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ABSTRACT

We observe the anisotropy of the power spectral tensor of magnetic field fluctuations in the fast solar wind for
the first time. In heliocentric RTN coordinates, the power in each element of the tensor has a unique dependence
on the angle between the magnetic field and velocity of the solar wind (6) and the angle of the vector in the
plane perpendicular to the velocity (¢p). We derive the geometrical effect of the high speed flow of the solar
wind past the spacecraft on the power spectrum in the frame of the plasma P(k) to arrive at the observed
power spectrum P(f, g, ¢p) based on a scalar field description of turbulence theory. This allows us to predict the
variation in the ¢z direction and compare it to the data. We then transform the observations from RTN coordinates to
magnetic-field-aligned coordinates. The observed reduced power spectral tensor matches the theoretical predictions
we derive in both RTN and field-aligned coordinates, which means that the local magnetic field we calculate with
wavelet envelope functions is an accurate representation of the physical axis of symmetry for the turbulence and
implies that on average the turbulence is axisymmetric. We also show that we can separate the dominant toroidal
component of the turbulence from the smaller but significant poloidal component and that these have different
power anisotropy. We also conclude that the magnetic helicity is anisotropic and mostly two dimensional, arising
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from wavevectors largely confined to the plane perpendicular to B.
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1. INTRODUCTION

Fast solar wind from the poles of the Sun is an excellent
example of MHD turbulence, with the fluctuations being ap-
proximately incompressible (Goldstein et al. 1995; Horbury
et al. 2005). The Ulysses spacecraft provides a unique data set
with extended periods in this continuous fast polar solar wind
(Ebert et al. 2009) and high cadence magnetic field data (Balogh
et al. 1992). Such observations allow us to investigate how tur-
bulence makes the nominally collisionless solar wind behave
like a gas with shocks and structures, and why superthermal
particles and cosmic rays appear to be diffusively coupled to
the solar wind, allowing exchange of energy. The details of that
coupling are not yet understood completely, and the poorly un-
derstood anisotropy of the turbulence is a part of the problem.
Recently measurements have been made using the Ulysses data
clearly showing the importance of the magnetic field direction
in the turbulence (Horbury et al. 2008; Podesta 2009; Luo &
Wu 2010; Wicks et al. 2010), with different power amplitudes
and spectral indices in different directions relative to the local
mean magnetic field. Attempts have been made to choose be-
tween theories of anisotropic turbulent cascades (e.g., Goldreich
& Sridhar 1995, 1997; Boldyrev 2006; Lithwick et al. 2007) by
observing the scaling of the power at different angles to the
mean field.

All of these studies have concentrated on the trace of the
magnetic power spectral tensor (i.e., the total power in magnetic
fluctuations) rather than the whole tensor, which is needed to
fully describe turbulence. The second-order correlation tensor
and the associated power spectral tensor are central parts of
generalized turbulence theories (Robertson 1940; Batchelor
1946, 1970; Chandrasekhar 1950). Incompressible MHD
turbulence is different in many respects to incompressible hydro-

dynamic turbulence, primarily since it has two solenoidal fields,
V and B (Chandrasekhar 1951a, 1951b; Biskamp 2003). The-
oretical treatments show that solenoidal fields in MHD plasmas
(e.g., V- B = 0) require correlation and power spectral tensors
which are completely described by four standard tensor forms
multiplying four scalar functions (Oughton et al. 1997).

Frequency power spectra from single-spacecraft observations
P(f) are equivalent to the “reduced” form of the full three-
dimensional wavevector power spectrum P(k) (Fredricks &
Coroniti 1976; Forman et al. 2011). In this context, k represents
the wavelength and orientation of the three-dimensional spatial
structure of the turbulence, which is advected past the spacecraft
at supersonic speeds (Taylor 1938). The resulting integral is a
type of tomographic projection called a Radon transform (Radon
1917; Debnatha & Bhatta 2007). It is impossible to separate
wavevectors that have the same projection on the direction of
flow (Fredricks & Coroniti 1976; Forman et al. 2011). This
causes a permanent ambiguity in the observed power spectrum
and means that in situ observations by single spacecraft can
only fully resolve the three-dimensional spectrum or the related
correlation tensor if they are isotropic. Multiple-spacecraft
missions, such as Cluster, have been used to overcome this
problem (e.g., Osman & Horbury 2007; Narita et al. 2010;
Sahraoui et al. 2010), but they do not spend much time in
the solar wind and therefore are difficult to use for turbulence
studies, which require ensemble averages over large data sets,
and the resolution of wavevectors is relatively coarse.

In Section 2, we use the Ulysses data to make the first
measurements of all nine elements of the reduced magnetic

power spectral tensor P;;( f, I;) as a function of the direction b
of the local mean magnetic field in the solar wind. These are
measured in the Sun-spacecraft-aligned RTN coordinates (see
Burlaga 1984; Frinz & Harper 2002) and show a remarkable
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Table 1
Summary of Ulysses Data
Distance Latitude |B| V| ] Va Bi
(AU) ©) (nT) (kms~1) (cm™3) (kms~1)
2-2.28 79-74.8 1.5+0.3 780 4+ 20 0.5£0.1 45+ 8 1.6 £0.6

Note. Spacecraft location and average solar wind conditions for the 50 days of Ulysses data used in the analysis.

amount of variation with b. InA Section 3, we derive the
dependence of the reduced P;;(f, b) on P;;(k) using the general
tensor formalism of Oughton et al. (1997) and show how the
resulting four scalar functions appear in the measured power
spectral tensor in RTN coordinates. This may seem inelegant
but the observations we wish to understand are made in this
coordinate system. In Sections 4 and 5, we use the observed

variation of power with b in RTN coordinates to show that
on average the turbulent fluctuations are axisymmetric and
elliptically polarized. The polarization ellipse of the ensemble
average of turbulent fluctuations is aligned along unit vector
axes that we define, which are themselves aligned with respect
to B.

Finally we convert the observed power spectral tensor from
RTN into magnetic-field-aligned coordinates and compare it to
the derived reduced power spectral tensor in this coordinate
system. Combining the results in both coordinate systems
allows us to demonstrate that the locally averaged magnetic
field is an accurate representation of the axis of symmetry of
the turbulence and therefore to plot the true reduced power
anisotropy of the magnetic field. We show that the poloidal
scalar function, which includes all pseudo-Alfvénic fluctuations,
can be separated from the toroidal function, which includes all
shear Alfvénic fluctuations, in field-aligned coordinates and that
they have different magnitudes and power anisotropy. We also
show that the magnetic helicity is predominantly in fluctuations
with wavevectors near to the plane perpendicular to B. These
properties represent important tests that any turbulence theory
must satisfy and the results presented here are important for all
kinds of astrophysical turbulence: the solar wind, solar dynamo,
and interstellar, galactic, and intergalactic magnetic fields.

