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General second-rank correlation tensors for homogeneous magnetohydrodynamic turbulence
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The properties and structure of second-order~Cartesian! correlation tensors are derived for the general case
of two solenoidal random vector fields. The theory is intended to describe homogeneous magnetohydrody-
namic turbulence, with no assumed rotational or reflectional symmetries. Each correlation tensor can be written
in terms of four scalar generating functions and the relationship of these functions to the potentials that
generate the poloidal and toroidal components of the underlying vector fields is derived. The physical nature of
the scalar functions is investigated and their true or pseudoscalar character is ascertained. In our general
discussion we clarify several misleading statements dating back to Robertson’s original paper in the field@Proc.
Camb. Philos. Soc.36, 209 ~1940!#. It is also shown that using the one-dimensional correlation function, it is
possible to obtain spectral information on the induced electric field in directions perpendicular to the measure-
ment direction.@S1063-651X~97!09208-8#

PACS number~s!: 47.27.Gs, 52.65.Kj, 47.65.1a
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I. INTRODUCTION

Turbulence theory makes extensive use of a general t
nique, attributed to Robertson@1#, for a complete and com
pact representation of correlation functions associated wi
random vector field, such as the velocity field fluctuation
homogeneous turbulence@2#. This theory of invariant tenso
structure usually has been applied to highly symmetric s
ations, most often isotropic turbulence@1–3#, and for some
years has remained a key element in the exposition of b
turbulence theory@4,5#. The present paper is motivated b
the need for a clear exposition of the general form of Ca
sian correlation functions involving two distinct solenoid
vector fields, say a magnetic field and an incompressible
locity field, with no additional assumptions other than spa
homogeneity of the second-order correlations.

While isotropy has been the most frequent assumpt
there have been extensive discussions of the structure of
relation tensors for axisymmetric turbulence, both for t
mirror-symmetric@6,7# and non-mirror-symmetric cases@8#.
To our knowledge, correlation structure for the full set
second-order correlations, involving both velocity and ma
netic fields, has been given previously only for the isotro
case@9,10#, although various special cases enter into me
field dynamo theory~see, e.g.,@11#!.

Non-mirror-symmetric turbulent fields are essential e
ments in discussions of the role of magnetic helicity in d
namo theory@11,12# and in the theory of magnetohydrody
namic ~MHD! cascades@13# and relaxation@14#. However,
most treatments of helicity have again focused on isotro
fluctuations, in this case allowing for index-antisymmet
contributions to the correlation tensors. The general resul
the structure of the antisymmetric autocorrelation tensor,
arbitrary rotational symmetry, was presented in the con
561063-651X/97/56~3!/2875~14!/$10.00
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of solar wind observations@15#.
For hydrodynamics, isotropy and mirror symmetry rema

reasonable approximations in many situations; however,
isotropy is expected to become significant in a variety
circumstances. Preferred directions, such as might be as
ated with rotation, or a large-scale gradient can have imp
on locally homogeneous turbulence, and representation
the correlation tensors must allow for this possibility@7,16#.
Homogeneous turbulence can also depend on higher-o
tensor quantities, such as the gradient tensor of a nonunif
mean flow, ~see, e.g.,@17#!, although we do not conside
such extensions here. In many cases symmetries with res
to tensor quantities and preferred directions have direct
pact on the structure of the correlation tensors. This is es
cially true for MHD turbulence for which, in many physica
applications, there may be an influential local mean magn
field direction that can induce spectral and spatial correla
anisotropy.~For a review of the extensively studied examp
of anisotropic turbulence in solar wind fluctuations, s
@18#.! While axisymmetric representations may be adequ
in some cases, there are clear motivations to go a step fu
and investigate the most general two-point, two-field cor
lations for incompressible homogeneous turbulence. For
ample, it is not uncommon to be presented simultaneou
with two preferred directions, such as in the solar wind, w
a mean magnetic field direction and a direction~heliocentric
radial! associated with mean large-scale gradients. Jus
important, it turns out that the most general case is struc
ally no more complicated than the axisymmetric case@6–8#.

In this paper we present the full structure, using Cartes
coordinates, of the autocorrelation and cross-correlation
sors associated with the solenoidal velocity and magn
fluctuations in homogeneous turbulence. This provides co
plete information concerning the structure of all secon
2875 © 1997 The American Physical Society
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2876 56S. OUGHTON, K.-H. RÄDLER, AND W. H. MATTHAEUS
order moments~spatial correlation functions and correspon
ing spectra! for locally homogeneous and incompressib
MHD turbulence, a model often found appropriate, for e
ample, for the solar wind. Our aim is to remain clear a
physically motivated, while employing reasonably rigoro
derivations. Thus we do not treat nondifferentiable fields a
other pathological cases. We also do not attempt to gene
ize to non-Cartesian coordinates. Along the way we find
useful to discuss and clarify several misleading or errone
statements in the literature@1,8,9,12#. Fortunately, these in
accurate statements have remained in abstract terms a
our knowledge have not adversely influenced specific
namical models or interpretation of data. We intend that
present, more complete, discussion will be useful in fut
models and the analysis of nonsymmetric homogeneous
bulence in a variety of applications.

II. DEFINITIONS AND NOTATION

We work with the zero-mean proper and pseudovec
solenoidal fields, respectively denotedv(x) and b(x), with
x the ~Cartesian! position vector relative to some fixed or
gin. These quantities have obvious interpretations as the
tuating parts of the velocity and magnetic fields in an inco
pressible MHD fluid~here b is in Alfvén speed units, for
which the laboratory field is scaled by the factor 1/A4pr,
with r the uniform mass density!. In the final section we also
summarize our results in terms of correlations between
Elsässer variablesz65v6b, which are popular in solar wind
transport theory, for example@19,20#.

Consider the definitions of the correlation and cro
correlation tensors

Ri j
v ~r !5^v i~x!v j~x1r !&5^v iv j8&, ~1!

Ri j
b ~r !5^bibj8&, ~2!

Ri j
vb~r !5^v ibj8&, ~3!

Ri j
6~r !5

1

2
^v ibj86biv j8&. ~4!

A prime denotes evaluation of the field at the displaced
sition x85x1r and the angular brackets denote an appro
ately defined ensemble average, usually taken to be equ
lent to long-time averaging~see, e.g.,@4#!. Under the
assumption of homogeneity such correlation tensors are
variant with respect to a change of coordinate origin and t
depend only on therelative separationr @21#.

We refer toRv, Rb, andR6 as the four ‘‘primary’’ ten-
sors, withRvb used mainly as an intermediate form useful f
obtaining the symmetrized versionsR6. Unless otherwise
stated, the absence of av, b, 1, or 2 superscript indicates
that the equation applies equally well to all four prima
forms. A subscript or superscriptv/b indicates the relation
applies to both thev andb autocorrelation tensors and is n
to be confused with the superscriptvb of Eq. ~3! for ex-
ample. Also, both the indexed and unindexed forms will
used to denote the same tensor, e.g.,R[$Ri j u i , j 51,2,3% de-
notes the full tensor. The summation convention on repea
indices is in effect unless otherwise stated.
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As is well known, a general second-rank tensorR may
always be written as the sum of an index-symmetric paI
and an index-antisymmetric partJ where I i j (r )5@Ri j (r )
1Rji (r )]/2 andJi j 5(Ri j 2Rji )/2. Note that ifv andb rep-
resent the usual MHD fields, thenRi j

2(0)5^v ibj2biv j& is
related to the average electromotive force~emf!, which apart
from a sign difference is the ensemble-averaged MHD
duced electric fieldE52^v3b&. This connection is elabo
rated on in various sections.

The Fourier representation of the correlation tensors
also of importance. In general, we denote the Fourier tra
form of f (r ) by f (k), e.g., v(k)5*v(r )eik•rd3r /(2p)3.
However, it is customary to denote the Fourier transforms
the R(r ) by S(k), and we follow this practice. Thus, fo
example,I i j

6(r ) and I i j
6(k) are Fourier transforms of eac

other, as areRi j
v (r ) and Si j

v (k). The definitionsk5uku and

k̂5k/k are also employed, and in general a caret will be u
to signify unit vectors.

Some of the important properties of theS’s, I ’s, andJ’s
are summarized in Tables I and II, where the anomal
behavior of the ‘‘minus’’ tensors is evident. Further eleme
tary definitions and results are contained in Appendix A.

III. UNDERLYING THEORY AND PROPERTIES

A. Theory for construction of the tensors

Forms for the correlation functions can be constructed
several different ways. One method employs the theory
isotropic tensors, developed by Robertson@1# and Chan-
drasekhar@7,9,10#. In outline their procedure is as follows.

