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Abstract

The Reynolds number, Re, is an important quantity for describing a turbulent flow. It tells us about the bandwidth
over which energy can cascade from large scales to smaller ones, prior to the onset of dissipation. However,
calculating it for nearly collisionless plasmas like the solar wind is challenging. Previous studies have used
formulations of an “effective” Reynolds number, expressing Re as a function of the correlation scale and either the
Taylor scale or a proxy for the dissipation scale. We find that the Taylor scale definition of the Reynolds number has
a sizable prefactor of approximately 27, which has not been employed in previous works. Drawing from 18 years of
data from the Wind spacecraft at 1 au, we calculate the magnetic Taylor scale directly and use both the ion inertial
length and the magnetic spectrum break scale as approximations for the dissipation scale, yielding three distinct Re
estimates for each 12 hr interval. Average values of Re range between 116,000 and 3,406,000 within the general
distribution of past work. We also find considerable disagreement between the methods, with linear associations of
between 0.38 and 0.72. Although the Taylor scale method is arguably more physically motivated, due to its
dependence on the energy cascade rate, more theoretical work is needed in order to identify the most appropriate way
of calculating effective Reynolds numbers for kinetic plasmas. As a summary of our observational analysis, we make
available a data product of 28 years of 1 au solar wind and magnetospheric plasma measurements from Wind.

Unified Astronomy Thesaurus concepts: Solar wind (1534); Interplanetary turbulence (830); Magnetohydrody-
namics (1964); Space plasmas (1544)

1. Introduction

Most naturally occurring plasmas are either observed to be or
believed to be in a turbulent state. There is significant variation
in the parameters of these systems, including the length and
timescales, the plasma β, the turbulent Mach numbers, and the
relative size of the system compared to kinetic scales. Many of
these systems are in what is called a “kinetic” state, where the
dynamical length and timescales of interest are comparable to
or smaller than the collisional timescales of interest. Astro-
physical examples include the solar wind (e.g., Bruno &
Carbone 2013), accretion disks (e.g., Balbus & Hawley 1998),
and the intracluster medium (e.g., Mohapatra et al. 2020). For
these systems, the collisional closures associated with fluid
models are no longer applicable (or at least not obviously so).
This means one has to resort to higher-order closures for the
fluid models, or, in most cases, to a kinetic description of the
plasma (e.g., Marsch 2006).

Turbulence theories utilize dimensionless parameters to
categorize various flow regimes. For homogeneous incompres-
sible Navier–Stokes turbulence, the most important of these is
the Reynolds number Re, defined as the ratio of the
characteristic magnitudes of the nonlinear inertial term and
the viscous term of the Navier–Stokes momentum equation
(e.g., Pope 2000). Herein we define it by
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U
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=

where v vU ·= á ñ is the characteristic rms speed of the
fluctuations, λC is the correlation scale (or outer scale), and ν is

the (kinematic) viscosity; v(x, t) is the velocity field. Loosely,
λC corresponds to the largest separation at which turbulent
fluctuations remain correlated, which in a hydrodynamic
context can be thought of as the size of the energy-containing
eddies. (It is also often written as L and called the
“characteristic length” scale.) Small Re implies that the viscous
effects are significant and hence the nonlinear term is weak and
will not introduce significant nonlinearities into the system’s
evolution. Conversely, a large value of Re implies that the
nonlinear term plays a significant role in the dynamics of
the fluid.
This dynamic can be appreciated more clearly when Re is

expressed solely in terms of length scales. One way this can be
done is to introduce the Kolmogorov dissipation scale (or inner
scale) 3 1 4( )h n= , where v 2 ( )n= á  ´ ñ is the mean rate
of kinetic energy dissipation (Kolmogorov 1941; Tennekes &
Lumley 1972). A physical interpretation is that the Kolmo-
gorov scale is where the smallest eddies in the fluid become
critically damped, due to their nonlinear (or turnover) timescale
being equal to their dissipation timescale. Recall also that the
dissipation rate can be phenomenologically modeled as
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where Cò is treated as a fitting constant (e.g., Batchelor 1970;
Tennekes & Lumley 1972). Employing this in the definition of
η yields the form
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revealing that Re is a measure of the bandwidth of the turbulent
energy cascade. A large Re indicates there is a large separation
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between the outer and inner scales. This larger bandwidth
implies there are more scales where the nonlinear term is strong
enough to create turbulent structures and thereby increase the
intermittency of the flow (see, e.g., Matthaeus et al. 2015;
Parashar et al. 2019; Cuesta et al. 2022b). A small bandwidth,
and hence a small Re, implies that dissipation occurs very
quickly and damps any turbulent structures that the nonlinear
term might try to create. Such low-Re situations are sometimes
seen in planetary magnetosheaths (Czaykowska et al. 2001;
Hadid et al. 2015; Huang et al. 2017; Chhiber et al. 2018).

Estimating Re for hydrodynamical systems, using
Equation (1), is straightforward as all the required quantities
are well defined and often readily determined in experiments.
For kinetic plasmas such as the solar wind, however, it is not
possible to write a Chapman–Enskog-like closure to define a
viscosity (Chapman & Cowling 1990; Huang 2008). (Some
attempts have been made to estimate the viscosity of kinetic
systems; see, e.g., Verma 1996; Zhuravleva et al. 2019;
Bandyopadhyay et al. 2023; Yang et al. 2023.) This lack of a
well-defined viscosity also precludes using Equation (3), as it
means we cannot define η. Typically, in kinetic plasmas, one
must therefore resort to defining an effective Reynolds number.
Some hydrodynamic studies have investigated estimating the
energy input into the system (Zhou et al. 2014), as well as
using more precise boundaries of the inertial range (Zhou 2007;
Zhou & Thornber 2016), in order to get around this lack of a
clearly defined inner scale. Herein we describe two approaches
to formulating an effective Reynolds number.