2. MEASURING THE REDUCED POWER TENSOR

We use one-second resolution magnetic field data from the
Ulysses spacecraft from days 200 to 249 (inclusive) of 1995
when the spacecraft was in a continuous polar fast stream
characteristic of high latitudes at solar minimum. The location of
the spacecraft and average solar wind conditions for this period
are summarized in Table 1.

We measure all components of the power spectral tensor of
magnetic fluctuations using a complex Morlet wavelet decom-
position of the time series reported in RTN coordinates (Horbury
et al. 2008; Podesta 2009; Wicks et al. 2010). Wavelet coeffi-
cients w; are calculated using the inverse Fourier transform of
the Fourier representation of the Morlet wavelet (Torrence &
Compo 1998; Podesta 2009) with the Fourier transform of the

magnetic field éi (w):
27 172 poo
wils(f). 1) = (—s> | Bwrne
ot oo
x H(C{)) e—(sw—w0)2/2 e2nitw da),

ey

with 8¢ being the time cadence of the data (1 s), s is the wavelet
(time) scale which is varied to select different frequencies f,

related by § =w+/2+w}/4nf, wy = 6, H(w) is the Heaviside
step function, and i;j run over R, T,N. The measured power
spectral tensor as a function of frequency is then

Pii(f. 1) = wi(f, Dwj(f, D). 2

Note that the wavelet amplitudes w; contain phase information
and are complex, making P; a Hermitian tensor. Each power
measurement P;;( f, ) can be associated with the direction of the
mean magnetic field B(¢) calculated using the same averaging
envelope at time ¢. The field direction is defined by the angles
0p and ¢y as shown in Figure 4:

B = |B|cos Oz R+|B|sin0y cos g5 T+|B|sinOg sings N (3)

and we define:
B

|B|

Although RTN coordinates are more awkward theoretically
than field-aligned coordinates for understanding magnetic tur-
bulence, we use RTN to simplify data handling. The power
contributions are accumulated and averaged in 404 separate di-
rection bins: 18 equally wide 10° bins in 8, and variable width
bins in ¢ 5 to keep the solid angle area of each bin approximately
constant. We keep bins equally spaced in 65 since we are in-
terested in the behavior in this direction for physical reasons,
thus where g is near 0° or 180° there are fewer bins in ¢pg. The
mean and standard error of each of the mean power contribu-
tions P;; = w;w? in each bin are then associated with the 0
and ¢ at the center of the bin. Thus P;;(f, t) is converted into
P;(f, I;) by this averaging process.

Using this method, a map can be made of the power distributed
over 0p and ¢p for each of the nine tensor elements of
Equation (2) at each wavelet scale. We have measured the
anisotropy of the power spectral tensor at a range of frequencies
(0.25 x 1072 Hz < f < 0.25 Hz), which allows us to verify
the results presented here as typical over the inertial range of
turbulence. In this paper, we concentrate on a single scale since
we are interested in power anisotropy; we will return to the
scaling with f of the power spectral tensor in a future publication.
Examples of the distribution of power in real and imaginary
parts for each tensor element are shown in Figures 1 and 2, at
a frequency of f = 0.098 Hz, which is at the high frequency
end of the anisotropic inertial range, maximizing the observable
power anisotropy, as shown in Wicks et al. (2010).

By definition the diagonal terms of the power tensor are real,
since they are the wavelet coefficient multiplied by its complex
conjugate. The off-diagonal terms are complex and have both
real and imaginary parts. The data are presented in Figures 1
and 2 as a two-dimensional map of the surface of a sphere, the
horizontal direction in each of the nine plots is the ¢p direction
and has variable bin-width, and the vertical direction is the 6y
direction and has fixed bin width of 10°. The color scale runs
from dark blue for the largest negative values of power, through
white at P = 0 and then to dark red for the largest positive values

b= “4)
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Figure 1. Real component of the power spectral tensor from Ulysses magnetic field data at f = 0.098 Hz. Black areas represent bins that have fewer than 10 points
in them. Red represents positive and blue negative contributions to the power, with white being zero. The color scale has been scaled to the standard deviation of all
points contributing to the power in each map individually, the value of which is shown above each panel.

(A color version of this figure is available in the online journal.)
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Figure 2. Imaginary component of the power spectral tensor from Ulysses magnetic field data at f = 0.098 Hz. Black areas represent bins that have fewer than
10 points in them. Red represents positive and blue negative contributions to the power, with white being zero. The color scale has been scaled to the standard
deviation of all points contributing to the power in each map individually, the value of which is shown above each panel. Note that the diagonal components are zero

by construction.
(A color version of this figure is available in the online journal.)

of power. The color scale is shown at the side of the plots and
is calculated individually for each map in terms of the standard
deviation o of all data contributing to that map (this includes
the systematic and sinusoidal variations and so is considerably
larger than the standard deviation in any individual bin, as shown
in Figure 3). The color can be scaled onto the absolute value of
the power by the value of o in nT? Hz~! shown above each map.

The off-diagonal maps appear noisier than those on the diagonal
because their generally smaller magnitude makes the errors
proportionally larger and they have both positive and negative
regions with zero in between making any uncertainty in these
regions appear more clearly in the color map. There are also
fewer points per bin on average for 65 > 90° making the error
and therefore the scatter proportionally larger in this region.



THE ASTROPHYSICAL JOURNAL, 746:103 (13pp), 2012 February 10

WICKS ET AL.

RR T NN
20 40 40
N5 N30 + # N30 &
= . % # ﬂj -~ ﬁ p %' o \
i 10# H%ﬁ*é%;?g % ol # §§ ; ‘H = 20# # %
> 10] %o ¢ . ¢ . S 4
2 SRR - .
o o o
[))=acacace-xoKSESCICICECR-mSKoCIc: (0}eac=c=c=—=-s===—=c=c=—====s oo () R T e TR T
0O 9 180 270 360 O 90 180 270 360 O 90 180 270 360
q)B q>B q>B
RT RN N
15
5 % 5
7 WA E SANE &
I 25 T 25 T ®|
@ : ] %
N'E % \ B N|E N @\E + % @%u:m% N|E |E & -q] Eﬁ
T ORegl &7 P\ 1% ogii Tl o b e
\E i =~ .E]@ :E’ % E,!l l \‘E/ »
S o5 %o, % S o5 e\ @ % g 2 Ple @ 5
& ﬁ §.§+ g ‘}}gﬂ & . {-{}é ‘
-5 % -5 %
0 %0 180 270 30 0 9 180 270 360 % w0 1 50 270 360
B B B
® Re[P] © Im[P] Fit Re[P] - - -Fit Im[P]

Figure 3. ¢ dependence of power at 65 = 65° and f = 0.098 Hz. The blue and red points are the real and imaginary data, respectively, and the green and black lines
are their sinusoidal fits as described in Equations (5)—(10) with the values quoted in Table 2.