~i! List all possible dyadic ‘‘construction elements’’ tha
can be formed from combinations of the fundamental vect
~and tensors! in the problem and the two isotropic tenso
d i j and e i jm ~e.g., r i r j ,e i j ar a). Each of these tensor form
corresponds to a possible scalar that can be extracted
the turbulence field by contracting the correlation tensor w
a pair of vectorsa,c, such asa•c or a•(r3c).

~ii ! Associate a multiplicative function with each con
struction element, representing information specific to
turbulence ensemble. Thesescalar generating functionsde-
pend only on the invariant scalars formed from contractio
of the fundamental vectors of the problem with the availa
isotropic tensors, for example,A(r 2,r z), where r 25r•r ,
r z5r•B̂0, andB0 is some preferred direction.

~iii ! Form the sum of all such terms.
~iv! Impose appropriate constraints on the resulting fo

~e.g., solenoidality and homogeneity!.

TABLE I. Some basic properties of the four ‘‘primary’’ spectra
tensors. As far as the properties listed here are concerned, thev/b
tensors behave in the same fashion as the ‘‘1’’ ones. See the text
for details and the appropriate forms inx space.

Property Full tensor Symmetrized componen

homogeneity Si j
6(k)56Sji

6(2k) I i j
6(k)56I i j

6(2k)
Ji j

6(k)57Ji j
6(2k)

solenoidality kiSi j
65kjSi j

650 ki I i j
65kj I i j

650
kiJi j

65kjJi j
650
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TABLE II. Additional properties of the index-symmetric (I ) and antisymmetric (J) components of the
‘‘primary’’ spectral tensors. Note the anomalous behavior of the minus tensors. Inx space, columns 2, 4, an
5 still apply, but all quantities are of course purely real.

Tensor Real or Index k Hermitian
Tensor character imaginary symmetry parity nature

I v(k),I b(k) true Re symmetric even Hermitian
I 1(k) pseudo Re symmetric even Hermitian
I 2(k) pseudo Im symmetric odd anti-Hermitian

Jv(k),Jb(k) true Im antisymmetric odd Hermitian
J1(k) pseudo Im antisymmetric odd Hermitian
J2(k) pseudo Re antisymmetric even anti-Hermitian
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The final step yields relationships among the vario
terms in the general expression and allows the minim
number of scalar generating functions to be determined.
then arrives at the minimal specification of the most gene
correlation tensor allowed by the set of assumed symmet

In Sec. IV we shall proceed via a distinct route, where
the solenoidal constraint is built in at an early stage, ver
being enforced as a final step. This reordering of the stand
approach is more convenient when preferred directions
permitted, i.e., for any symmetry more complex than is
ropy. For the case of axisymmetric turbulence, Ch
drasekhar@7# introduced a related method for enforcement
the solenoidal condition, based on taking the curl of app
priate potential correlations to arrive at the velocity corre
tion tensor.

Two approaches to identifying the generating functio
will be presented below. The first makes use of the vec
potentials forv and b and avoids using any arbitrary pre
ferred direction~s!. By expressing the spectral tensor as t
correlation between the curls of these potentials, we are
to examine the number and type of scalar degrees of free
appearing in the most general second-rank correlation
sors involvingv andb. We conclude, in accordance with th
argument of Orszag@22#, that four such scalars exist in gen
eral. This procedure justifies the subsequent use o
k-dependent coordinate system, involving an arbitrary re
ence direction and scalar potentials~i.e., the poloidal and
toroidal potentials; see Appendix B!, to economically de-
velop explicit representations of the basic tensor forms.
though the latter is conceptually less elegant, it nonethe
proves to be a powerful approach. Before considering ei
of these methods, however, we discuss the importanc
pseudoscalar and pseudotensor contributions to the cor
tion tensors.

B. Scalars vs pseudoscalars

In Robertson’s seminal discussion of second-rankisotro-
pic autocorrelation tensors@1#, contributions are divided ac
cording to whether their associated scalars, obtained a
contraction with arbitrary vectorsa and c, are of type~1!
~inner products likea•c) or type ~2! @triple products like
a•(r3c)#. If A,B,C are scalar functions of the separatio
distanceur u, tensor forms associated with type~1! scalars are
Arir j and Bd i j , while the isotropic form connected wit
type ~2! scalars isCe i j ar a . In order to impose theassump-
s
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tion that the measured scalar correlations are invariant un
the extended~proper and improper! rotation group, Robert-
son argues that ‘‘such a scalar invariant under this exten
group can be expressed in terms of scalars of type~1! alone,
for those of type~2! suffer a change of sign under reflexio
. . . .’’ On this basis he in effect choosesC50 and arrives at
the correct@type ~1!# form for mirror-symmetric isotropic
correlations. However, upon considering the non-mirr
symmetric case more carefully, one sees that Roberts
reasoning is imprecise, however correct his conclusions m
have been.

The deficiency in this reasoning is seen even in the s
plest case of isotropic helical turbulence, in which the inde
antisymmetric type ~2! correlation takes the form
e i j a]F(r )/]r a @13,23#, where one can show that the helici
generating function satisfies¹2F(0)52^u•v&/2. The
quantityu•v is a pseudoscalar, reversing sign under inv
sion, and therefore it is clear thatF is also a pseudoscala
Consequently the above-mentioned type~2! index-
antisymmetric form doesnot reverse sign under inversio
and scalars derived from it~e.g.,a•c3¹F) are proper sca-
lars and not pseudoscalars. In Robertson’s notation, this
corresponds to inclusion of a type~2! contribution of the
form e i j ar a ; this second-rank pseudotensor is multiplied
a pseudoscalarC. The product does not reverse sign und
inversions, even though nonmirror reflection invariant cor
lations associated with the helicity^u•v& are present.

This conclusion is beyond the scope of Robertson’s c
siderations because he assumed no helical correlations
the index-symmetric autocorrelation tensors he consid
Robertson’s argument leads to no errors. However, his
soning does not carry over to the case of type~2! contribu-
tions, in which both pseudotensor forms and pseudosc
generating functions can appear.

Several other errors related to this point exist in the lite
ture, especially with regard to the index-antisymmetric h
licitylike correlations. In connection with isotropic but non
mirror symmetric MHD correlations, Chandrasekhar@9#
concluded incorrectly@in his Eq. ~18!# that the^v iv j8& and
^bibj8& are necessarily index symmetric and that the cr
correlation^v ibj8& is purely index antisymmetric and of th
form Ce i j ar a . The former statement is too restrictive an
disallows helical correlation, while the second is clearly
correct, as can be seen by the fact that^v iv j8& and ^v ibj8&
must be structurally similar as the cross helicityv•b be-
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comes large. In fact, under Chandrasekhar’s asser
^v ibi8&[0 and the so-called Alfve´nic fluctuations that are
observed in the solar wind~see, e.g.,@24#! would beimpos-
sible. Both of Chandrasekhar’s oversights are corrected
including appropriate pseudoscalar functions and associ
tensor or pseudotensor forms. For example,^v ibj8& should
include a symmetric part and̂v iv j8& an antisymmetric part
as will be discussed in detail below.

The paper by Matthaeus and Smith@8# also contains an
error. They stated that ‘‘any homogeneous correlation ma
R of the form Ri j (r )5^bi(x)bj (x1r )& consists of the sum
of a symmetric proper tensor and an antisymmetric pseu
tensor, independent of the vector or pseudovector natur
b,’’ which they refer to as Theorem A. We can now see th
this theorem is incorrect.

A correct statement that replaces the Matthaeus-Smith
sertion~without invalidating their main conclusions! and also
serves to clarify the situations discussed by Robertson
Chandrasekhar is the following

Theorem AA: Rv and Rb are proper~true! tensors, while
R6 are pseudotensors.

To prove the theorem forRb we proceed as follows.
~i! Choose a particular coordinate system basis and de

Rb(r ) with respect to it, using Eq.~2!.
~ii ! Make an orthogonal change of basis via the trans

mation matrixM, where det(M)561. In the new coordinate
system we have, for example,x̃5Mx, ṽ5Mv, and
b̃5 det(M)Mb and the correlation function is defined b
R̃ab

b ( r̃ )5^ b̃a( x̃) b̃b( x̃1 r̃ )&.
~iii ! It is then straightforward to show tha

R̃ab
b ( r̃ )5Ma iMb jRi j

b (Mr ) and thusRb is a true tensor.
The proofs forRv andR6 are analogous. Hence all add

tive elements of a given correlation tensor have the sa
overall true or pseudo nature. While such proofs may se
obvious, apparently they have not been published previo
in the context of MHD turbulence theory. These results ha
important consequences for correlation tensors. For exam
for the v/b tensors each additive component ofR can only
be either a true tensor multiplied by a true scalar function
a pseudotensor multiplied by a pseudoscalar function.