The first approach is to apply Equation (3) and use a
different small scale—one that is observationally calculable—
as a signifier of the termination of the inertial range. There are
several reasonable options to choose from. For example, in the
solar wind, the spectral break scale, fb, the point at which the
power spectrum of the inertial range steepens, is thought to be a
good indicator of the onset of dissipation (Leamon et al. 1998;
Yang et al. 2022). Additionally, the ion inertial length, di, and
also the ion gyroradius are frequently found to be in proximity
to the break scale, motivating their use as indicators of the
onset of the kinetic range (Chen et al. 2014; Franci et al. 2016;
Wang et al. 2018; Woodham et al. 2018; Parashar et al. 2019;
Cuesta et al. 2022b; Lotz et al. 2023). We note that di has the
advantage that it only requires ion density to calculate, rather
than the high-resolution magnetic field data needed to resolve
spectral-steepening scales and calculate fb. Its disadvantage is
that it does not capture the size of the turbulence
amplitudes. For example, consider the two different intervals in
Figure 1, each with very similar di and outer scales λC but with
different turbulence amplitudes. The use of di as an inner scale
in Equation (3) consequently yields very similar Redi for both
cases because it does not capture the different dynamics
induced by the varying turbulence strengths.

Fortunately, there is a length scale that typically does depend
on the energy of the turbulent fluctuations due to their effect on
the shape of the power spectrum. This is the Taylor microscale
λT (Taylor 1935; Batchelor 1970; Matthaeus et al. 2008),
hereafter referred to simply as the Taylor scale. See Figure 1 for
one such example. By employing it in a further reformulation
of Re we can capture this strength-of-the-turbulence aspect.
The Taylor scale has multiple definitions and can be estimated
in several different ways that differ by factors of order unity
(denoted below by γ). These can all be written, for the velocity

field v, as

v

v
, 4T

2
2

2( )
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á ñ
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where the value of γ depends on the specific definition of λT
employed. For example, the traditional hydrodynamics usage is
that λT is the curvature (at the origin) of the longitudinal
autocorrelation function so that γ= 5 (e.g., Batchelor 1970;
Tennekes & Lumley 1972, p. 211). Herein we employ γ= 3
because it corresponds to the curvature of the traced correlation
function, which is relatively simple to calculate using space-
craft time series data; see Equations (7) and (8).
The inertial range comprises the scales ℓ, which satisfy

η= ℓ= λC. Moreover, in hydrodynamics λT lies between λC
and the Kolmogorov scale (e.g., Pope 2000). Equation (4)
makes it clear that λT is related to the mean square spatial
derivatives of the turbulent flow. It can also be interpreted as
the “single-wavenumber equivalent dissipation scale”
(Hinze 1975). In plasma systems, the Taylor scale represents
small-scale turbulence physics that is not yet well understood,
including its relationship to other plasma parameters and the
correlation length.
Re-expressed in terms of the Taylor scale, the exact

hydrodynamic viscous dissipation rate is v2
T
2 ng l= á ñ .

Equating this to the òphenom relation, Equation (2), yields
another form for the Reynolds number (Batchelor 1970, p. 118;
Tennekes & Lumley 1970, p. 67):
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The ratio of Taylor scale to the spectral break scale has been
shown to have a direct correlation with the decay rate
(Matthaeus et al. 2008). Hence, one would expect this
definition of Re to show variation with changing turbulence
amplitude and decay rates (as can be seen from the very
different values of Re Tl in Figure 1).
Note that Cò is significantly less than unity. Hydrodynamic

simulations and experiments (Sreenivasan 1998; Pearson et al. 2004)

Figure 1. Power spectra (energy E(k) vs. wavenumber k) for two spacecraft
data intervals with very similar outer and inner scales but different power
levels. Vertical lines indicate the respective correlation scales λC and ion
inertial lengths di. On the basis of the power levels one would expect different
turbulent behavior from these intervals. However, using di as the inner scale in
Equation (3) implies they have almost the same Re. Using Equation (5) we do
capture this difference, giving very different values of Re Tl .
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indicate that
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where in the middle term the 0.5 value is empirical and the
other values are associated with “unit conversion” from a
variant of Equation (2) commonly used in the hydrodynamic
literature, namely Au ℓ ;fphenom 1

3 = here U u32
1
2= and

ℓf= 3λC/2 is the correlation length for the longitudinal velocity
correlation function, all assuming isotropy (see, e.g., Batchelor
1970; Tennekes & Lumley 1972; Pearson et al. 2004). Thus, in
hydrodynamics, with γ= 3, the prefactor in Equation (5) is
γ/Cò≈ 50, and in Equation (3) it is C 31 3

 »- . The values in
MHD, for solar wind-like conditions, are γ/Cò≈ 27 and
C 21 3
 »- (see Appendix A). These are the values we use in
the data analysis reported on below. However, one should keep
in mind that these values pertain to collisional MHD fluid
models. The solar wind is an almost collisionless plasma that
can, in some circumstances, be well approximated as an
MHD fluid.

For a system like the solar wind, most velocity measure-
ments have a time cadence that is significantly longer than
kinetic timescales (with the exception of measurements from
the Magnetospheric Multiscale (MMS) mission). Because of
this, one cannot reliably compute λT for the velocity field. On
the other hand, magnetic field measurements have a
significantly higher time cadence, allowing one to explore
kinetic-scale physics. Hence most studies in the solar wind
compute the Taylor scale for the magnetic field. Given these
constraints, we also work (primarily) with magnetic field data
in this study and compute several types of effective Reynolds
numbers.

A history of estimating magnetic Re in the solar wind is
provided in the introduction to Cartagena-Sanchez et al. (2022).
Prior estimations have used Equation (5) and applied it to
measurements from multiple spacecraft, beginning with
Matthaeus et al. (2005) and continuing with Weygand et al.
(2007, 2009, 2011) and Zhou et al. (2020). Note that these
studies use γ/Cò= 1, and thus essentially ignore this prefactor.
The average values of λC, λT, and Re Tl from these studies are
summarized in Table 2, where we also indicate an appropriate
value of γ/Cò to be used for comparison with the results we
obtain herein. All these studies used data from a combination of
spacecraft at 1 au, including ACE, Wind, and Cluster, and most
investigated the relationship between Re and variables such as
magnetic field orientation, wind speed, and solar activity.
Going beyond 1 au, this formulation has also been used to
estimate Re at Mars (Cheng & Wang 2022), and Voyager data
have been used to calculate it at very large distances from the
Sun (Parashar et al. 2019). Voyager data lack sufficient
resolution to calculate λT, and thus di was used in the
formulation of Equation (3) to estimate Re. Cuesta et al.
(2022b) supplemented this work with data from Parker Solar
Probe and Helios in a survey of variation in Re throughout the
heliosphere.