(A color version of this figure is available in the online journal.)

We will return to the absolute values of the data later, but for
now we note that the maps have different, but clear, harmonic
variations with ¢5. Within experimental error it appears that
the RT and RN components are first harmonics of ¢p, their
amplitudes are equal and they are 90° out of phase. The 77, NN,
and the real part of the TN components are second harmonics
of ¢ with similar amplitudes and multiples of 45° out of phase
with each other. In Figure 2, the imaginary part of the TN
element varies in only the 65 direction. Another striking feature
of Figure 2 is that the standard deviation of each map, used to
calibrate the color scale, is almost equal across all maps. The
tensor is Hermitian by construction which provides the mirror
symmetry about the diagonal. In fact, the dramatic dependence
on ¢ is an artifact of using RTN coordinates, although it can
be modified by the presence of non-axisymmetric turbulence.
In Section 3, we show how this arises, how it can be removed,
and how it can be used to extract extra information about the
structure of the turbulence.

We can quantify the ¢ dependence of the tensor components
by fitting functions to the observed variation of power with
¢p. We fit sinusoidal functions of ¢p to each tensor element
containing a contribution from the R direction and sinusoidal
functions of 2¢ 5 to the others, at each fand 65, with a nonlinear
least-squares fitting method to determine the fitting parameters
at each f and 6p as specified in Equations (5)—(10). The
resemblance of these sinusoidal functions to the data provides
motivation for employing them in fits. Their suitability is deeper
than this, however, as we prove in Sections 3 and 4. The fits all

consist of areal constant average A independent of ¢ and a real
sinusoidal amplitude B as well as an imaginary constant average
C and an imaginary sinusoidal amplitude D; each sinusoidal
function also has a phase offset, E for the real part and F for the
imaginary. This process is repeated for all values of g at which
there are five or more points to fit to. As g coverage is limited
by the reduction in solid angle close to 8 = 0, this means that
the angle range covered is 15° < 6 < 175°, at each frequency,
so there are never more fitting parameters (3) than data points
(a minimum of five), although the fits with 65 closest to zero are
the least accurate. Thus, each of the six independent elements of
the tensor at each f and most 65 can be described by these scalar
parameters with separate averages, amplitudes, and phase shifts
for the real and imaginary parts:

Prr(¢pp) = Agr + Brg sin(¢pp + Egg) )
Prr(¢p) = Arr + Brr cos(2epp + Err) (6)
Pyn(¢pp) = Any + By cos2ép + Eny) (N
Prr(¢pp) = Agr + Brr cos(¢p + Egr)

+i(Cgr + Dgr sin(¢p + Frr)) (8)
Pry(¢p) = Arn + Bry sin(¢p + Egy)

+i(Crn + Dgy cos(¢pp + Fry)) 9
Prn(¢p) = Ay + Bry sin(2¢p + E7y)

+ i(CTN + DTN sin(2¢B + FTN))- (10)
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Table 2

Fitted Parameters
Tensor Element A B C D
RR 13.0£0.5 —0.1£0.8
TT 158 £0.8 —11£1
NN 16.5 £0.7 11.6 £0.9
RT 0.1+04 —24+0.5 0.03+02 —-1.0+03
RN 03+04 —27+06 —0.05+£0.2 1.1+£03
TN 0.094+04 —11.0+£0.6 22+02 —-0.1+£0.3

Notes. Values for power in units of 1073 nT2 Hz~! of the fitted parameters in
Equations (5)—(10) at0p = 65° and f = 0.098 Hz, the same data as in Figure 3.
The fitted angular phase is not shown since all are within errors of 0. Note that
within errors there are only four independent real values and two independent
imaginary values.

Figure 3 shows a typical example of how the real and
imaginary parts of each element of the power spectral tensor
at a certain 0p, vary with ¢5. We can see that Re[Pgr] and
Re[ Pgy] elements behave to a very close approximation like
cos ¢p and sin ¢ g, respectively, implying that £ ~ 0. Similarly
the real part of Py, and Pyy and Py behave to a very close
approximation like sin(2¢g) and cos(2¢p), respectively, again
implying that E ~ 0. We quantify this further by looking at the
measured phase shifts £ from the fitting of the real sinusoidal
functions. The average shift of the phase in ¢ over all scales
and angles is only £ = 026 £+ 1°1 and always in the range
£10°. This is smaller than the angular resolution of the method
we use (10°) and so within the accuracy of the method we cannot
distinguish E from 0.

Looking at Figure 3 again, we see that the imaginary part of
the power varies to a very good approximation like =+ sin¢p
in the Pgr and Prg elements and +cos¢p in Im[Pgy] and
Im[Pyg]. This implies that ' ~ 0 and again we quantify this by
looking at the phase shifts F of the imaginary parts of Pgy and
Pry, which are too small to measure using our technique, being
F = (0°2 £ 120 and always in the range +10°. This average
ignores the Im[Ppy] component since there is no sinusoidal
variation and so these values of F' are poorly constrained.

Table 2 shows the fitted parameters for the data in Figure 3 at
f = 0.098 Hz and 6 = 65°. There are only four measurably
distinct non-zero real parameters (Agr, Arr = Ann, Brr =
—Byy = Bpy, and Brr = Bgy) and two non-zero imaginary
parameters (Dgr = —Dgy and Crpy). This is true at all f and
fp in the range we studied. This means that there are at most
six functions of 65 at each f which together completely describe
the properties of the power spectral tensor of the turbulence.
We show in the next section that this organization follows from
geometry, the solenoidal field, and the conversion from power
spectra in wavevector k to power spectra of the time series as
seen at the spacecraft by deriving six ¢ z-independent functions
corresponding to the six ¢g-independent values observed in the
data.

3. SYSTEMATIC EFFECTS OF GEOMETRY

There are several potential problems in comparing observa-
tions with theory in solar wind turbulence studies. One is that
all in situ spacecraft observations of the solar wind are of a
“reduced” spectrum, but theory usually addresses the spectrum
in k space. Power spectra calculated from time series of single-
point observations made in a fast flowing medium carrying a
relatively slowly evolving turbulence are, by Taylor’s hypothe-
sis (Taylor 1938), an integral of the P;;(k) in wavevector space

WICKS ET AL.