In some of the earlier literature it was erroneously
sumed~tacitly in some cases! that the scalar functions mul
tiplying the ‘‘bare’’ tensor forms must always be proper sc
lars. Above we argued thatF(r ) is a pseudoscalar becau
when evaluated at the origin it is a one-point pseudosc
correlation. Indeed, it is instructive to demonstrate that
antisymmetric tensor that appears in several of the auto
relation and cross-correlation tensors described below is
ways connected with nonzero values of various one-p
pseudoscalar correlations.

To be definite consider the antisymmetric part of the
tocorrelation ^v iv j8&, which can always be written a
e i j a]F(r )/]r a @15,25#, which applies to all homogeneou
velocity fluctuations and generalizes the isotropic form m
tioned above. The antisymmetric part of the correlation t
sor must be an odd function ofr and thusF is even. Assum-
ing well-behaved correlation functions, we can express
generating function as a power seriesF(r )
5a1bi j r i r j1ci j lmr i r j r l r m1•••. Matthaeus and Smith@15#
showed that̂ v•c&52a, wherev5¹3c. Similarly, as was
n,
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found for the isotropic case, we havê u•v&5
22¹2F(0)524bii . It is not difficult to go further and de-
rive an explicit form for the matrix

bi j 5
1

4
^va¹ jvb&e iab , ~5!

which can be verified by direct construction. Similarly, o
can find explicit forms for higher-order coefficients, such

ci j lm5
1

234!
^va¹ j¹ l¹mvb&e iab . ~6!

Note that all of the matrix coefficients appearing in the e
pansion ofF can be assumed to be symmetric under int
change of any pair of indices. The generalization to rema
ing orders is clear. Each case involves onee iab and an odd
number of derivatives acting on the second argument of
correlation tensor, which is to be evaluated at zero separa
and contracted appropriately. Each of these coefficient
manifestly a pseudoscalar derived from one-point corre
tions. If all such pseudoscalars vanish, so will the helic
generating functionF, along with the entire antisymmetri
part of the correlation tensor.

In light of this example and theorem AA, a refinement
Robertson’s statement is as follows. An autocorrelation t
sor is a proper tensor. Type~1! tensor forms appear multi
plied by proper scalar functions. Type~2! forms are multi-
plied by pseudoscalars. In the latter case the presence
nonzero pseudoscalar function is connected with the non
nishing of at least some of the natural pseudoscalars that
be formed from one-point correlations of the basic fields.

Note that each one-point pseudoscalar correlation app
ing in the above expansion is directly related to~one of! the
generalized helicities~e.g., ^c•v&,^v•v&,^v•¹3v&, etc.!
and these are interpretable@26,27# as linkages and twists o
the appropriate field. Statements analogous to the above
for a pseudotensor cross correlation involving a vector an
pseudovector quantity.

IV. EXPLICIT TENSOR FORMS: VECTOR POTENTIALS

Since bothv and b are solenoidal, it is convenient t
introduce potentialsc andA such that

v~x!5¹3c~x!, b~x!5¹3A~x!, ~7!

where the vector potentials are only unique up to the addi
of the gradient of an arbitrary function of position~gauge
freedom!. In Fourier space these relations becom
v(k)5 ik3c(k) and b(k)5 ik3A(k). It follows that
v(x)5¹3v(x)52¹2c1¹¹•c and v(k)5 ik3v(k)
5k2c2k(k•c), with similar relationships holding for
j5¹3b. Whenv andb are the usual MHD fields,c is the
velocity stream function,v the vorticity, andj the electric
current density~in appropriate units!.

Making the appropriate substitutions in the Fourier tra
form of Eq. ~3! we obtain
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Si j
vb~k!5^v i* bj&

5k2Fd i j 2
kikj

k2 G ^c* •A&1^k•c* $Aikj2d i j k•A%&

1^c j* $kik•A2k2Ai%&. ~8!

Specializing to the Coulomb gauge for bothc and A, i.e.,
k•c505k•A, yields

Si j
vb~k!5k2Fd i j 2

kikj

k2 G ^c* •A&2k2^c j* Ai&. ~9!

The forms for the autocorrelations ofv and b follow by
letting A°c andc°A, respectively.

Continuing to work in the Coulomb gauge, we may for
the ‘‘6 ’’ tensors @cf. Eq. ~4!#

Si j
6~k!5Si j

vb6~Sji
vb!*

5k2Fd i j 2
kikj

k2 G ^c* •A6H.c.&7k2^c iAj* 6H.c.&,

~10!

where H.c. indicates the Hermitian conjugate~transpose of
the complex conjugate!. Alternative representations ofS6

can be formed using relations such asv5k2c.
While this approach can be useful, it does not straightf

wardly lend itself to extracting explicit forms for the scal
generating functions. However, Eqs.~9! and~10! can be used
to prove, in a coordinate system independent way, that
eachS ~or R) there are precisely four independent sca
generating functions~Orszag@22# has given a distinct, essen
tially geometric, proof!. The proof follows.

Consider, as an example,S1(k). Equation~10! shows that
the independent elements ofS1 are completely determine
by those of the tensorP i j 5^c iAj* 1c j* Ai&. This is clearly a
Hermitian matrix and so is fully determined by at most ni
independent real numbers. However, some of the degree
freedom inP are associated with gauge freedoms that do
influence the correlation tensor. Choosing the Coulo
gauge for both c and A, for example, implies tha
kiP i j 5P i j kj50 and further constrains the number of ind
pendent elements. In this gauge,P can be written

S d1 c1 ih 0

c2 ih d2 0

0 0 0
D , ~11!

where the nonzero 232 subspace is orthogonal tok and
d1 , d2 , c, andh are real. ThusS1(k) has four independen
scalar elements. Montgomery and Turner@28# considered a
similar decomposition without reference to the potentia
see also@29#. The same argument can be applied toSv/b,
which is also Hermitian, and an analogous argument used
the anti-HermitianS2(k). It is noteworthy that the above
argument proceeds without choosing a coordinate system~or
an arbitrary reference direction! for S.

When h is zero~clearly connected to the absence of h
licity !, Eq.~11! can be diagonalized by a real rotation, allow
r-

or
r

of
t

b

;

or

-

ing c to be ‘‘hidden’’ in the diagonal terms. However, i
general the diagonalization cannot be performed simu
neously for allk, so thatc remains as a degree of freedom
Note that the turbulence is isotropic if and only if, for a
k, c50 andd15d2. Similarly, whenhÞ0 a unitary trans-
formation can eliminate the degrees of freedom associa
with bothh andc, for a givenk. In general, such a procedur
does not eliminate degrees of freedom inS sinceh andc are
functions ofk and hence a distinct unitary transformation
required for eachk mode.

V. EXPLICIT TENSOR FORMS: SCALAR POTENTIALS

A. Real space potentials

Having shown that four scalar functions are necessar
specify each of the correlation functions~1!–~4!, we derive
explicit forms for the correlation tensors. This is facilitate
by employing representations based on an arbitrary refere
direction.

As reviewed in Appendix B, a solenoidal vector field ca
always be decomposed into poloidal and toroidal contri
tions. We use thex-space forms

v52¹3~e3¹Pv!2e3¹Tv , ~12!

b52¹3~e3¹Pb!2e3¹Tb , ~13!

where theP’s are the poloidal potentials and theT’s the
toroidal ones. For convenience we refer to the scalar fu
tions P and T as the poloidal and toroidal potentials of th
vector field, although strictly speaking these terms ap
only to the associated vector components of the field. Si
v is a true vector,Pv must be a true scalar andTv a pseudo-
scalar; similarly,Pb is a pseudoscalar andTb a true scalar.
This information will be of use for an alternative proof o
theorem AA.

Note thate is an arbitrary reference direction that has
intrinsic connection with possible preferred directions exi
ing in the turbulence~e.g., a rotation axis or uniform mag
netic field!. Nonetheless, in some circumstances it is use
to considere to coincide with such a preferred direction~cf.
Sec. VII!.

We begin withRi j
v (r ). From Eq.~12! it follows that~since

no confusion should result, we temporarily drop thev sub-
scripts onPv andTv)

v i~x!52ei

]2P~x!

]xa]xa
1ea

]2P~x!

]xi]xa
2e iabea

]T~x!

]xb
, ~14!

v j~x1r !52ej

]2P~x1r !

]r m]r m
1em

]2P~x1r !

]r j]r m

2e j mnem

]T~x1r !

]r n
. ~15!

After multiplying these together and ensemble averaging
obtain an intermediate form forRi j

v that involves the func-
tions A(r )5^PP8&, B5^TT8&, C15^PT8&, and C2(r )
5^P8T&5C1(2r ). For simplicity we suppress thev sub-
scripts that should be attached to these functions and t
descendants. To collect terms of like symmetry
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2D5C11C2 and 2C5C12C2. Homogeneity requires tha
A, B, andD are even under the coordinate inversionr°2r ,
while C is odd. We then eventually obtain

Ri j
v ~r !5@] i j

2 ~e•¹!22~ei] j1ej] i !~e•¹!¹21eiej¹
2¹2#A

2$d i j @¹22~e•¹!2#1] i j
2 2~ei] j1ej] i !~e•¹!