It is clear from the studies cited above that the Reynolds
number plays a pivotal role in understanding solar wind
turbulence. Accurate estimation of Re can be used to validate
theoretical predictions such as the enhanced intermittency with
increasing Re (e.g., Van Atta & Antonia 1980; Parashar et al.
2015, 2019; Cuesta et al. 2022b) or its correlation with solar

activity (Zhou et al. 2020; Cheng & Wang 2022). Different
formulations need to be compared to bolster these conclusions
further. Additionally, a firmer estimate of Re will help refine
the minimum scale separation required by an experiment or
simulation to faithfully capture the dynamics of such high-Re
astrophysical systems; this is the so-called “minimum state”
(Zhou 2007, 2017). Therefore, to obtain reliable estimates of
the solar wind’s (effective) Reynolds number, a thorough
comparison of computational techniques and their implications
is necessary.
This is the purpose of the present study. A large data set of

measurements from the Wind spacecraft is compiled, allowing
us to calculate Re for nearly two decades of data in three
different ways: using either fb (obtained from the magnetic
energy spectrum) or di in Equation (3), and using λT, obtained
from the autocorrelation function for b, in Equation (5).
The structure of this paper is as follows. The data set and its

initial cleaning are described in Section 2. Section 3 provides
the methods for estimating each of the scales; we calculate Re Tl
after first applying the correction to λT developed by Chuychai
et al. (2014). In Section 4, the three estimators are compared to
each other and to the values obtained by the aforementioned
studies. Implications and limitations of these results are
discussed in Section 5.

2. Data

We use roughly 18 years (2004–2022) of data from NASA’s
Wind spacecraft to estimate Re at 1 au. We process ≈12,000
12 hr intervals in the solar wind. High-resolution (0.092 s)
vector magnetic field data were obtained from the Magnetic
Field Investigation (MFI; Lepping et al. 1995). Wind was
launched in 1994 and has operated at the Lagrangian point 1
(L1) since 2004 June in order to study plasma processes
occurring in the near-Earth solar wind. This mission has
significantly contributed to understanding many aspects of the
solar wind, including electromagnetic turbulence (Wilson et al.
2021).
After downloading the data from NASA/GSFC’s Space

Physics Data Facility (SPDF), we split them into 12 hr
intervals. This interval size is large enough to contain a few
correlation lengths but small enough to not average over large-
scale variations. Isaacs et al. (2015) demonstrated that (1 au)
intervals of 10–20 hr have “special significance” as they
represent a range where sufficient correlation times are
sampled, making single-spacecraft results coincide with those
of multiple spacecraft.
Data gaps are linearly interpolated unless they comprise

more than 10% of the interval, in which case the interval is
discarded. (This affected about 4% of the intervals.) We
initially processed 28 years of data, from 1995 January 1 to
2022 December 31, to compute various average quantities as
well as turbulence parameters such as the spectral slopes in the
inertial and kinetic ranges, rms amplitudes of the magnetic field
and velocity, the Taylor scale, and the correlation scale. The
complete data set comprises all available magnetic field data,
i.e., intervals containing shocks or from within the Earth’s
magnetosphere are not removed. However, our analysis in the
subsequent sections of this paper focuses only on data from
2004 June and later, a period when Wind was positioned at L1,
away from the magnetosphere.
Given that it is also of interest to future analysis how

quantities like the Taylor scale relate to other properties of the
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turbulent plasma system—such as electron density, cross-
helicity, and solar activity—measurements of electron and
proton properties from Wind’s 3D Plasma (3DP) instrument
were also obtained, along with sunspot numbers from the
World Data Center SILSO.

We note that the ion density from Wind has periods of
anomalously small values for a few months. To avoid issues
associated with this we therefore always use the electron
density as a proxy for the proton density when calculating all
ion inertial lengths, ion plasma betas, and Alfvén speeds.
Across the 28 years of data, we obtained between 18,000 and
20,000 points for each variable, depending on the amount of
missing data. A full list of the variables in the processed (and
publicly available) data set can be found in Appendix B.

3. Method

We begin the analysis by determining several slopes for each
of the magnetic power frequency spectra obtained from the
12 hr intervals. Specifically, we perform power-law fits in the
inertial and kinetic ranges, denoting the power-law exponents
as qi and qk, respectively. Nominal frequency intervals for the
inertial range (0.005–0.2 Hz) and kinetic range (0.5–1.4 Hz)
were chosen, consistent with those used by Wang et al. (2018).
We then identify the frequency at which (the extrapolations of)
these power laws intersect, calling this the spectral break
frequency fb. An example is shown in Figure 2. Any outliers,
mostly in the form of anomalously large values of qk, are not
included in the subsequent analysis, as described in Section 4.
In the following, we will use the timescale associated with the
break frequency, i.e., tb= 1/(2πfb), as a proxy for the inner
(time)scale.

Estimates for the Taylor scale λT and the correlation scale λC
are also needed and these are both computed using the
autocorrelation functions (see Figure 26 in Bruno &
Carbone 2013). The (normalized) temporal autocorrelation of
the magnetic field fluctuations is given by

b b

b
R

t t
, 7

2
( ) ( ) · ( ) ( )t

t
=

á + ñ
á ñ

where b(t)=B(t)− 〈B(t)〉 is the magnetic field fluctuation at
time t. The angle brackets denote a suitable time ensemble

average, implemented as a time average in this study. Using
Taylor’s frozen-in-flow hypothesis, we can convert time
separations τ into length separations r. (See Section 5 for a
discussion of the limitations of this hypothesis.)
Measurement of λC requires a computation of the auto-

correlation function out to very large lags. On the other hand,
measurement of λT requires iterative fitting at very small lags.
It would quickly become computationally expensive to use the
high-time-cadence data to obtain both quantities. Hence, for
each 12 hr interval, the correlation length λC is computed from
a downsampled low-resolution (5 s) magnetic field time series
out to roughly 10,000 s. We use the high-time-cadence
(0.092 s) magnetic field data to compute autocorrelation
functions only up to a lag of 9.2 s; this is used to compute
the magnetic Taylor scale λT.
The correlation scale λC for b can be estimated from R(τ) in

three different ways, as shown in Figure 3. We can perform an
exponential fit, we can find the separation at which the function
falls to 1/e, or we can take the integral of the function
( R dC 0