Figure 4. Geometry used in this paper, V is the solar wind velocity, considered
to be in the radial (R) direction, b is the unit vector of the magnetic field, k is
the unit wavevector of a fluctuation. R, T, and N are heliocentric coordinates, i
and p are toroidal and poloidal directions, 65 and ¢ are angular coordinates

of 5 and 6 and ¢ are the angles between J and the (v, ir) plane.

over the plane perpendicular to the flow defined by k- V = 27 f
(Fredricks & Coroniti 1976):

Pii(f, V)= ///Pij(k)S(an —k-V)d'k. arn

When P;;(k) is anisotropic, P;;j(f, V) will depend on the
direction of V relative to any symmetry in P;;(k). If symmetry in
P;;(k) is organized by the direction of the local mean magnetic

field, 13, P;;(f, V) can be better written as P;;(f, I;). In fact, the

total (trace) power P(f, b) = S Py, I;)i:RTN is known to
be anisotropic in both power and spectral index as a function
of 6 (Horbury et al. 2008; Podesta 2009; Luo & Wu 2010;
Wicks et al. 2010; Forman et al. 2011). In order to derive the
expected geometrical effect of the reduction on the spectrum we
must account for three vectors (k, B, V) and their corresponding

coordinate systems aligned with band V. Figure 4 shows these

vectors, V is the solar wind velocity, b is the unit vector of the
magnetic field, both of which are measured in RTN coordinates
in this analysis, and k is the unit wavevector of a turbulent
fluctuation.

The magnetic field is solenoidal, V - B = 0, ensuring that
all fluctuations are confined to the plane perpendicular to k,
which is tangent to the surface of the sphere at position k in
Figure 4. To describe the fluctuations of § B in this plane we

define the toroidal direction Z, perpendicular to b0t13 k and 5,
and the poloidal direction p, perpendicular to k and ¢ thus

. bxk

= —— (12)
|b x k|

p=kx4i. (13)

Considering the sphere in polar coordinates with b as the polar
axis and k as the radius vector: p is in the direction of decreasing
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6, and £ is in the direction of increasing ¢y; (i(, t p) is a right-
handed coordinate system.

The power spectral tensor of toroidal fluctuations alone is
a scalar function Tor(k) times the dyadic [ : #] and for
poloidal fluctuations alone is [ p : p]Pol(k). If both polarizations
exist, any correlation between them will result in the additional
power spectral elements [£ : p + p : £]C(k), which is real, and
ilt : p— p : t1kH(k), which is imaginary and anti-symmetric.
The four scalar functions are all real and the spectral tensor struc-
ture corresponds in detail to the complete description of trans-
verse light waves with the Stokes parameters (Chandrasekhar
1960) (I = Tor + Pol, Q = Tor — Pol, U = 2C, V = 2kH) and
to the description of solenoidal MHD fluctuations by Oughton
et al. (1997) where our Tor(k), Pol(k), C(k), and H(k) corre-
spond to E, E — (b x k)*F, k(b x k)>C, and H in their paper.
The toroidal fluctuations are perpendicular to b, and so they
are sometimes called “Alfvénic,” since this is the polarization
of small-amplitude shear Alfvén waves. Similarly, the Pol(k)
fluctuations are sometimes called “pseudo-Alfvénic” because
their polarization is the same as that of small-amplitude pseudo-
Alfvén waves (cf. Cho et al. 2002). Following these theoretical

structures we define the anisotropic power tensor as a function
of k:

P(k) = Tor(k) [t : ] + Pol(k) [p : p]+Ck) [t : p+ p : 1]
+ikH(k) [t : p—p:t]. (14)

This formalism is completely general and Equation (14) de-
scribes any turbulent field satisfying the solenoidal condition
regardless of any symmetry.

In order to use Equations (11)—(14) with the measured tensor
in RTN coordinates we must express £ and p in RTN coordinates,
but keep k in field-aligned coordinates. For this we define a new

coordinate system aligned with b and containing the radial flow
direction of the solar wind:

e, =b (15)

ev:erV:ez'xR (16)
’ le, x V| sin Op

e, =e, xe; (17)
k=kee, +kye, +ke.. (18)

Defining e, this way means V is in the x—z plane and thus
V -k = |V|(sinfgk, + cosOgk;). We will exploit the fact that
ky is therefore not in the delta function of Equation (11) to help us
understand the symmetries of the scalar functions later. It should
also be noted that ¢ is not in the delta function either, thus ¢g
can potentially be moved outside the integral in Equation (11).
We find £ and p in RTN coordinates for any k using
Equations (15)—(18) in Equations (12) and (13) with k; =
Vi + k3 and k = VkI + k] + k2
— % sin Op R
P= (l’:—L sin¢3+:—100503 cos¢3) T |, (19)

Lk b inon) A
( = cos ¢p + 7 cos Opsingp | N
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kii _ kxkz s B
(k cos Op i sm@B) R

p= (% sin O cos ¢ — k% (ky singpp — ky cos O cosd)B)) T

(% sin @ sin ¢y + kI;cT (ky cos ¢pp + k. cos O sin ¢B)) N

(20)

Note that ¢z does not appear in the R component of either ¢ or
D, and only as sin¢p or cos ¢p in the other two components.
Since ¢p is not involved in the integration in Equation (11) this

dependence appears directly in the maps of P;;(f, I;) as zero-,
first-, or second-order harmonics of ¢ and is easily seen in the

maps of P;;(f, b) in Figures 1 and 2. The amplitude of each of
these harmonics in ¢ is an integral involving 65 over the power
distribution P (k) and is a function of 65. We will now determine
what these amplitude functions are by gathering terms with no
dependence, first harmonic, and second harmonic dependence

on ¢p.
4. HARMONICS OF ¢g

There are only six independent linear combinations of the el-

ements of PRTN(f, b) which have no, first, or second harmonic
¢p dependence. This is exactly the same number as the inde-
pendent power amplitudes of the fitted sinusoidal functions of
¢p observed in Table 2. These can be expressed in terms of
the four scalar functions by putting Equation (14) through the
reduction integral (Equation (11)) with the { and p vectors in
RTN coordinates, as in Equations (19) and (20). The results are
projections of the four scalar functions from k-space onto the
RTN coordinate system which we now derive.