1eiej¹
2%B1@~eie j mn1eje imn!em]n¹22~e imn] j

1e j mn] i !em]n~e•¹!#C2e i j a]a@¹22~e•¹!2#D,

~16!

where] i j
2 5]2/]r i]r j , etc. Clearly, only the terms involving

D are index antisymmetric, while the others are strictly ind
symmetric. It is convenient to absorb factors likee•¹ into
the scalar functions. Thus let

¹2F5 B1¹2A,

¹2E52@¹22~e•¹!2#B,

H52@¹22~e•¹!2#D.

The evenness ofA, B, and D under coordinate inversion
implies thatE, F, andH are also even functions ofr . It can
also be shown that (e•¹)2A1B5(e•¹)2F2E, provided
that all the generating functions have vanishing spatial m
value. This relation is useful in determining the final form

Ri j
v ~r !5@d i j ¹

22] i j
2 #Ev2@~ei] j1ej] i !~e•¹!¹21eiej¹

2¹2

1] i j
2 ~e•¹!2#Fv1~d iae j mn1d j ae imn!em]n@ea¹2

2]a~e•¹!#Cv1e i j a]aHv , ~17!

where we have reinstated thev subscripts of the scalar func
tions.

Thus, for incompressible homogeneous turbulence
index-symmetric part of the velocity correlation tensor c
be generated fromthree independent scalar functions, whi
the index-antisymmetric part depends on asinglesuch func-
tion Hv . As mentioned above, this fourfold generation of t
correlation tensors will be shown to apply for both the au
correlation and the cross-correlation tensors considered h
The parity of the scalar functions has also been explic
obtained:Ev , Fv , and Hv are even, whereasCv is odd.
Clearly, an exactly analogous derivation, and thus final fo
holds forRi j

b , the true or pseudovector nature of the und
lying field being immaterial for an autocorrelation. The spe
tral tensors are easily obtained via application of the Fou
transform.

Note that the result isindependentof the true or
pseudovector nature ofe since components ofe only appear
in product pairs. This will be of importance when we co
sider homogeneous turbulence with an externally enfor
preferred direction, such as that due to a uniform magn
field ~see Sec. VII C!.

Equation~17! is structurally equivalent to the result give
as Eq.~18! in Ref. @8#. This reveals aformal coincidence of
the general correlation tensors with those ofaxisymmetric
homogeneous turbulence ife is specialized to be an axis o
symmetry and the scalars, in general functions ofr , are cho-
x

n

e

-
re.
y

,
-
-
r

d
ic

sen to be independent of rotations about that axis. This
respondence is discussed further in Sec. VII, along w
other special cases. For isotropic turbulence, however, th
can be no dependence on any particular direction and thu
dependence one. Therefore, we must haveFv5Cv50, and
the well-known result is recovered ifEv and Hv are func-
tions of ur u.

B. Fourier space potentials

To complement the derivation of thex-space forms of the
v,b tensors, we now outline the derivation of thek-space
forms for the6 tensors. As discussed in Appendix B, it
convenient to choose the two scalar potentials to have
same dimensions. Using thek-space forms of Eqs.~12! and
~13!, with the extra factors of 1/k inserted, we obtain

v i* ~k!5@k2ei2e•kki #
Pv* ~k!

k
1 i ~e3k! iTv* ~k!, ~18!

etc. The Fourier transform of Eq. ~3! is Si j
vb

5^v i(2k)bj (k)&. Substituting Eq. ~18! and the
analogous form for bj (k) into this and defining
A1(k) 5^Pv(2k)Pb(k)&5^Pv* Pb&, B1(k)5 ^Tv* Tb&, C3(k)
5^Pv* Tb&, C4(k) 5^Tv* Pb&, andC35Dvb1Cvb , C45Dvb

2Cvb, Evb 5 @k22(e•k)2#B1, Fvb 5 B12A1 , Hvb5k @1
2(e• k̂)2#Dvb , and using the Chandrasekhar identities@7,30#
we find

Si j
vb~k!5Fd i j 2

kikj

k2 GEvb1F @eikj1ejki #~e•k!2eiejk
2

2
kikj

k2
~e•k!2GFvb2 i @d ime j ab1d j me iab#

3eakb~emk22kme•k!Cvb1 i e i j akaHvb . ~19!

As was the case for the velocity and magnetic field au
correlation tensors, theE, F, andC terms are index symmet
ric and theH term is antisymmetric. The part with indice
associated with Cvb can also be written
@k3(e3k)# i(e3k) j1@k3(e3k)# j (e3k) i , showing that
Cvb does not contribute to the trace. LettingPb→Pv and
Tb→Tv recovers the result for the velocity autocorrelatio
however, the result is not equal to the Fourier transform
Eq. ~16! because we are working withk-space potentials tha
are dimensionally equal. Additionally, various factors of21
are present, e.g.,2k2Evb(k)↔Evb(r ).

Note that when the turbulence is isotropic equal amou
of energy must be associated with the poloidal and toro
components since no real distinction between them then
ists. This requires thatA15B1, and thusFvb50, providing
additional proof that theF scalar functions vanish for isotro
pic turbulence.

We now have everything we need to form the spec
versions of the6 tensors. Referring to Eq.~19! we obtain

seano
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Si j
6~k!5Si j

vb6~Sji
vb!*

5Fd i j 2
kikj

k2 GE61F @eikj1ejki #~e•k!2eiejk
2

2
kikj

k2
~e•k!2GF62 i @d ime j ab1d j me iab#eakb~emk2

2kme•k!C71 i e i j akaH6, ~20!

where E6(k)5Evb(k)6Evb(2k), etc., with the 1 (2)
form being explicitly even~odd! in k. An inverse Fourier
transform yields the correlation tensors. Note that the1 ten-
sor involvesC2, not C1, and vice versa.

So again the representation is one where three scalar f
tions are required for the symmetric terms and one for
antisymmetric portion. ForS1, these scalar functions hav
the same parity as their autocorrelation cousins,
E1,F1,H1 are even andC2 odd underk°2k. The minus
tensor, however, exhibits precisely complementary beha
with E2,F2,H2 being odd andC1 even. Thus, aside from
the true or pseudo nature of the tensors~see Table II!, Si j

1 is
formally equivalent toSi j

v and Si j
b , and similarly for their

Fourier transforms. The equivalence means that many m
ematical results that hold for any one of the three also h
for the other two. We subsequently refer to these tensors
their component scalar functions as ‘‘normal,’’ while the m
nus tensor and its associated scalar functions are referre
as ‘‘anomalous.’’

C. Further mathematical consequences

Having derived the most general form of the four prima
correlation tensors, we now establish some consequen
Where the results inx andk space are essentially equivalen
we usually state only one form.

Consider the trace. Clearly only the index-symmet
parts contribute to this quantity and in fact only theE and
F functions are relevant:

Saa~k!52E~k!1@~e•k!22k2#F~k!. ~21!

For isotropic turbulence, this reduces further to 2E(uku). In
x space, Eq.~21! takes the form@31#

Raa~r !52¹2E~r !1@¹22~e•¹!2#¹2F~r !. ~22!

Now, for each of the ‘‘primary’’ tensors, its trace is either
pseudoscalar or a scalar. For example,Raa

v (r )5^v•v8& is
clearly a true scalar, whereasRaa

6 (r )5^v•b86b•v8& are
both pseudoscalars. It follows, by the quotient rule for te
sors@32#, thatEv/b andFv/b must be true scalars andE6 and
F6 pseudoscalars, in accord with theorem AA. Note that
true or pseudoscalar character of the generating function
unrelated to their even or oddness underr°2r ~see below!.

Writing the scalar functions in terms of the poloidal a
toroidal functions is also revealing. Referring back to t
k-space derivation of theS6 tensors, we have

E65@^Tv* Tb&6c.c.#@12~e• k̂!2#k2, ~23!
c-
e

.,

or

th-
ld
nd

to

es.

-

e
is

F65^Tv* Tb2Pv* Pb&6c.c., ~24!

2C75^Pv* Tb2Tv* Pb&7c.c., ~25!

2H65@^Pv* Tb1Tv* Pb&6c.c.#@12~e• k̂!2#k, ~26!

where c.c. denotes the complex conjugate. It follows imm
diately that the four plus functions are all purely real sca
functions, while the minus forms are pure imaginary. Ref
ring to Eq.~20!, it can now be seen that the symmetric pa
of S1(S2) are all purely real~imaginary!, with the reverse
applying for the antisymmetric pieces. This result is obtain
independently in Appendix A~see Table II!.