( )òl t t=
¥

). The exponential fit method is frequently
used in the literature (Matthaeus et al. 2005; Bandyopadhyay
et al. 2020; Zhou et al. 2020; Phillips et al. 2022); multiple
exponential fits and a third-order polynomial have also been
used (Weygand et al. 2009, 2011; Cheng & Wang 2022). In
any case, this requires a decision about how much of the
autocorrelation to fit to. In this work, we fit a single exponential
to a range that extends to twice the value of the correlation
scale as obtained by the 1/e method. We compute λC from the
low-resolution autocorrelation using each of these three
methods to evaluate their consistency.
While it is straightforward to compute the Taylor scale in

simulations, where one has access to the full three-dimensional
information, when working with time series data from
experiments we need to resort to an approximation. Since λT
can be defined as the radius of curvature of the autocorrelation
function at the origin, we may use this definition to estimate it.
(We do not yet need to convert to spatial lags, so we work with
the time-domain equivalent, τTS.) This follows from the Taylor
expansion of the autocorrelation for τ→ 0 (Batchelor 1970;

Figure 2. Power spectral density (PSD) of a solar wind magnetic field interval,
raw (gray) and smoothed (black). Dashed power-law fits to estimates of the
inertial and kinetic ranges return spectral indices qi and qk. The left-hand
vertical line indicates the intersection of these two fits, denoted as the spectral
break fb; the ion inertial frequency fdi

is indicated by the right-hand
vertical line.

Figure 3. A demonstration of the three methods used to calculate λC using an
interval comprising the second half of 2016 January 2. These include the 1/e
(“e-folding”) method, giving ;C

1 el the exponential fit method, giving ;C
fitl and

the integral method, giving C
intl .
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Tennekes & Lumley 1972):

R 1
2

. 8
2

TS
2

( ) ( )t
t
t

= - + ¼

In practice, this means fitting a parabola to R(τ) at the origin
and requires the high-resolution data provided by Wind so that
we have enough observations at small separations. It also
requires an important decision: how much of this high-
resolution autocorrelation do we fit to? (Larger ranges result
in systematically larger estimates.) In order to reduce the
subjectivity of this decision, the Richardson extrapolation
technique was introduced in this context by Weygand et al.
(2007): by fitting to a range of values of maximum lag τfit, then
extrapolating back to 0 lags, we obtain a refined estimate, TS

extt .
In the aforementioned work, the authors showed an apparent
convergence of the final estimate given by this technique as τfit
increases. However, Chuychai et al. (2014) showed with
simulated data that, in fact, this convergence depends upon the
slope of the power spectrum at high frequencies. In light of
this, they produced a multiplicative correction factor, r(|q|),
that is a function of this slope, given as

r q

q
q

q
q

q
q
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1
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We also apply this correction to our estimates, with the
procedure we follow depicted in Figure 4. This gives us a final
estimate τTS. We fit from a minimum lag of 1, equal to the time
cadence (0.092 s), up to a maximum lag τfit, which was varied
between 10 and 50 lags.

Finally, using the various (magnetic) scales, determined as
outlined above, we calculate estimates for effective Reynolds
numbers in three distinct ways. Specifically, we use C

fitl (or its
timescale analog) as the outer scale and

(i) Equation (3) with di as the inner scale and C 21 3
 =- ;

(ii) Equation (3) with tb= 1/(2πfb) as the inner (time)scale
and C 21 3

 =- ;
(iii) Equation (5) with γ/Cò= 27.

4. Results

Our analysis uses data from the period 2004 June to
December 2022 when Wind was always situated in the solar
wind at L1. In about 6% of the intervals the slope of the kinetic
range, qk, was unusually shallow (meaning |qk|< 1.7) and
therefore the final (corrected) estimate of the Taylor scale came
out to be negative. These outlier intervals were removed from
the following analysis but will be investigated in future work.

4.1. Correlation Scale

Table 1 gives summary statistics of each of the three
estimates of the correlation length of the magnetic field, λC,
and Figure 5 shows their marginal and joint distributions.
Given the wide distribution of values, all values are in line with
those previously reported in the literature at 1 au, i.e.,

approximately 106 km (see Table 2). Noting the logarithmic
scaling of the axes in this figure, we qualitatively find that the
probability distribution function of each estimator is log-
normal. This is consistent with the results of Ruiz et al. (2014)
as well as the distribution of many other solar wind quantities
such as proton temperature, plasma beta, and Alfvén speed
(e.g., Hundhausen et al. 1970; Burlaga & Lazarus 2000; Mullan
& Smith 2006; Veselovsky et al. 2010). In particular, the
correlation scales are positively skewed, with means larger than
the corresponding medians. Looking at the joint distributions,
we see that the exponential fit and 1/e methods agree very well

Figure 4. An example of the process of refining the estimate of the Taylor scale
τTS, using an interval comprising the second half of 2016 January 2. The three
horizontal scales show the separations in units of lag, time, and (Taylor frozen-
flow equivalent) distance. (a) First, a parabola is fit to the autocorrelation from
the origin up to various values of τfit. In this example the fit is for lags less than
τfit = 15. The x-intercept of each parabola (which is off-scale for this plot)
produces an initial estimate TS

estt . (b) Next, each of these estimates is plotted
against τfit. A straight line is fit to these points and extrapolated back to τ = 0,
returning the Richardson extrapolation (R.E.) estimate, TS

extt . Finally, the
Chuychai correction (C.C.) is applied using the slope in the kinetic range
(qk = −3.03 in this case) in Equation (9). This yields our final estimate, τTS; we
obtain a value of 9 s, or approximately 4000 km, for this particular interval.