The Trace and Pgy are independent of ¢ and Equation (11)
gives the two projection integrals:

Pre(f, 0p) = / / / (txTor(k) + pxPol(k) + 2tg prC(K))
x8Qnf —k-V)dk, 21)

Trace( f, ) = Z Pi(f, b)

i=RTN
= / / /(Tor(k)+Pol(k))8(2n f—k-V)dk.
(22)

We then collect the real components which are first harmonics
of ¢p, if we combine them we find

I €97 = Re(Pgr(f, I}))+iRe(PRN(f, b))
= ¢'0r f//EtRZ,Tor(k) + prZpPol(k)

+(trZp + prZ)CE)SQ2rf — k- V) dk,
(23)

where we have expressed the ¢ dependence of ¢ and p
compactly in the following way:

: o 1
Z,(0p, k)et = tp + ity = €' (kycosbp —iky)  (24)
1

Z,05, k)" = pr+ipy

]
= ¢" — (k] sinfp + k.k, cos O + ik,k).
kk |

(25)
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Note that Z;, Z, are complex functions of 6p and k, so I; is
complex and the absolute phase of Pgy and Pgy are important
clues to finding Tor(k), Pol(k), and C.

Similarly collecting the real components, which are second
harmonic in ¢ g, we find

L e = Prr(f,b) — Puv(f. b) + i(Pry(f. b) + Pyr(f. b))
_ ot / / / (22Tor(k) + Z2Pol(k) + 22, Z,C(k))
x8Qnf —k-V)d’k, (26)

this integral is also complex and so the absolute phase is also
important.

From the imaginary part of PRTV( £, b), we find there are only
two equations with simple dependence on ¢, both projections
of the scalar function H(k). The tensor form multiplying H(k)
in Equation (14) is

iii’j — Pitj = €ijmE X Pl = Gijmifm 27

so that
Im[P;(f, I;)] = €jjm // k,Hk)SQrf —k - V)d3k. (28)

Combining the two off-diagonal terms with first harmonic
dependence on ¢p

Iy €%* = Im[ Prr(f, l;)] + ilm[ Pry(f, i’)]
_ oitn / / (trZy — pRZIKHEWQrf —k - V)dk,
(29)

this integral is potentially useful as it can give us information
about the symmetries of H(k) through the different projections
of £ and p it contains.

Finally, we find that one imaginary term has no dependence
on ¢p

Im[Ppy( £, B)] = / / /(k - RHK)SQrf — k- V)dk, (30)

and by noticing that k - V = |V|(k - R) we easily recover the
well known and frequently used result of Matthaeus et al. (1982)
that Im[ Pry] is the reduced magnetic helicity:

H, A 2 f 3
-5 = Im[ Py (f, b)] = A ///H(k)8(27tf —k-V)d’k.
3D

We have not yet made any assumptions about the symmetry
or behavior of the four scalar functions and so these six relations
are generally true. We now look at the Ulysses data in more detail
to see what restrictions the observed tensor elements place on
the four scalar functions.

5. OBSERVATIONAL RESTRICTIONS ON THE
SCALAR FIELDS

We can now return to the observations in Figures 1-3 and
Table 2 and compare them to the geometrical effects derived
above. We can rearrange Equations (23) and (26) to illustrate
the dependence of the individual tensor elements on ¢ and the
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integrals /| and I, which are functions of 65 and f. We drop the
dependence on f and 6 temporarily for simplicity:

Re[ Prr] = Re[l1] cos(¢pp) — Im[ 1] sin(¢p) (32)
Re[ Prv] = Re[l] sin(¢p) + Im[1;] cos(¢p) (33)

1
Re[Pyr] = 3 (Re[L>]sin(2¢p) + Im[ L] cos(2gp))  (34)

Re[Prr — Pynv] = Re[lh] cosRepp) — Im[ 1] sin(2¢p).  (35)

A similar rearrangement of the imaginary part using
Equation (29) yields

Im[ Pgr] = Re[l3] cos(¢pp) — Im[13] sin(¢p) (36)

Im[ Pry] = Re[I3] sin(¢p) + Im[ /3] cos(¢p). (37)

A surprising property of the data described earlier is
that the angular phase offsets £ and F are approximately
zero for all of the measured quantities. By comparing
Equations (5)-(10) with E set to O with Equations (32)
and (33) we can see that in the solar wind this implies
that Im[/;] ~ O and in addition using Equations (34)
and (35), Im[l;] ~ 0. F ~ 0 and Equations (36) and (37)
similarly imply that Re[/3] ~ 0. The implications of this are
discussed later in this section.

Equations (38)—(43) show the resulting 0 and ¢ depen-
dencies of each element of the power tensor measured in RTN
coordinates on the six ¢-independent integrals defined in the
previous section. These functions fit the observations very well
as can be seen by comparing the equations to Figures 1, 2,
and 3. Just as in Table 2 there are only four real and two imagi-
nary amplitudes. These terms are a result of the geometry shown
in Figure 4 and the reduced nature of the measurements as de-
scribed by Equation (11) as well as the turbulent power spec-
trum:

Prr = Prr(0B) (38)

1
Prr = E(Trace(HB) — Prr(0p) + I(0p) cos(2¢p)) (39)

1
Pyy = E(Trace(eg) — Prr(0p) — I(0p) cos(2¢p)) (40)

Prr = 11(0p) cos(¢pp) — i 13(6p) sin(dp) (41)

Pry = 11(0p) sin(¢p) + i 13(0p) cos(¢p) (42)
1

Pry = 5(12(93)Sin(2¢3) +iH,,(0B)). (43)

We can now go back to the results and look at the amplitude
of the fitting parameters A, B, C, and D (Equations (5)—(10) and
Table 2), as a function of g, shown in Figure 5. The error bars are
the standard error from the linear least-squares fitting. Figure 5
shows a remarkable amount of variety in the power anisotropy
of the different tensor elements with 6z, including that all of
the diagonal terms have less power in the field parallel direction
(6 — 0°) than in the perpendicular direction, recovering the
results of Bieber et al. (1996) and Horbury et al. (2008) that
the total power is anisotropic. We can see again that there are
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Figure 5. Amplitude of the fitting parameters A, B, C, and D for the six independent power spectral tensor elements as a function of 65, at f = 0.098 Hz.

(A color version of this figure is available in the online journal.)

only four measurably distinct non-zero real parameters Agg,
A]T = ANN, BTT = _BNN = BTNs and BRT = BRN and two
non-zero imaginary parameters Dgr = — Dgy and Cyy and that
their dependence on 65 is similar. Rather than interpret this in
terms of PRTN(f, p) the direct link with the projections of the
four scalar functions is more obvious if we consider the six ¢p-
independent functions in Equations (21), (22), (23), (26), (29),
and (31).