By letting the b subscript on the poloidal and toroida
functions become av and ignoring the c.c. terms, we recov
the scalar generating functions forSv. In this caseEv ,Fv ,
andHv are pure real, whereasCv is pure imaginary. Identica
results hold forSb. As expected, these results are also
agreement with those summarized in Table II. Moreover, t
analysis reveals thatEv is essentially the autocorrelation o
the toroidal potential̂Tv* Tv& andFv the difference between
the toroidal and poloidal autocorrelations. Similarly, the re
and imaginary parts of the poloidal-toroidal cross correlat
^Pv* Tv& are, respectively,Hv andCv .

As noted at the start of this section, the true vector nat
of v requires that its poloidal and toroidal scalar functio
are, respectively, true and pseudoscalars. Forb the situation
is obviously reversed. It is then straightforward to show th
E6 and F6 are pseudoscalars, whileC7 and H6 are true
scalars, with the reverse holding for thev/b forms. Table III
summarizes many properties of the generating scalar fu
tions, along with some related ones for the multiplying pa
with indices. The results are clearly in accord with theore
AA and this explicit construct represents, in effect, an alt
native proof.

VI. PHYSICAL INTERPRETATIONS
OF THE SCALAR GENERATING FUNCTIONS

In this sectionv andb represent the fluctuating portions o
the velocity and magnetic field~in Alfvén speed units! of a
homogeneous turbulent incompressible magnetofluid.
physical content of the various tensors is then of interest
here we examine such information.

Consider first thev and b tensors. The antisymmetri
components are of the form

Ji j
v/b~k!5 i e i j akaHv/b~k!, ~27!

so that, as is well known@8,15,25#, H corresponds to twice
the helicity spectrum of the defining field. Integrating ov
all k we obtain, for example,

Hv~r50!5^c•v&5E Hv~k!d3k, ~28!

which is twice the bulk helicity of the velocity field. A simi
lar result holds for the magnetic field fluctuations. Note th
becauseHv/b is an even function ofk, the integral of
Ji j

v/b(k) over all k is identically zero. Inx space this result
takes the formJi j

v/b(r50)50. Recalling the definitions, it is
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TABLE III. Summary of the properties of the generating scalar functions and their multiplying ‘‘p
with indices,’’ for each of the ‘‘primary’’ tensors. ‘‘R’’ and ‘‘I’’ indicate the real or imaginary nature of th
term, ‘‘E’’ and ‘‘O’’ its even or odd nature underk°2k, and ‘‘T’’ and ‘‘P’’ its true or pseudotensor
character. The final column is the net result for the entire term. See Eq.~20!, for example, and the text.

Scalar Part with Index Net
Term function indices symmetry character

Ev/b RET RET symmetric RET
Fv/b RET RET symmetric RET
Cv/b IOP IOP symmetric RET
Hv/b REP IOP antisymmetric IOT
E1 (E2) REP ~IOP! RET symmetric REP~IOP!

F1 (F2) REP ~IOP! RET symmetric REP~IOP!

C2 (C1) IOT ~RET! IOP symmetric REP~IOP!

H1 (H2) RET ~IOT! IOP antisymmetric IOP~REP!
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clear that this must be the case since theRi j
v/b are manifestly

symmetric atr50. Physically, the magnetic helicity consis
of two distinct contributions:~i! the topological linkage and
~ii ! the twist of magnetic field lines~or flux tubes!
@12,26,27#. Similar statements can be made for the veloc
helicity Hv .

What about the three scalar functions associated with
symmetric parts ofSv/b(k)? Suppose the turbulence is is
tropic, so that

Si j
v/b~k!5S d i j 2

kikj

k2 D Ev/b~ uku!1 i e i j akaHv/b~ uku!.

~29!

Thus Ev/b(uku) is equal to 4pk2 times the omnidirectiona
energy spectrum~see, e.g.,@4#! and the scalar function
Fv/b andCv/b are associated with departures from isotrop
An examination of the trace~21! indicates that for noniso
tropic turbulenceFv/b contributes to the energy spectrum
but Cv/b does not.

The physical correlations implied byCv and Cb are
clearly less familiar than those associated with energy
helicity. However, just as we were able to show~in Sec.
III B ! that the generating function associated with an a
symmetric autocorrelation tensor is associated with spe
nonvanishing one-point pseudoscalar correlations, here
can provide examples of correlations associated with non
nishingCv or Cb . For example,

2@¹22~e•¹!2#2Cv/b~r !5eiele la j]a@Ri j ~r !1Rji ~r !#

5^e•v~x!@v~x1r !2v~x2r !#•e&.

~30!

Clearly this correlation is a pseudoscalar and when nonz
implies a nonvanishingCv/b(r ). In addition, we know@cf.
Sec. V C, Eq.~25!, and Table III# thatC is associated with a
nonzero imaginary part of the cross correlation between
toroidal and poloidal potentials.

It is useful to elaborate upon the discussion at the end
Sec. IV to reveal the physical nature of theC-type correla-
tions. Consider a fixed wave vectork and its associated Fou
rier amplitude for one of the turbulent fields, sayb. Let us
return, for the moment, to a Cartesian coordinate system
y

e

.

r

i-
c
e

a-

ro

e

of

in

which theẑ direction is aligned withk. There are many such
coordinate systems, distinguished by rotations about thk
axis. If the plane is spanned by axes aligned withe3k and
k3(e3k), for arbitrary reference directione, then the
change from onek-aligned system to another is accom
plished by selection of a particulare. As explained in Sec.
IV, in this frame contributions to the correlation tensor b
excitations at wave vectork take the simple form expresse
in Eq. ~11!. Contributions to the real-space quantities by e
citations at k can be written as~the real part of!
bk(x)5(Bx ,By)e

ikz, where the two component complex
valued vector (Bx ,By) lies in the plane perpendicular tok.
This is a familiar one-dimensional ‘‘slab’’ geometry; eve
Fourier contribution looks like a slab fluctuation in its spec
coordinate frame. Considering the hodographic projection
bk(x) onto this plane, we see that in general the tip of t
field vector traces an ellipse. There will be a preferred co
dinate system in thex-y plane that selects the principle axe
of this ellipse. For the right choice ofe, there are no index-
symmetric off-diagonal terms needed to describe the co
lation. Everything about the correlations produced in t
way is specified by the major and minor radii of the ellip
~the energies in the associatedx and y directions! and the
phase lag between these components~i.e., the magnetic he-
licity !. Thus, for thisk, contributions toC cannot appear
because all the information is accounted for, using th
numbers. However, unless all wave vectors have polar
tions that align in a single Cartesian frame~a highly unlikely
circumstance!, we cannot eliminate all contributions toC in
this way. A physical interpretation ofC, therefore, is that it
represents information about the orientation of elliptical p
larizations for the various wave vectors. In isotropic turb
lence, for everyk the ellipses become circles~regardless of
the helicity! and every choice ofe diagonalizes the symmet
ric part of the correlations, soC50.

It is interesting to note that the helicity can also be elim
nated locally ink space in a similar way by choosing
complex~polarization! coordinate system to describe thex-y
plane perpendicular tok. In this special frame the phase la
betweenBx andBy in the local slab system is absorbed a
only two independent numbers remain~right and left circu-
larly polarized energies!, apart from an unimportant overa
phase. Once again, however, the polarization ba



In

o

e
t

he
to

e

ct

s
to

th
of
a

th

n

ct

in

in
an
e

ir

is
es

is
n

s

his
ry

e

e

the

hat
nts

om

us
s
’’

ve
s
a
as

ic

ex-

bu-
-
ted
-
ic
nti-
n-
ri-

ces
ec-

ed
-

s of
re

ults
st

all

56 2883GENERAL SECOND-RANK CORRELATION TENSORS FOR . . .
set will usually be different for various wave vectors.
general, then, four independent scalars are required.

Consider next the plus tensor. From the definitions
Ri j

1 and the cross helicityHc , it follows that @33#

2Hc5Raa
1 ~r50!5E I aa

1 ~k!d3k, ~31!

so that I aa
1 (k)52E1(k)1@(e•k)22k2#F1(k) is twice the

cross helicity spectrum. The cross helicity is also interpr
able as a linkage@26#. Specifically, it is a measure of tha
between vorticity tubes and magnetic flux tubes. Anot
interpretation of the cross helicity is that it is proportional
the ~average! correlation betweenv and b. Hence it is con-
venient to introduce the normalized cross helicity
sc52Hc /Etot, which is bounded by61 and also expressibl
in terms of elements of the primary tensors. The extrem
values correspond tov56b and are associated with exa
cancellation of the nonlinear terms in the~incompressible!
MHD equations of motion. This type of Alfve´nic fluctuation
is frequently observed in the solar wind plasma~see, e.g.,
@24#!.