Table 1
Statistical Summary of Estimates of the Magnetic Field Correlation Length λC

by Different Methods

Method Mean (km) Median (km) SE (km)

Exponential fit 899,000 769,000 5000
1/e 942,000 797,000 5000
Integral 880,000 808,000 4000

Note. The standard error (SE) gives the expected variation of the mean between
samples of this size.
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with each other, with very high values of 0.99 for both the
Pearson and Spearman correlations, and most of the points
lying close to the equality line. (The Spearman correlation uses
ranks to measure the monotonicity of the relationship between
two variables, rather than measure their linear association.)
This agreement is not surprising given the large-scale statistical
homogeneity of the solar wind. The autocorrelation functions
typically show approximately exponential fall-off (see, e.g.,
Figure 3), with deviations from C

e
C

1 fit/l l» only occurring for
intervals that do not show steady turbulence (Ruiz et al. 2014).

In contrast, the integral scale C
intl shows a moderate degree of

scatter against either of the other two estimates, with
correlations of between 0.88 and 0.94. The greatest degree of
scatter is present for values of C

intl less than about 106 km. This
disagreement is likely due to occasional numerical issues with
calculating the integral of the autocorrelation. Ideally, the
integral is computed out to infinity as R asymptotically decays
to 0. However, the finite size of the intervals and the slight
departures from “textbook-like” homogeneity and isotropy in
some intervals could introduce discrepancies between this and
the exponential estimates. Nonetheless, we conclude that, to a

reasonable approximation, all three methods give equivalent
estimates for λC.

4.2. Taylor Scale

Figure 6 shows marginal distributions of both the uncor-
rected and corrected versions of λT for the magnetic field. Both
have quasi-Gaussian distributions, with a few large outliers.
The distribution of λT computed after applying the Chuychai
correction factor is shifted to the left because the (multi-
plicative) correction factor is almost always less than 1, except
for the 1% of intervals with particularly steep slopes in the
kinetic range (qk<−3.7). The mean qk is −2.64, resulting in
an average correction factor of −2.61/2.64+ 1.7= 0.71,
following Equation (9). We therefore end up with a mean of
λT that is about two thirds that of T

extl . We find that this final
mean of 3225 km is in good agreement with the literature (see
Table 2). Prior estimates of λT in the solar wind at 1 au vary
between ∼1000 km and ∼7000 km, values that lie within the
distributions of λT (extrapolated or Chuychai-corrected) shown
in Figure 6.

Figure 5. Joint (2D) histograms of the three λC estimates with Pearson (linear) correlation and Spearman (rank) correlation values and a dashed line of equality.
Marginal (1D) histograms of the x-variable are shown above each plot. The x- and y-axis limits have been set so as to include the bulk of the data but exclude outliers.

C
fitl : exponential fit method, C

e1/l : 1/e method, C
intl : integral method.

Table 2
Average Estimates of λC, λT, and an Effective Reynolds Number in the Solar Wind at 1 au, with the Last Calculated Using Equation (5)

Authors (Year) Spacecraft λC (106 km) λT (km) Re Tl

Matthaeus et al. (2005) ACE–Wind–Cluster 1.2 2478 ± 702 230,000 (×27)
Weygand et al. (2007) Cluster 1.2 (from above) 2400 ± 100 260,000 (×27)
Weygand et al. (2009) ACE–Wind–Cluster + 6 others 2.92 1000 ± 200 12,600,000 (×27)
Weygand et al. (2011) ACE–Wind–Cluster + 8 others 1–2.8 1200–3500 4,000,000 (×27)
Zhou et al. (2020) ACE–Wind–Cluster 1.14 2459 300,000a (×27)
Bandyopadhyay et al. (2020) MMS 0.32 6933 2000b (×27)
This work Wind 0.899 3220 3,406,000

Notes. Shown are the values determined in this work (given in bold) and in some previous studies. Note that for direct comparison with this work, the Re Tl values
from these earlier studies should be multiplied by the previously neglected prefactor of γ/Cò = 27, as indicated by the “(×27)” in the final column. This factor is
already included in our estimates. When calculating λT all studies listed employed γ = 3, sometimes without explicitly stating so. All studies used at least one
exponential fit to compute λC. All except Matthaeus et al. (2005) and Bandyopadhyay et al. (2020) used Richardson extrapolation to compute λT; none, other than this
work, used the Chuychai correction. Values are expressed as ranges when the study grouped scales by other variables such as magnetic field orientation.
a This mean value was reported in a follow-up article (Zhou & He 2021).
b Re was not calculated explicitly in this article.
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4.3. Reynolds Number

Having obtained estimates for the correlation length and
Taylor scale of the magnetic field fluctuations (and also for di
and tb), we may use the procedures detailed at the end of
Section 3 to calculate three distinct effective Reynolds
numbers. Figure 7 shows the marginal and joint distributions
of these different estimates, as well as regression line fits. After
applying a logarithmic transformation each distribution appears
approximately Gaussian, suggesting a log-normal distribution.
Comparing these marginal distributions and the summary
statistics given in Table 3, we can see that the three estimates
span multiple orders of magnitude, with, very roughly,
Re Re Re10 30d ti bT » »l for the mean values.
The joint distributions show considerably more scatter than

those of the λC estimates. The strongest linear association
between any two estimates is that between Redi and Retb
(Pearson correlation= 0.72). This is shown by the majority of
points lying in a relatively thin linear band close to the equality
line. We can also see that the Retb estimates tend to be smaller
than Redi. This is an indication that the break scale is typically
larger than di by a factor of 2–3 in the solar wind (Leamon et al.
1998). A dependence of the break scale on plasma β is also
well known (Chen et al. 2014; Franci et al. 2016). The
statistical details of any such potential correlations will be
explored in a follow-up study.

Re Tl shows a much weaker linear association with the other
two methods of only 0.38 (with Redi) and 0.43 (with Retb). In
addition to having the lowest Pearson correlation, Re Tl and Retb
also have the lowest Spearman correlation, showing that even
after accounting for outliers, which have less influence on this
latter metric, it still remains a rather weakly positive
association. On the other hand, outliers do have a clear
influence on the linear association of Re Tl versus Redi, shown
by the substantial increase in the Spearman correlation (0.74)
over the Pearson correlation (0.38).