We can extract the six ¢pg-independent functions from the
fits to the data in Section 2 and can even measure /;_3 in two
different ways to cross check the results:

Prr(05) = Arr(0p) (44)
Trace(0p) = Arr(0p) + Arr(08) + Ann(0B) (45)
H,,(0p) = 2C1n(0B) (46)
11(08) = Brr(0p) = Brn(03) (47)
1,(08) = Brr(0p) — Bu(0p) = 2Bn(0p)  (48)
I3(0p) = — Drr(0p) = Drn(03). (49)

Figure 6 shows these six ¢p-independent functions directly
measured from the fitting of the power spectral tensor. The
two different ways of measuring /;_3 all agree with each other
remarkably well, which is not required in general, but shows that
the turbulence is solenoidal and that the Oughton et al. (1997)
theory applies and our subsequent derivations are correct. It is

also interesting to note that although /; and I5 appear sinusoidal
in 265 upon closer inspection the peaks of the power are shifted
from 45°.

By considering the properties of Trace, Pgg, I1, and I, we
can deduce some important properties of the underlying 7or(k),
Pol(k), and C(k) functions. As discussed above we observe
that within errors /; has no imaginary part. We also know that
Tor(k) and Pol(k) are not both identically zero since both the
Trace and Pgg are not zero. If we write out the complex terms
in Equation (23) for /; we find that the imaginary part contains
terms in Tor(k), Pol(k), and C(k) all with pre-factors that are odd
functions of k. One possible way for Im[/;] = 0 is therefore
if Tor(k) and Pol(k) are certainly even functions of k,, that
is mirror-symmetric about the (V, B) plane, since they then
integrate to zero. Tor(k) and Pol(k) are shown to be even in
Oughton et al. (1997) and so our results are in accord with theirs.

Axisymmetry about b is a stronger conclusion not proven, but
consistent with mirror-symmetry in k,. Similarly C(k) must be
even in k, or alternatively it can be zero. However, as shown in
Oughton et al. (1997), C(k) is necessarily odd, so that we must
conclude C(k) = 0.

Applying the same analysis to the imaginary part of I, we
see that the terms multiplying Zor(k) and Pol(k) are also odd
functions of k, and so are integrated to zero by Equation (11),
however, the terms that multiply C(k) are even in k, and so
mirror-symmetry cannot be used to explain the lack of contribu-
tion to the power. Thus since Im[/{(f, 05)] = Im[L>(f, 05)] =0
we again conclude that C(k) = 0.

Continuing to I3 we find that the real part, which involves
only the magnetic helicity H(k), has pre-factors that are odd
functions of k,, and the imaginary part has even pre-factors in
ky. We observe that Re[/3] = 0 since F' ~ 0, so again following
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Figure 6. Power distributions of the six ¢p-independent integrals as a function of 6p at f = 0.098 Hz. Error bars are calculated as the error on the fits in the ¢p

direction as in Figure 5.

(A color version of this figure is available in the online journal.)

the same line of reasoning we find that H(k) is also even in k,
and could be axisymmetric about b.

This is as far as we can conveniently proceed with the analysis
in RTN coordinates. We have used the geometrically induced
¢p dependence to draw conclusions about the symmetries of
Tor(k), Pol(k), and H(k) and to show that C(k) = 0. The RTN
coordinate system, however, also imposes strong geometrical
fp dependencies, as can be seen in Figures 5 and 6. The large
imposed 6 dependence of Pgg and I;_3 (Equations (21), (23),
(26), and (29)) make it hard to extract further information about
Tor(k), Pol(k), and H(k) from them. Therefore, at this point
we convert the observed power spectral tensor in RTN to the
l;-aligned XYZ coordinates.

In the field-aligned XYZ coordinates defined in
Equations (15)—(17), the # and p vectors are
N ky ky
t= ——e,+-—e, (50)
ki ki -
R kyk kyk k
p=— xhz yiz Lez’ (51)

e Tk T

importantly they do not involve 65 or ¢ at all. The transfor-
mation of a wavelet coefficient in RTN to XYZ coordinates is

w; = Z(ei-nw,- =ZMijwj, (52)
J J

where j = R, T, N,andi = x, y, z and

sinfg —cosfpgcosg¢p —cosbpsingg
M = 0 sin ¢p —Cos ¢p . (583
cos Op sinfg cos ¢p sin O sin ¢p

We use this matrix to transform the observed reduced power
spectral tensor from the RTN coordinates of the data to the XYZ

coordinates aligned with b below, using

PY(f, 05) = MPRTN (£, b)M”. (54)

In field-aligned coordinates, the transformed power spectral ten-
sor should have no ¢ dependence and simpler 65 dependence
than shown in Figures 1-3 since the # and p vectors in XYZ are
no longer dependent on these angles.

The expressions for P*¥*(k) using the definitions of £ and p
in Equations (50) and (51) are

P, (k) kiT (k) L Pol(k) 2k"k"kZC(k) (35)
XX = 75 + ti—F5—
2T et Kk
k> Sk kykyk.

Py, (k) = ETor(k)+kik2Pol(k)—2 P Ck) (56)

2
P..(k) = %Pol(k) (57)
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Figure 7. Real component of the power spectral tensor from Ulysses magnetic field data at f = 0.098 Hz in field-aligned-coordinates. Black areas represent bins that
have fewer than 10 points in them. Red represents positive and blue negative contributions to the power, with white being zero. The color scale has been scaled to the
standard deviation of power in each map individually, the value of which is shown above each panel. Compared to Figure 1 in RTN coordinates much of the variation

has been removed.
(A color version of this figure is available in the online journal.)

kok Kk,
Py (k) = kiy Tor(k) + k{k < Pol(k)
(kS — kD)K. .
g CUo +ikHk) (58)
1
kok k .
P, (k) = —k—zzPol(k) — fC(k) — ik, H(k)  (59)
kyk; ks ,
Pyz(k) = == 5> Pol(k) + - CU) + ik H(k). - (60)

Although there is explicit dependence on components of k in
every term, there are no 6p- or ¢p-dependent geometrical pre-
factors. C(k) and terms odd in k, are shown for completeness,
although we know from the RTN analysis that they do not
contribute to P*Y*(f, 0p) in the solar wind. The reduction to
P(f, 0p) using Equation (11) introduces dependence on 6p if
there is any anisotropy in the scalar functions.