By direct analogy with thev and b tensors, we refer to
H1(k) as ~twice! the spectrum of the ‘‘helicity of the cros
helicity’’ since it has the same mathematical relation
Hc(k) as doesHb(k) to Em(k) @20#. However, this helicity
of the cross helicity is somewhat different in nature than
velocity and magnetic helicities. It is still an even function
k, as isHb[2Hm , for example, so that in general there is
bulk value as well as a spectrum, but it is a true scalar ra
than a pseudoscalar.

Finally, we turn to the physical content of the minus te
sor. From the definition~4! it follows that

Ri j
2~r50!5^v ibj2biv j&, ~32!

which is related to the ensemble-averaged induced ele
field ~emf! of the fluctuationsE52^v3b&52¹F. The
function F(r )[H2(r ) is the electric potential. In fact, it is
not hard to show that the electric field is contained only
the antisymmetric components

Ji j
2~r50!52e i j aEa5e i j a

]F

]r a
U

r50

. ~33!

Consequently, ink spaceF(k)[H2(k) is interpretable as
the spectrum of the electric potential. As will be shown
Sec. VIII, this result enables information on the spectral
isotropy of the electric field to be obtained from the reduc
spectra ofJi j

2(k).
When the turbulence is isotropic, but not necessarily m

ror symmetric~see also Sec. VII!, the induced electric field
vanishes. Mathematically this follows sinceH2(k) must
then be a function ofk2, but is also explicitly odd and the
only function that satisfies both these conditions
H2(k)50. This behavior is opposite to that of the heliciti
of the v/b tensorsHv/b , which must vanish for completely
mirror-symmetric turbulence, but do not necessarily van
for isotropic geometries. They are even pseudoscalar fu
tions, whereasH2 is an odd true scalar function. It follow
that the presence of an induced~ensemble-averaged! electric
f
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field is associated with the anisotropy of the turbulence. T
result is likely to be of interest in mean-field dynamo theo
~see, e.g., @11#!, particularly in connection with the
a-dynamo closure.

Although ^v3b& vanishes for isotropic turbulence, th
mean value of the squareErms

2 5^(v3b)2& is in general non-
zero. We can evaluateErms

2 under these conditions, with th
additional assumptions that~i! all componentsv i andbi are
Gaussian random variables and~ii ! unless i 5 j , then
^v ibj&50, ^v iv j&50, and^bibj&50. It can then be shown
that

Erms
2 5

2

3
@^v2&^b2&2^v•b&2#. ~34!

The rms value is thus prescribed, not just bounded, once
energies and the cross helicity are given. Clearly,Erms is
maximal when the cross helicity is zero. Note, however, t
in fully developed homogeneous turbulence the compone
of v andb are unlikely to be distributed as Gaussian rand
variables.

Taking into account the anomalous nature of the min
tensor, Zhou and Matthaeus@20# have suggested that it
symmetric parts contain the ‘‘helicity of the electric field.
In particular they refer to the trace of the minus tensor

Saa
2 ~k!52i Im^v* •b&52E2~k!2@~e•k!22k2#F2~k!

~35!

by this name. The integral of this quantity over all wa
vectors is identically zero. Inx space this is the obviou
statementRaa

2 (0)5^v•b2b•v&50, so that despite having
nonzero spectrum, the helicity of the electric field always h
a bulk value of zero. As shown in Sec. VII, for isotrop
turbulence the traced spectrum~35! is also zero, a property
that may be tested for when analyzing observational or
perimental data.

To summarize, for incompressible homogeneous tur
lence, witharbitrary rotational symmetry, each of the fol
lowing quantities, or equivalently its spectrum, is genera
by asinglescalar function: velocity helicity, magnetic helic
ity, helicity of the cross helicity, and the induced electr
field. In each case, the quantity is associated with the a
symmetric portion of its correlation function or spectral te
sor. Recall also that the magnetic helicity is a rugged inva
ant of ideal magnetohydrodynamics. The symmetric pie
of the v/b spectral tensors hold the associated energy sp
tra, their~traced! sum forming the spectra of another rugg
invariant~total energy!. The third rugged invariant, cross he
licity, is contained in the trace of the1 tensor. Unfortu-
nately, the quantities associated with the symmetric part
the 2 tensor, while undoubtedly physical in character, a
currently less well understood.

VII. SPECIAL CASES

We now present some specializations of the above res
for particular symmetries of the turbulence. It will be mo
convenient to do so using thek-space forms of Sec. V and in
particular the tensor form given by Eq.~20!. We will drop
the 6 labels, however, noting that the results hold for

seano
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four of the ‘‘primary’’ spectral tensors, unless we explicit
indicate otherwise. Be aware that the parity of the sca
functions may differ from tensor to tensor~see Table III!.
We begin each subsection with a precise definition of
symmetry.

A. Isotropy

Turbulence is isotropic if all averaged quantities depe
ing onv andb are invariant under arbitrary~proper! rotations
of the v and b fields about arbitrary axes. Consequent
there can be no dependence on any preferred direction~s!. All
terms in Eq.~20! involving e must therefore vanish, that is
F5C50, leading to the well-known result, which may b
read off with ease from Eq.~20!, e.g., @4#. Isotropy also
requires that the scalar functions depend only on the wa
vector magnitudek5uku. However, the minus scalar func
tions andCv/b are explicitly odd ink and hence must also b
identically zero in this case. It follows that the full2 spec-
tral tensor and its real space counterp

Ri j
2(r )5 1

2 ^v ibj82biv j8& are identically zero for isotropic tur
bulence since each of its scalar functions vanishes. Thus
six independent scalar functions are needed to specify iso
pic turbulence: anE and anH for each of thev/b and 1
tensors. This is to be contrasted with the general case w
16 such functions are required.

In all cases the trace reduces to dependence on a s
scalar function:Saa(k)52E(k). The trace of the minus ten
sor is identically zero, so that there is no helicity of t
electric field in isotropic turbulence. Note that, except for t
minus tensor, isotropic turbulence does not preclude
presence of helicityH. As has been remarked upon, the va
ishing of H2 for isotropic turbulence means that n
ensemble-averaged induced electric field exists in the
sence of preferred directions.

B. Mirror symmetry

Turbulence is mirror, or reflection, symmetric with r
spect to a point~or a plane! if all averaged quantities depend
ing on v andb are invariant under reflection of these fiel
through the point~or the plane!. Thus the correlation tensor
associated with mirror-symmetric turbulence can conta
only terms exhibitingoverall even parity ink @note that
while earlier workers~see, e.g.,@2,4,7,9#! included mirror
symmetry in the definition of isotropy, this is not curre
practice#. Thus the three helicitiesHv , Hb , andH1 that are
a measure of mirror asymmetry are all identically zero, as
E2, F2, andC1 ~Table III!.

As far as the trace is concerned, the ‘‘normal’’ tensors
unaffected by the presence or absence of mirror symme
In stark contrast to this,Saa

2 collapses to zero when mirro
symmetry is imposed. Indeed, for the minus tensor, the o
term that remains is the antisymmetric piece, which has b
shown to contain the spectrum of the electric potential. T
anomalous nature of the minus tensor is particularly clea
revealed when we consider turbulence that is mirror symm
ric.

C. Axisymmetry and the presence of a mean field

Turbulence is axisymmetric~with respect to a fixed axis!
if all averaged quantities depending onv andb are invariant
r
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under arbitrary rotations of these fields about the fixed a
The general results of Sec. V require only slight modific
tions for such flows. It is convenient to restricte to be the
axis of symmetry, with the scalar generating functions th
depending only upon the variables (r ,r•e) or equivalently
@(r3e)2,r•e#. The parts with indices are independent of t
true or pseudovector nature ofe ~components ofe always
appear in product pairs!, so the overall structure is the sam
whether the preferred direction is associated with a m
flow, a uniform magnetic field, or a rotation axis, for e
ample. However, the transformation properties ofe do place
restrictions on the functions appearing in the tensors in or
that the required parity under inversion be maintained. Be
ing these conditions in mind, the present results easily
duce, in the special case of axisymmetry, to the form p
sented by Matthaeus and Smith@8#. The axisymmetric
correlation tensor presented by Moffatt@12# is formally cor-
rect, but includes too many independent scalars. Presum
this is due to an incomplete use of the solenoidal constra
In particular the antisymmetric autocorrelation is describ
as containing three scalar functions, whereas only one is
quired @8,15# ~Moffatt and Proctor@25# subsequently state
without proof the result that only one such function is r
quired in general!.

Chandrasekhar@7# showed that axisymmetric systems th
are also mirror symmetric have only two independent sca
generating functions~for normal correlation tensors!. In our
notation this corresponds to the vanishing of theC and H
functions.