Despite these only moderately strong associations between
the estimates, it is important to note the density of the points.
All these distributions show significant scatter of a small
population in which the estimates differ by up to an order of
magnitude. Notably, the joint distributions of Retb have a
roughly triangular subpopulation of points that shows little to
no relationship with the other estimates. This is seen in the
upper left of the plot of Re Tl versus Retb, and the lower right of
Retb versus Redi. This population (identified as Re Re 50tbT/ >l )
represents about 27% of all observations and is shown as the

gray points in Figure 7. After removing this population, all
correlations increase to at least 0.68. The potential reasons for
significantly larger tb and hence a smaller Retb could include
errors in automated fitting and extreme intervals with atypical
power spectra. As with the other outliers, a detailed invest-
igation of these is deferred to a follow-up study. In cases where
the power spectrum is well behaved, with typical slopes in the
inertial and kinetic ranges (qi and qk) and a well-defined break
point, it might be safe to estimate Retb and multiply it by 30 to
estimate Re Tl .
As well as the agreement between methods, it is also of

interest how our estimates of Re match up with those
previously reported. In particular, given the prevalence of the
Taylor scale method, we compare values of Re Tl in Table 2.
The values for Re in this table vary by a factor of ≈6000, from
54,000 to 340,000,000 after multiplying by the prefactor. The
mean value of Re 3,406,000T=l from the present study is of the
same order of magnitude as the results from three of the
previous works. The much larger values given in Weygand
et al. (2009, 2011) were mainly attributed to the smaller values
obtained for λT. Conversely, Bandyopadhyay et al. (2020)
noted that their value of λT calculated from a single 5 hr
interval of MMS data was about three times larger than
previous estimates, while their estimation of λC was smaller
than other estimates. Hence they computed a much smaller
value of Re. Three reasons were suggested for this: (1) interval
length, separation, and mixing effects, (2) intrinsic variability
in the solar wind, and (3) differences in the geometric
formations of the Cluster (to which they were comparing their
results) and MMS spacecraft. Our work herein emphasizes that
point (2) is indeed pertinent. In particular, our results show the
considerable intrinsic variability of the properties of the solar
wind (particularly λC and λT), giving rise to large variability in
the values of effective Re. On the plus side, this sampling
variability suggests that the results of all the cited studies may
in fact be consistent with each other, as they lie within the
distribution of values found in our study.

5. Conclusion

We present a thorough investigation and review of
calculating estimates of (effective) Reynolds numbers for the
solar wind at 1 au, using 18 years of data from NASA’s Wind
spacecraft. As this data set lacks high-time-cadence velocity
measurements, we employ magnetic field data to estimate λC
and λT for the magnetic field. These are assumed to be
comparable to their velocity field equivalents, in line with
previously published results. More precisely, in using the
magnetic length scales in Equation (5) we are assuming
that C

b b
C
v v

T Tl l l l» .
We first compare three different ways of calculating the

correlation scale and find good agreement between all methods,
albeit with a greater scatter for the integral method. The mean
values obtained for λC, between 880,000 and 942,000 km, are
consistent with previously reported values of about 106 km.
We then apply the correction factor developed by Chuychai

et al. (2014) to our estimates of the Taylor scale in order to
reduce any remaining bias after using the Richardson
extrapolation technique. This correction factor typically
reduces the estimate of the Taylor scale, significantly shifting
the distribution to smaller values. In particular, the mean
reduces to 3225 km, roughly 2/3 of the uncorrected mean value

Figure 6. Distributions of the uncorrected ( T
extl ) and corrected (λT) versions of

the Taylor scale. Dashed vertical lines indicate mean values for each
distribution. The x-axis limits have been set so as to include the bulk of the
data but exclude outliers.
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of 4772 km. Both values are consistent with previous estimates,
given the wide spread of the distribution.

Finally, we compute effective Reynolds numbers using three
distinct methods. It should be noted that we include
proportionality factors in our calculations. In particular, we
highlight that the factor in Re Tl of Cò≈ 27 was not included in
many previously published estimates (see Table 2 and
Equation (5)).

While very strong correlations were observed for the three
different methods of estimating λC, the correlations between
the associated estimates of the effective Reynolds number were
only moderate to strong, with a considerable amount of scatter.
The mean values determined by these methods ranged from
116,000 for Retb to 3,406,000 for Re Tl . Putting these into
perspective, previously reported values of Re at 1 au exhibit
substantial variability, ranging from approximately 106 to 108.
Most of our estimates of Re comfortably fit within this
distribution, though an outlier population of small values of
Retb warrants future investigation.
Ultimately, we conclude that more theoretical work is

needed to better understand which definition of an effective
Reynolds number of the solar wind is most appropriate.
The key task is to identify scales that have a physical meaning.
For the tb or di approximations of the inner scale, the
implication is that ion-scale physics plays the most significant
role in energy dissipation and terminates the inertial range.
This, however, discounts the role of a sub-ion-scale cascade
and its implications for electron physics (Matthaeus et al. 2008;

Alexandrova et al. 2009; Sahraoui et al. 2009; Schekochihin
et al. 2009; Boldyrev et al. 2013). Moreover, these estimates
are insensitive to the variability of the power input at large
scales and hence the cascade rate. On the other hand, the
λT-based estimate of Re indirectly folds in the cascade rate
through its dependence (empirically in the solar wind but
directly in hydrodynamics) (Pope 2000; Matthaeus et al. 2008).
This makes Re Tl a more physically motivated estimate among
the three considered.
Moreover, having obtained statistical relationships between

different estimates, these can be leveraged in situations where
only one estimate is calculable. The decision on which
estimator to use rests on the assumptions one elects to make
and on the resolution of the available data. These considera-
tions are summarized below.

1. Retb requires calculation of the spectral break scale. This
process is subject to varying methods and numerical
challenges, including spectra that do not always show
clear breaks. In our work, we calculated tb as the
intersection of (the extrapolation of) two power-law fits to
magnetic field spectra, which requires decisions on what
intervals to choose for the inertial and dissipation ranges.

2. Alternatively, one can simply use the ion inertial length di
to approximate the break scale and calculate Redi

(Parashar et al. 2019; Cuesta et al. 2022b). This requires
only the ion density (and correlation length). However, it
appears that changing solar wind conditions affect which
scale is best associated with the spectral break.
Specifically, di is the best approximation at low plasma
β values, the ion gyroradius ρi is best at high β values
(Chen et al. 2014), and for typical solar wind values of
β≈ 1, the ion cyclotron resonance scale is the best
(Woodham et al. 2018). Under conditions where one
might not have high-time-cadence measurements of the
desired variables, it is likely that one could still easily
obtain reasonable estimates for both di and the outer scale
(e.g., λC) and employ these to estimate an effective
Reynolds number.