Figure 7 shows the same results as Figure 1, the real part of
the power spectral tensor, converted to XYZ coordinates. There
is no ¢ dependence in any of the elements and no sinusoidal-
like dependence on 6. This result, combined with the strong
¢» and 5 dependence of PR™N implies that we have correctly

identified the direction of b using the local wavelet averaging

method. If we had identified b incorrectly with a systematic
error then there would be a sinusoidal dependence on 6 in P**
and if there was a random error smoothing out the variations we
could not have measured the precisely predicted ¢ dependence
of PRIN,

Figure 8 shows the 6 dependence of each independent
element in both the real and imaginary parts; the error bars
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are calculated as the error on the mean of all data contributing
to each bin in 6. This figure allows us to make further
deductions about the scalar functions using a similar analysis
procedure to that of the RTN tensor previously. First, the real
parts of the off-diagonal elements are all observed to be within
errors of zero. Looking at Equations (58)—-(60) we see that
Tor(k) only appears combined with an odd function of k, and
so we have rediscovered its mirror-symmetry, Pol(k) is also
combined with an odd function of k, in two of the elements
but Py, (k) o ki k,Pol(k) so Pol(k) must be predominantly two-
dimensional, that is mostly confined to |k,| ~ 0. Finally C(k) is
multiplied by k, and k? in Py, (k) and P,,(k), respectively, and
so must be zero, as previously discovered.

The imaginary parts Im[P,,] and Im[P,.] are within er-
rors of zero. Im[P,.] is combined with an odd function of
ky so again the data imply that H(k) is mirror-symmetric in
ky. Im[Py,] = O implies a further symmetry of H(k) in k,
similar to Pol(k), this implies that in the inertial range H(k)
is mostly associated with k’s in the plane perpendicular to
B. At the highest frequencies studied here Im[P,,] becomes
anisotropic (a very small signature may be visible in Figure 8
although it is indistinguishable from O when errors are con-
sidered and is zero in the inertial range in general), however,
this is probably associated with plasma instabilities near the
ion gyroscale (He et al. 2011; Podesta & Gary 2011). Only
Im[ Py, ] o kH(k)has finite value in general, although itis much
smaller than the Trace and has much weaker 65 dependence
than Im[ Pry].

Moving on to the diagonal elements, we see that as in RTN
coordinates the diagonal elements are anisotropic with more
power at 6 ~ 90° than at 65 ~ 0°. They are ordered in power
with Py, > Py, > P, seeming to show a three-dimensional
anisotropy with the most power perpendicular to the (V, B)



THE ASTROPHYSICAL JOURNAL, 746:103 (13pp), 2012 February 10

WICKS ET AL.

P P P
XX yy zz
0.03 0.03 0.03 ¢—Real
—=—Imaginary
N N N
T 0.02 T 0.02 \ T 0.02
N\ (\l\ (\l\
= = =
c c c
0.01 0.01 0.01
0 0 0
0 45 90 135 180 0 45 90 135 180 0 45 9 135 180
eB eB eB
P P P
Xy Xz yz
0.01 0.01 0.01
0.005
N
I
o 0
|_
c
-0.005
-0.01 -0.01 -0.01
0 45 90 135 180 0 45 90 135 180 0 45 90 135 180
eB eB eB

Figure 8. Power anisotropy of each power spectral tensor element as a function of 6p in magnetic-field-aligned coordinates at f = 0.098 Hz. The error bars are
calculated as the error on the mean in each 6 bin, which has no dependence on ¢p.

(A color version of this figure is available in the online journal.)

plane, then intermediate power perpendicular to B but in the
(V, B)plane, and finally the least power parallel to B, exactly as
first shown by Belcher & Davis (1971) and in agreement with the
well-established results that the solar wind is anisotropic with
0 < P;; < Py, + Py, (e.g., Matthaeus et al. 1990; Dasso et al.
2005; Matthaeus et al. 2005; Osman & Horbury 2007). Looking
at Equations (55)—(57), we see that this ordering implies that
0 < (k% /k*)Pol(k) < Tor(k) + (kﬁ /k?)Pol(k). One way this can
be achieved is if Pol(k) < Tor(k), although this is not required.

In the assumption that the turbulence is two dimensional the
reduced power Py, (f, 0p) > P..(f, 0p) is due to the reduction
integral (Equation (11)) (Bieber et al. 1996; Turner et al. 2011).
We can now make a stronger statement than in the previous
paragraph, we have shown that Pol(k) is mostly due to ap-
proximately two-dimensional wavevectors and so does not con-
tribute strongly to either of these terms since they both contain
k?Pol(k), thus the observed power is from the purely Alfvénic
Tor(k) fluctuations. Pyc(f,0g) and Py, (f, 0p) are reduced in
Equation (11) as o kgTor(k) and o« k2Tor(k), respectively, and
it is interesting to note that P,,(f, 0p)/ P (f, Op) is approxi-
mately 2 at all values of 65 at this frequency. As Turner et al.
(2011) showed the reduction integral applied to a power spec-
trum of two-dimensional fluctuations results in a constant factor
proportional to the spectral index of the turbulence, so this ap-
parent anisotropy is a feature associated with sampling along a
single cut through the data and the results of Belcher & Davis
(1971), Bieber et al. (1996), and Turner et al. (2011) now have
unified explanation. We have also separated the reduced form
of the Alfvénic Tor(k) with two different projections from the
reduced pseudo-Alfvénic Pol(k) in the observations. They have
different power levels and anisotropy since P, (f, 6p) is very
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different in magnitude and shape from P,,(f, 6p), which is ap-
proximately 2 P, (f, 0p).

6. SUMMARY AND CONCLUSIONS

We have observed all nine elements of the reduced power
spectral tensor of MHD-scale fluctuations in fast solar wind
using wavelet transforms of magnetic field observations by the
Ulysses spacecraft. Each element of the tensor is resolved using
angle coordinates 65 and ¢ at a single frequency f = 0.098 Hz.
The signal is anisotropic and depends on the direction of the
local mean magnetic field. This anisotropy can be seen in
Figures 1 and 2 and it is quantified in the ¢p direction by fitting
sinusoidal functions in Figure 3 with the amplitudes given in
Table 2. These show that within errors we observe only six
¢p-independent power amplitudes in the solar wind.

We explain the generation of this anisotropy analytically by
applying a scalar field and tensor description of solenoidal tur-
bulence (Oughton et al. 1997). We choose our scalar functions
so that they represent the toroidal (Tor(k)) and poloidal (Pol(k))
fluctuations with respect to the local mean magnetic field di-
rection I;, and their in- and out-of-phase correlations (C(k) and
H(k)). We then convert this representation into the spacecraft
data coordinate system where the toroidal # and poloidal p di-
rections are expressed in terms of heliocentric RTN coordinates
(Equations (19) and (20)). Applying the reduction integral to the
four scalar fields in conjunction with the appropriate dyadics of
{ and p we derive the dependence of the reduced power tensor
Pi;(f, I;) on the four scalar fields.