D. Two-dimensional symmetry

Turbulence has two-dimensional~2D! symmetry~with re-
spect to a single fixed direction! if all averaged quantities
depending onv andb are independent of coordinates paral
to the fixed direction. Ink space this constrains all excite
wave vectors to be perpendicular to the axis of symme
~again taken to be parallel toe), so thatSi j (k) is zero unless
e•k50. In the case of the reduced MHD description t
collapse to near two dimensionality is associated with a p
ferred direction induced by a strong uniform magnetic fie
@34,35#. For the two-dimensional case, Eq.~20! then reduces
to

Si j ~k!5Fd i j 2
kikj

k2 GE~k!2eiejk
2F~k!2 i @ei~e3k! j

1ej~e3k! i #k
2C~k!1 i e i j akaH~k!, ~36!

wherek[k' , the wave vector in the plane perpendicular
e. ~This restriction can also be accomplished using Diracd
functions.! Note that we may have helicity, but it influence
only those correlations that involve exactly one field comp
nent in thee direction. Theaxisymmetrictwo-dimensional
model is now obtained by further specializing to scalar fun
tions that depend only upon the magnitude ofk' .

The above model is sometimes called ‘‘21
2D’’ because it

involves two components of wave vector but three com
nents of the field. Insisting that the fluctuation amplitudes
also perpendicular toe yields the spectral tensor appropria
for the usual definition of 2D turbulence, wherein all activi
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is confined to a plane with normal vectore,

Si j ~k!5Fd i j 2
kikj

k2
2eiej GE~k!. ~37!

This is simplest to see by considering a particular Cartes
coordinate system, withe in the 3 direction, say. Then, sinc
k350, it follows thatS335E2k2F, and as this is energy in
components parallel to the symmetry axis we require it to
zero. Consideration ofS23 and S32 leads to the conclusion
that H5C50. Physically, this geometry is believed to b
relevant in situations where a strong uniform magnetic fi
threads a turbulent~magneto!fluid @34–39#. Even for the
nonaxisymmetric case, however, the autocorrelation ten
for ~say! the magnetic field fluctuation, in this pure 2D tu
bulence, is completely specified by a single scalar functi

E. Slab symmetry

Finally, we consider the slab geometry. This is a parti
lar case of axisymmetric turbulence, where the excited w
vectors are parallel toe, so thate•k56k ande3k50. For
such symmetries, all dependence onC drops out and, con-
sidering again the coordinate system withe in the 3 direc-
tion, it can be shown that the factor multiplyingF is always
zero. Hence only the energy and helicity spectra contrib
to the slab spectral tensor~s!:

Si j ~k!5Fd i j 2
kikj

k2 GE~k!1 i e i j akaH~k!. ~38!

In magnetohydrodynamics, slab fluctuations often cor
spond to~large-amplitude! Alfvén waves propagating alon
a uniform magnetic field parallel toe. Such waves are exac
solutions of the incompressible nondissipative MHD eq
tions and have been observed in laboratory and space
mas ~see, e.g.,@24#!. Recent evidence has indicated th
MHD turbulence in the solar wind may be reasonably w
described as a superposition of slab and 2D fluctuations@18#.
Differences in the structural form of the 2D and slab cor
lation tensors permit direct observational evaluation of t
hypothesis@40#.

VIII. MEASUREMENT ISSUES

Some results of the previous sections are now consid
within the context of data analysis. Our main results are
pected to be of very broad applicability since we have p
sented what we believe to be the most general form of
second-rank homogeneous MHD correlations and as suc
do not expect to anticipate all eventual applications at
time. However, we presently have in mind specific appli
tions involving properties of the solar wind, for which exte
sive plasma and magnetic field datasets are available.

A general result, pertinent to all four basic tensors, is t
the index-antisymmetric part of each spectral ten
(Sv/b,S6) is of the form i e i j akaH(k), which involves only
one scalar. The functionH is usually a proper scalar~except
for S2 when it is pseudoscalar! and in all cases its reduce
spectrum~and bulk value! are obtained easily from single
point, frozen-in measurements, which provide the values
n
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the tensor correlations for separation vectors along a sin
Cartesian direction,x̂1, say. The method for measurement
the simple generalization of the technique for extraction
reduced magnetic helicity spectra@15# and is summarized by
the formula

Hred~k1!5
Im$S23~k1!%

k1
, ~39!

where Hred[*H(k)dk2dk3. As with the original helicity
formula, this is valid for homogeneous turbulence with ar
trary rotational symmetry.

A quantity of the above type that is of particular interest
the induced electric field. As shown in Sec. VI, the~mean!
electric field induced by the fluctuating velocity and ma
netic fields is related to the antisymmetric part of the min
tensor, i.e.,Ji j

2(r50)52e i j aEa , with Ea52¹aF(r ). In
terms of the spectral tensor,Ea(k)52 ikaF(k), with
H2(k)[F(k) the spectrum of the electric potential. Hen
knowledge of the off-diagonal components ofRi j

2 yields the
induced electric field. Values at separationr50 are the com-
ponents of the average induced electric field, while the c
relations at nonzeror can be thought of as a correlatio
function associated with the electric field.@Note that the ter-
minology ‘‘electric field correlation function’’ would ordi-
narily be associated with a fourth-rank correlation~see be-
low!.# Given data intervals of sufficient length and quality,
is straightforward to calculate the appropriate correlation t
sor and then extract the induced emf~see, e.g.,@41#!. How-
ever, it seems not to have been properly appreciated tha
separate components of the induced electric field are rel
to the single underlying fundamental quantityF(k). In fact,
because of this structure the induced electric field provi
additional information in homogeneous turbulence. As
now show, the spectrum ofJ2 can be used to construct
measure of the spectral anisotropy ofE.

From Eq.~20! we haveJ23
2 (k)5 ik1H2(k), etc. Integrat-

ing this last equation over allk yieldsJ23
2 (r50)52E1. Now

suppose that the observation direction and the 1 direc
coincide. Integrating~reducing! over the 2 and 3 directions
then gives

F red~k1!52
i

k1
E J23

2 ~k!dk2dk352 i
J23

2,red

k1
. ~40!

Moreover, reducing theJ12
2 andJ31

2 components yields quan
tities that can be interpreted as mean wave numbers as
ated with the directional components of the electric field. F
example, a meank3 can be defined as

k̄ 35

E k3F~k!dk2dk3

E F~k!dk2dk3

5k1

J12
2,red~k1!

J23
2,red~k1!

. ~41!

Similarly, we can define k̄ 2 /k15J31
2,red(k1)/J23

2,red(k1).
Thus, because the underlying fields are solenoidal, it is p
sible to obtain information about the spectrum of the elec
field in directionsperpendicularto the measurement direc
tion. For practical situations it is not yet clear how best
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2886 56S. OUGHTON, K.-H. RÄDLER, AND W. H. MATTHAEUS
normalize these quantities. We are attempting to extract s
information from some available solar wind datasets.

It was also shown in Sec. VI that for isotropic turbulen
the induced electric field vanishes. In addition, the induc
electric field spectrum, as defined above, also vanishes
actly for isotropic fluctuations. The simplest way to see t
is to notice that the electric potential spectrumF(k) is odd
in k. For isotropic fluctuations, this scalar must be a funct
of uku only. Thus it vanishes. The same conclusion is o
tained in ordinary space, where one invokes the property
F(r ) is odd inr , while isotropy demands that the same fun
tion depend only uponur u. In addition, if the fluctuations are
Gaussian, thenErms is not an independent parameter. Co
paring these theoretical predictions forE andErms to obser-
vationally determined values may provide a useful meas
of the extent to which the fluctuations depart from isotro
and Gaussian distributions.

In an analysis of solar wind fluctuations in terms of E
sässer variables Tuet al. @42# found that frequency spectra o
the helicity of the electric field, which they denote b
eS( f ), equivalent to the reduced form of ourSaa

2 (k), have
both positive and negative contributions and that there is
a fairly wide scatter in the data points, no clean power la
being evident. The presence of both signs in such spect
of course necessary to ensure that when the integration
all wave numbers~frequencies! is performed, the net resu
will be zero, in accordance with the results of Sec. VI.

IX. DISCUSSION

In this paper we have presented the complete structur
second-rank Cartesian correlation tensors involving a s
noidal vector fieldv and a solenoidal pseudovector fieldb.
Four basic correlation tensors need to be described, inv
ing the autocorrelations and the properly symmetrized
antisymmetrized cross correlations. Each of the basic co
lation tensors depends upon exactly four underlying sc
~or pseudoscalar! functions, sometimes known as generati
functions. In each case precisely one generating functio
connected with the index-antisymmetric part of the corre
tion tensor and three are associated with the symmetric
tion.