Figure 7. Joint (2D) histograms of the three Re estimates with Pearson correlation and Spearman (rank) correlation values, log-space regression line fits, and a dashed
line of equality; and (above top axis) marginal (1D) histograms of the x-variable in each plot. The x- and y-axis limits have been set so as to include the bulk of the data
but exclude particularly extreme outliers beyond these limits. Remaining outliers are shaded gray. Correlation coefficients and marginal histograms are for all data
values, whereas regression lines are fitted to only the majority subsets of the data shown in blue (see text).

Table 3
Statistical Summary of the Estimates of Effective Re Obtained by the Different

Methods

Re Mean Median SE

Retb 116,000 64,000 2000

Redi 330,000 226,000 3000

Re Tl 3,406,000 1,686,000 68,000

Note. SE = standard error of the mean.
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3. Using the Taylor scale-based Reynolds number, Re Tl , is a
more robust formulation for estimating Re than the two
listed above because of its empirical dependence on the
cascade rate (Matthaeus et al. 2008). This benefit is
shown by the prevalence of this formulation in the
literature (Matthaeus et al. 2005; Weygand et al.
2007, 2009, 2011; Zhou et al. 2020; Phillips et al.
2022). We show here that the use of a correction factor
(Chuychai et al. 2014) makes a significant difference in
the estimates of λT and hence Re Tl . However, as
discussed above, the λT definition of Re has a
proportionality factor that is, in part, determined by a
phenomenological or empirical fitting for the (kinetic
energy) dissipation rate. Calculating λT also requires
high-resolution data, which are not always available; for
example, Voyager observations of the outer heliosphere
are so restricted (Parashar et al. 2019). Furthermore,
while this does not affect the validity of this formulation,
we note that weak cascade rates have been shown to
result in λT being smaller than the break scale, inverting
the hydrodynamic ordering (Matthaeus et al. 2008). This
is believed to be due to greater relevance of electron
dissipation (relative to proton) in these circumstances of a
weak cascade (Matthaeus et al. 2016).

A limitation of this work is that it relies on the Taylor
hypothesis to convert from single-spacecraft time separations to
length separations. This assumes that the bulk flow is
sufficiently fast that local variations in time can be effectively
ignored (see Verma 2022, for solar wind context). The Taylor
hypothesis relates to the well-studied “sweeping” hypothesis,
whereby large-scale fluctuations sweep (i.e., advect) smaller-
scale fluctuations (Kraichnan 1965; Tennekes 1975;
Zhou 2021). Although invoking Taylor’s hypothesis at kinetic
scales might introduce substantial inaccuracies, it has none-
theless been shown, numerically and from observations, to be a
reasonably good approximation up to second-order statistics
(Perri et al. 2017; Chhiber et al. 2018; Roberts et al. 2022). This
is also true under a model that incorporates sweeping
phenomenology (Bourouaine & Perez 2019; Perez et al.
2021). Furthermore, for the present analysis, we note that this
assumption does not affect the results for Re Tl , because both of
the scales involved are in fact left as timescales for this
calculation. Another aspect that we did not address in this study
is the issue of anisotropy in λC and λT (e.g., Weygand et al.
2009, 2011; Cuesta et al. 2022a; Roy et al. 2022). We reiterate
that no data filtering was conducted, except to remove intervals
with significant missing data, limit the time period for analysis
to 2004 June onward, and remove outliers where |qk|< 1.7.

Finally, we envisage that the full 28 yr data set and the
accompanying code that we have provided as a data product
will be useful to the scientific community for future large-scale
statistical analysis and data mining, for Wind and other
missions. Future work will start investigating correlations,
dimensionality reduction, and machine learning models.
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Appendix A
Determination of the Cò Prefactor for MHD

A standard phenomenological estimate for the kinetic energy
dissipation rate (ò v) in Navier–Stokes turbulence is

A
u

ℓ
C

U
A1

f
v

C
phenom

1
3 3

  ( )
l

= =

(e.g., Batchelor 1970; Tennekes & Lumley 1972; Pope 2000).
Here, 〈v · v〉=U2 and u1 is the rms velocity for one
component of v. Also ℓf

v is the correlation length associated
with the longitudinal correlation function (Batchelor 1970),
whereas λC is that for the traced correlation function
Rv(r)= 〈v(x) · v(x+ r)〉, equivalent to our λC definition in
the main text. The dimensionless coefficients A and Cò are
treated as constants that may be determined using experi-
ments and/or simulations (Sreenivasan 1998; Pearson et al.
2004). For isotropic 3D turbulence, the relations U u32

1
2= ,

ℓ2 3C f
vl = , and C A2 9 3 ( )= hold. As the middle

“component-based” version is founded on the assumption of
isotropy, in this work we instead employ the rightmost “trace-
based” variant, which does not assume isotropy; this is given
as Equation (2) above. (When the turbulence is isotropic and
two-dimensional, one obtains C A 4 2 ( )= , which is ≈40%
larger than the 3D isotropic value.)
In the literature a variety of notations are in use for what we

have called A and Cò, and indeed some works use Cò for the A
in Equation (A1) (e.g., Pearson et al. 2004); clearly this should
not be confused with the Cò we employ herein. For clarity, and
in line with the notation of Batchelor (1970, Equation (6.1.1)),
we always use A to denote a component-based fitting value.
We wish to determine a value for Cò that is applicable in

MHD. This requires taking into account the dissipation of
magnetic as well as kinetic energy. With superscripts v and b
denoting velocity and magnetic quantities, respectively, we
may write the total energy decay rate as òMHD= ò v+ ò b.
Using an Elsässer variable (z±= v± b) and von Kármán–

Howarth equation analysis for incompressible MHD, Link-
mann et al. (2015, 2017) developed a theory for AMHD (denoted
Cò,∞ therein). For simplicity here we restrict attention to
situations with low cross-helicity, i.e., 〈v · b〉≈ 0. Conse-
quently, 〈|z+|

2〉≈ 〈|z−|
2〉= Z2= 3W2, and the two longitudinal

3 https://spdf.gsfc.nasa.gov/ 4 http://www.sidc.be/silso/
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Elsässer correlation lengths, ℓf
, are approximately equal.

