction in the inertial
range is illustrated. In each triadic interaction in incompressible
MHD, there are spectator modes, and exchange modes. The spectator
modes (say, q in Fig. 13) induce energy transfer between the exchange
modes, while the spectator mode energy remains unchanged. The
spectator wavevector therefore indicates the (unsigned) direction in
which a particular triad induces transfer. This property is general (see
Refs. 35 and 76) and is useful for classifying different types of triads.
Note that because the net spectral transfer into SðkÞ is an integral
over two sets of wavevectors, q and p, the triad depicted in Fig. 13
actually corresponds to two triads: one where q is the spectator mode
and another where p is the spectator mode.

The idea of locality in scale is a powerful assumption in
Kolmogorov theory that is supported, even if inexactly, in numeri-
cal experiment and theory.49,51,52,61,98 The basic idea is that the net
transfer from wavenumbers <k to wavenumbers >k is dominated
by triadic interactions involving wavevectors that do not differ (in
magnitude) greatly from k itself. This can be visualized in Fig. 13 as
consisting of cases in which the interactions occur among k; p; and
q, all having approximately the same magnitude, k � p � q. That
is, all three participating wavevectors, or perhaps two of these
(“modified locality;” see Ref. 35), lie on or near the shell with
radius k.
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The locality property stands in contrast to the general case of
triadic interactions [Eqs. (A2) and (A5)] that may depend on spec-
tral amplitudes that are greatly distant both from the direction of k
or from the shell with jkj ¼ k. Those that are distant are nonlocal
interactions. Ignoring the nonlocal effects and adopting the approx-
imation of scale locality, one may interpret the inertial range
energy-balance equation (A4) as the conservative exchange of
energy across the boundary at wavenumber k. In that case, inertial
range conservation may be expressed as

NðkÞ ¼ rk 
 FðkÞ: (A6)

With this approximation and definition, both locality and conserva-
tion are guaranteed in the inertial range. Note that the vector flux F
admits functional dependence on correlations at wavevectors other
than k, but by locality the dependence is dominated by wavevectors
of similar magnitude. Then, in terms of the flux, the time rate of
change of energy within a sphere of radius k is

dE<
dt
ðkÞ ¼

ð
q<k

dqrq 
 FðqÞ ¼ k2
ð
dXkFkðhk;/kÞ; (A7)

where the spherical polar representations of the wavevectors
k ¼ ðk; hk;/kÞ and q ¼ ðq; hq;/qÞ are employed.

The approximations leading to the expression equation (A7)
did not include the assumption of isotropy. Nevertheless, we see that
the rate of transfer of energy to all wavevectors q having jqj > k is
determined by the conditions on the shell jqj ¼ k. This is crucial for
motivating the phenomenological estimates of spectral transfer in
the main text. In particular, a model of local spectral transfer will
specify the surface flux Fk ¼ k

k 
 Fk and requires consideration only
of the physical parameters in the shell with radius k. However, it is
clear that physical insight is required to understand how Fk will
depend on contributions from different parts of the shell.

In this regard, it is also possible to examine types of triads,
allowing several classes of interaction to be identified.35,76

Additional considerations include the vector polarization of the

fluctuations, and the comparison of the scale-local turbulence
amplitude to the mean field strength. An important factor that
enters the modeling of triadic interactions is whether interactions
are resonant interactions or nonresonant interactions, when turbu-
lence occurs in the presence of a sufficiently strong externally sup-
ported uniform or very large-scale magnetic field. Most interacting
triads are affected by this (effectively) DC magnetic field, in that the
strength of the transfer they induce is suppressed, as described by
the factor r ¼ v=ð1þ vÞ in Eq. (10). However, there is a particular
class of triads that are unaffected by the large-scale field and are res-
onant interactions; that is the set of triads that include one (or all
three) participating wavevector that lies in the plane perpendicular
to the field B0. Such modes have “zero frequency” and the triads
that involve these “2D” modes exchange energy but they do so with-
out changing the associated Alfv�enic frequency of the affected fluc-
tuations. These correspond to resonant interactions in an iterative
weak turbulence approach.6,57,99 In designing a phenomenological
description of scale-local transfer, it is necessary to properly distin-
guish the frequency changing non-resonant interactions from the
frequency-preserving resonant interactions.76

APPENDIX B: RESULTS FROM AN INITIALLY
ISOTROPIC RUN

In order to examine whether the results discussed above are
biased by our choice of initial polarization, we carried out an addi-
tional run. The results shown in the main body of the paper are
obtained for initially toroidal (transverse) polarizations (the results
leading to Fig. 12), while the results shown in Fig. 14 were obtained
for initially isotropic polarization, while all other simulation details
are identical. One can observe that the results are very similar,
although the energy and spectral-transfer in quasi-2D regions
appears to be slightly more significant in the isotropic case. Since
there are only minor differences, it is reasonable to conclude that
modifying the initial polarization does not produce a large effect,

FIG. 14. Left: Barplots show percentage of modal energy in bins of v. Right: The modal energy replaced by the spectral energy transfer rate rEmodalðkÞ=snlðkÞ. These results
are from a run with initially isotropic fluctuations (see the text). All other details follow Fig. 12.
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and in particular, definition of the nonlinear time to take polariza-
tion anisotropy into account would make little difference.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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