In the course of this development, we have examin
carefully several important misleading or incorrect sta
ments that have remained uncorrected in the literature of
theory of correlation tensors for homogeneous~or isotropic!
turbulence. Most of these problems have arisen becaus
confusion over the circumstances in which the genera
scalar functions can be, or must be, pseudoscalars. We
described how pseudoscalar functions arise from one-p
correlations, such as helicities.

Although these results are of a general nature, our in
tion is to associate the fieldsb andv with the magnetic and
~incompressible! velocity fields, respectively, that appear
magnetohydrodynamics turbulence. The general correlat
presented here provide compact and complete Cartesian
resentations of the spectra and two-point correlation fu
tions of relevance in MHD. A number of bulk quantities
interest are also described by the tensors.

For axisymmetric homogeneous turbulence we h
shown that the true or pseudotensor character of the
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ferred direction is irrelevant as far as the structure of
correlation tensors is concerned. This follows because c
ponents ofe only appear in product pairs and as such a
immune to an overall sign change ofe. This result, as well as
the statement we call theorem AA, corrects earlier work@8#
and restores the intuitive idea of dependence on a sin
direction being a unique geometrical concept.

Most of the above results may also be expressed in te
of Elsässer variables. Clearly, this may be accomplished
either ~a! substitutingz65v6b into the final forms given
above or~b! starting with correlation functions defined i
terms of thez6 ~e.g., Hi j

65^zi
6zj

68&) and proceeding from
there. These forms may be more convenient in some ap
cations, e.g., for solar wind fluctuations. For completene
we include in Table IV a summary of some of our ma
results transcribed to the Elsa¨sser representation. Note th
the Elsässer correlation matrices are not proper tensors
cause they mix contributions that are invariant under the
rotation group with contributions that reverse sign under i
proper rotations.
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APPENDIX A: BASIC RESULTS

For completeness we list here some of the more elem
tary results, many of which are well known and have be
given before,~see, e.g.,@4,8,29#!. First, however, it is useful
to draw attention to some semantic distinctions. The ter
evenandodd refer to the behavior of a function under reve
sal of the spatial separationr→2r . The full operation of
coordinate inversion involves not onlyr→2r , but mapping
all vectors that transform like the position vector to the
opposites and is equivalent to an improper rotation~reflec-
tion followed by rotation!. Thus the evenness or oddne
~‘‘parity’’ ! of a scalar function is distinct from its tenso
transformation character. Equivalent definitions hold for t
Fourier space forms.

The proper or improper transformation character of
tensors plays an important role in their description. IfM

TABLE IV. Some correlation functions and spectral matrices
terms of Elsa¨sser variables. Note that these matrices typically
neither a pure tensor nor a pure pseudotensor.RD5Rv2Rb is the
energy difference tensor@20,49–51#.

Homogeneity
Symbol Definition v-b form condition

Hi j
6(r ) ^zi

6zj
68& Ri j 62Ri j

1 Hi j
6(r )5H ji

6(2r )
L i j (r ) ^zi

1zj
28& Ri j

D22Ri j
vb,2

L i j (r )5L̃ i j (2r )

L̃ i j (r ) ^zi
18zj

2& Rji
D12Rji

vb,2

Fi j (r ) ^L i j 1L̃ i j & 2I i j
D24Ji j

2 Fi j (r )5Fi j (2r )

Gi j (r ) ^L i j 2L̃ i j & 2Ji j
D24I i j

2 Gi j (r )52Gi j (2r )
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represents a change of basis from one Cartesian coord
system to another, such thatx̃5Mx, then a proper tenso
field of rankn, Tj 1 j 2••• j n

(x), transforms under such a chang
of basis as

T̃a1a2•••an
~ x̃!5Ma1 j 1

Ma2 j 2
•••Manj n

Tj 1 j 2••• j n
~Mx!.

~A1!

If this transformation law holds only for a subset of th
changes of basis~e.g., rotations but not reflections! thenT is
an improper~or pseudo! tensor field of rankn ~see, e.g.,
@32#!. In this context we will usetrue and pseudoas syn-
onyms for proper and improper.

Suppose that a correlation function can be written

Ri j ~r !5S d i j 2
r i r j

r 2 D A~r !1e i j a

]

]r a
B~r !1•••, ~A2!

where d i j is the Kronecker delta ande i j a the Levi-Civita
permutation tensor. It is convenient to think of each addit
term as consisting of an elementary tensor that has indi
multiplied by a~true or pseudo! scalar function ofr . Indeed,
this can be shown to be the case in general@1,4#. The parts
with indices are essentially geometrical aspects of the co
lation functions. For example,d i j 2r i r j /r 2 is an isotropic
form in that contraction with two vectorsai andcj produces
a true scalar that is invariant under~a! rigid body rotations
~of either the coordinate system or the turbulence! and ~b!
coordinate reflections, provided that the three vectorsr , a,
andc all transform like the position vector. However, oth
isotropic forms can involve pseudoscalars.

Sincev andb are solenoidal we have

]

]r j
Ri j ~r !5

]

]r i
Ri j ~r !50, ~A3!

or equivalently ink space,kiSi j (k)5kjSi j (k)50. Similar
results hold for theI and J tensors, so that the index
symmetric and -antisymmetric parts are separately sole
dal.

Next, homogeneity requires that

Ri j
v/b~2r !5Rji

v/b~r !, Ri j
6~2r !56Rji

6~r !, ~A4!

as is easily seen by lettingx→x2r in the definitions. Note
that R2 is anomalous, containing an overall negative si
The I ’s andJ’s each satisfy the same homogeneity condit
as their ‘‘parent’’R. Thek-space forms are obtained by le
ting R→S and r→k.

If f (x) is real then its Fourier transform satisfies the re
ity condition f (2k)5 f * (k), where an asterisk denotes com
plex conjugation. Using this property and the assum
equivalence of ensemble and space averaging~via invocation
of ergodicity!, it can be shown that, for example@43#,

Si j
v ~k!d~k1p!5^v i~p!v j~k!&. ~A5!

A consideration of the consequences of homogeneity,
dex symmetry, and reality for I i j

6(k) shows that
I i j

6* (k)5I i j
6(2k)56I i j

6(k) and thereforeI 1(k) is a real
ate

e
s,

e-

i-

.

-

d

-

index-symmetric even function ofk. Note that byI 6* (k) we
mean@ I 6(k)#* . Similar results are obtained forI 2 andJ6.
Collectively these imply thatSv/b and S1 are Hermitian
~e.g., Si j

v 5Sji
v* ) while S2 is anti-Hermitian (Si j

252Sji
2* ).

See Tables I and II.
The values of the correlations at zero separation co

spond to bulk quantities~volume averages! of interest. These
include the so-called ideal MHDrugged invariants@13,44#,
which are used to characterize MHD turbulence phenom
~see, e.g.,@45–47#!. For 3D homogeneous MHD turbulenc
the rugged invariants are thetotal ~kinetic plus magnetic!
energyper unit massEtot5Ek1Em5Rii

v (0)/21Rii
b (0)/2, the

cross helicity Hc5^v•b&/25Rii
1(0)/2, and themagnetic he-

licity H m5^a•¹3a&/2, where b5¹3a. Other quadratic
quantities of interest include the helicity of the velocity fie
Hk5^v•¹3v& ~this is an invariant in 3D hydrodynamics
but is not thought to be rugged in the usual sense@48#! and
the helicity of the electric current densityH j5^ j•¹3 j &,
which, although not an ideal invariant, rugged or otherwi
is of theoretical importance, in dynamo theory for examp
@11,26#. The helicities are usually connected with the inde
antisymmetric portion of the correlation tensors~see Sec.
VI !.

APPENDIX B: SCALAR POTENTIALS

Consider the solenoidal fieldb(x)5¹3A(x), so that in
k spaceb(k)5 ik3A(k). Working in ak-dependent coordi-
nate system with an arbitrary uniform unit vectore and
aj (k), j 51,2,3 the components ofA, we have

A~k!5a1e1 i
a2

k
k3e1

a3

k2
k3~k3e!. ~B1!

It is convenient to associate ani with eachk and in this form
the a’s all have the same dimensions. Thus

b~k!5 ik3e@a12a3#2k3~k3e!
a2

k
. ~B2!

So there are really only two independent complex scalar
tentials defining a solenoidal field sincea3 can be absorbed
into a1. This is clear geometrically since it only requires tw
independent vectors to span a plane perpendicular tok. The
two potentials generate thepoloidal andtoroidal components
of the field~see, e.g.,@11#!. A customary mnemonic notation
is P(k)5a2 andT(k)5a12a3. We refer toP as the field’s
poloidal potential andT as its toroidal potential. Inx space,
where P and T are no longer dimensionally matched, w
have

b~x!52¹3~e3¹P!2e3¹T. ~B3!
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