Assuming further that the longitudinal correlation lengths for
v and b are also approximately equal, the (low cross-helicity)
result of Linkmann et al. is equivalent to

A
W

ℓ

A Z2

9 3
, A2

f C
vphenom

MHD
3 3

 ( )
l

= =+

where A≡ AMHD and we have made use of the isotropic
relation ℓf

v
C
v3

2
l= . Equation (A2) applies to the total (viscous

plus resistive) dissipation and is the MHD analog of
Equation (2) above. Although, formally, it only applies for
cases of low cross-helicity, it is likely to be approximately valid
under somewhat more general circumstances (Linkmann et al.
2017; Bandyopadhyay et al. 2018).

Next, we make use of the Alfvén ratio, rA=U2/〈b2〉, to
write òMHD in terms of ò v. In terms of U and rA, the zero-cross-
helicity form for Z2 is

bZ U U
r

U F r1
1

, A32 2 2 2

A

2
A⎜ ⎟

⎛
⎝

⎞
⎠

( ) ( )= + á ñ = + =

which defines F(rA).
Recall also that òMHD= ν〈ω2〉+ μ〈j2〉, with ν the kinematic

viscosity, μ the magnetic resistivity, ω=∇× v the vorticity,
and j=∇× b the electric current density. Assuming a Prandtl
number of order unity (ν≈ μ) and that 〈j2〉/〈ω2〉≈ 1/rA, as is
commonly seen in MHD simulations, òMHD can be re-
expressed without explicit reference to the dissipation coeffi-
cients:

F r . A4vMHD
A  ( ) ( )»

Finally, using Equations (A2) and (A4), we can write a
(small cross-helicity) approximation for the kinetic energy
dissipation rate in MHD:

A
F

U2

9 3
. A5v

C

3
 ⎜ ⎟

⎛
⎝

⎞
⎠

( )
l

»

The bracketed factor might be called C vMHD,
 and can be

identified with Cò in our Equation (2). Observationally, for the
solar wind, rA≈ 1/2, yielding F≈ 3 (e.g., Perri &
Balogh 2010). Results from MHD simulations (Linkmann
et al. 2017; Bandyopadhyay et al. 2018)5 indicate that A≈ 0.5
for situations with zero or moderate mean magnetic field and
low or moderate cross-helicity, as is relevant to the solar wind.
Using these values we obtain C 0.11vMHD,

 » , which is about
twice the hydrodynamics estimate of C 0.064hydro

 » (via
A≈ 0.5); see Sreenivasan (1998) and Pearson et al. (2004).
This gives us values for the prefactor of Equation (5) of

27
C

3

0.11
= »g , and of Equation (3) of C 21 3

 » .
The results obtained in this appendix are most relevant for

systems governed by the incompressible collisional 3D MHD
equations. Thus, application of these results to the nearly
collisionless solar wind needs to be undertaken with caution.

Appendix B
Data Product

Averages of each variable in our data set are given in
Table 4. The data set (in CSV form), along with metadata
describing the variables and the code used to extract and
process the data, is available on GitHub6 under a 2-Clause BSD

Table 4
List of the Key Variables in Our Wind Data Product, Comprising Statistics for

Every 12 hr from 1995 to 2022

Symbol Name Mean Value Unit

SN Sunspot number 56.3 L
MA Alfvén Mach number 7.36 L
Ms Sonic Mach number 15.31 L
βe Electron plasma beta 0.82 L
βp Proton plasma beta 0.53 L
σc Cross-helicity 0.01 L
σR Residual energy −0.44 L
RA Alfvén ratio 0.46 L

Acos( ) Alignment cosine 0.01 L
qi Slope in the inertial range −1.68 L
qk Slope in the kinetic range −2.64 L
Re Tl Reynolds number (λT) 3,406,000 L
Redi Reynolds number (di) 330,000 L
Retb Reynolds number (tb) 116,000 L
δb/B0 Normalized magnetic field fluctuations 0.71 ...
fb Spectral break frequency 0.25 Hz
tb Spectral break timescale 14.3 s
B0 Magnetic field magnitude (rms) 5.49 nT
δb Magnetic field fluctuations (rms) 3.83 nT
ne Electron density 4.18 cm−3

nα Alpha density 0.14 cm−3

Te Electron temperature 12.9 eV
Tp Proton temperature 11.0 eV
Tα Alpha temperature 63.8 eV
ρe Electron gyroradius 1.78 km
ρp Proton gyroradius 63.9 km
de Electron inertial length 3.12 km
di Proton inertial length 134 km
ld Debye length 0.02 km

C
fitl Correlation length scale (exp. fit) 899,000 km

C
expl Correlation length scale (1/e) 942,000 km

C
intl Correlation length scale (integral) 880,000 km

T
extl Taylor length scale (raw) 4770 km

λT Taylor length scale (corrected) 3220 km
V0 Velocity magnitude (rms) 439 km s−1

Vr Radial velocity 438 km s−1

δv Velocity fluctuations (rms) 26.2 km s−1

vA Alfvén speed 65.5 km s−1

vTe Electron thermal velocity 1490 km s−1

vTp Proton thermal velocity 30.5 km s−1

δbA Magnetic field fluctuations (Alfvén
units, rms)

42.4 km s−1

z+ Positive Elsässer variable (rms) 48.9 km s−1

z− Negative Elsässer variable (rms) 48.4 km s−1

Note. The mean values are for the cleaned 18 yr data set at L1 used in this
study. While not shown here, we also provide a few additional variables such
as the timescale versions of the length scales, the uncertainty of the Taylor
scale, and the amount of missing data for each raw interval. The complete
metadata, including the equations used to derive secondary variables such as
gyroradii and cross-helicity, can be found in the GitHub README.

5 In both these works A is denoted as Cò,∞ and here we employ double their
numerical value for A because of a definitional difference between their L± and
our ℓf

.
6 reynolds_scales_project codebase: https://github.com/daniel-
wrench/reynolds_scales_project.
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License and is archived in Zenodo (Wrench 2023). The code
has been designed so as to make it relatively simple to apply to
data from other missions available in CDAWeb. That is, it
should be straightforward to adapt for projects interested in
calculating these variables for different heliophysics and space
weather environments.
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