While we do not know the analytical form of any of the four
scalar fields, the geometrical dependence on ¢p in the RTN
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coordinate system is independent of the reduction integral and
simple sinusoidal dependences on ¢ are found. To simplify the
equations we gathered terms with no, first harmonic, or second
harmonic dependence on ¢5. We found six combinations of
the reduced power spectral tensor that analytically have precise
sinusoidal ¢p dependence, matching up with the six observed
independent power amplitudes. These are the Trace, Pgg, and
Im[ Pry] elements of the reduced power spectral tensor, which
do not depend on ¢p, and the I, I, and I3 amplitudes of
the harmonic components in the other elements, defined in
Section 4. Observations of these from the solar wind do indeed
have no ¢p dependence confirming the derivations and their 6p
dependence is shown in Figure 6. From these results we draw
several conclusions.

1. The ¢p dependence of the data (Figure 3) follows the
form of the power spectral tensor derived for solenoidal
fluctuations transformed from field-aligned coordinates in
to RTN coordinates.

2. Im[];] = Im[/>] = O implies that the turbulent power in
Tor(k) and Pol(k) is an even function of k, and so is mirror-
symmetric about the (V, B) plane, and thus it is likely to
be axisymmetric about b.

3. The integrand of Im[/;] o k,C and the integrand of
Im[l,] « kiC, and both are observed to be zero when
integrated; thus the scalar function C(k) = 0.

The strong 65 dependence observed in all panels of Figure 6
arises from the integrals over a combination of any actual
anisotropy of the turbulence (Bieber et al. 1996; Dasso et al.
2005; Goldreich & Sridhar 1995, 1997; Matthaeus et al. 1996,
1998; Oughton et al. 1998, 2011) and geometrical effects. This
can be seen in Equations (21)—(26) and (29) as their dependence
on the scalar fields, the coordinate transformed unit vectors #
and p, and the complex functions Z; and Z, (Equations (24) and
(25)). Since we cannot make simplifying assumptions such as
symmetries in the 6y direction, and since we do not know the
analytical form of the scalar functions, further progress in the
RTN coordinate system is difficult.

We therefore transform the observed P(f, 3) into magnetic-
field-aligned coordinates XYZ. All the ¢p variation in power
disappears in agreement with the theoretical prediction
(Equations (55)—(60)). The observations have completely re-
produced the theoretical prediction for the ¢p dependence in
RTN and the independence in XYZ coordinates, of the power,

confirming that our measurement of b using the local mean
magnetic field is an axis of symmetry for the ensemble average.
This is a strong justification for using the local mean field when
studying anisotropy in turbulence since our results indicate that
this direction has a strong influence on the symmetry of the
scalar functions.

By comparing the analytically derived field-aligned power
spectral tensor elements (Equations (55)—(60)) with the data in
Figures 7 and 8 we can draw further conclusions.

1. The Alfvénic Tor(k) fluctuations can be separated from the
pseudo-Alfvénic Pol(k) fluctuations since P, (f,6p) is a
function of Pol(k) alone.

2. Pol(k) is measurable and has a different power anisotropy
with respect to 6p than 7Tor(k). Since observationally
P, < P,,, Py, it also seems likely that Pol(k) < Tor(k).

3. Pol(k) is even in k, and therefore it is likely to be

axisymmetric about b since the observed reduced real
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parts of P.,(f,0p) and Py, (f,6p) are zero and Py, (k)
P, (k) o< kyPol(k).

4. Pol(k) is mostly due to fluctuations with |k;| ~ O because
the observed reduced P..(f,0p) is zero and P, (k)
k. Pol(k).

5. C(k) = 0 is confirmed by all real off-diagonal elements
being zero since combined they have both odd (P,; and Py;)
and even (P,,) pre-factors in k, and k.

6. H(k) is even in k, and therefore likely axisymmetric about

b, since the imaginary off-diagonal element Py (f, 0p) is
zero and Py (k) o< ky.

7. H(k) comes from fluctuations that have wavevectors in
the plane perpendicular to B with power confined around
|k.| ~ O since the imaginary part of the off-diagonal
element P,, is zero and Py, (k) o< k,

A physical interpretation of these results is that turbulence
in the solar wind is made up of mostly toroidal fluctuations
that are anisotropic. The observed P,, and therefore Pol(k) are
compatible with solenoidal fluctuations as in Equation (57),
however, a spectrum of |B| fluctuations is observed in the
fast solar wind, so we cannot rule out compressible plasma
fluctuations as a source of this variation. If we consider the
results in terms of a superposition of polarized fluctuations then
Tor(k) > Pol(k) implies the fluctuations must be elliptical on
average. H(k) # 0, implied by the finite values of Pry(f, 6p)
and Py.(f, 6p), means that the Tor(k) and Pol(k) fluctuations
are partially correlated and there is a polarization ellipse.
C(k) = 0 implies that the ensemble averaged polarization
ellipse is oriented along f or p (Chandrasekhar 1960), but
since the solar wind is not entirely coherent waves this must
be a result of a superposition of polarization ellipse orientations
that average to zero. Thus the ensemble average turbulence is
similar to partially polarized, partly natural (incoherent) light
(Chandrasekhar 1960).

Recently, Turner et al. (2011) showed that the difference
in power Py,(f) > P (f) can arise from the reduction of
an axisymmetric two-dimensional turbulence. Here we have
shown why they find agreement between a superposition of
two-dimensional Alfvén waves, numerical MHD simulations,
and the solar wind: The Alfvénic Tor(k) dominates the pseudo-
Alfvénic Pol(k) contribution to both Py, and Py, when they are
reduced and so observations of these terms appear Alfvénic,
even if pseudo-Alfvénic fluctuations exist. The results we have
shown here set the work of Turner et al. (2011) in the wider
physical context of the full turbulent power spectral tensor.

The observation process demonstrated in this paper can be
repeated at many different scales rather than just one so the
scaling of the ¢ invariant functions and the field-aligned power
spectral tensor can be measured. This may help test different
theories for anisotropic turbulence if theoretical predictions for
the scaling of the scalar functions are made and we intend
to present such an analysis in the near future. Finally, this
work also demonstrates that care should be taken when using
off-diagonal terms from the power spectral tensor to observe
physical phenomena. For example, in work such as He et al.
(2011) and Podesta & Gary (2011), the magnetic helicity is
measured as Im[Pry]/Trace, however the trace has its own
power anisotropy (Horbury et al. 2008; Podesta 2009; Luo
& Wu 2010; Wicks et al. 2010), which depends mostly on
Tor(k), which we have shown is different from the anisotropy
of H(k) alone. Thus dividing by the trace introduces or removes
apparent anisotropy from these results. Furthermore from the
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work presented here we can see that P,,, P,;, and P, contain
different projections of H(k), from which we may learn more
about the properties and symmetries of the helicity induced by
solenoidal turbulence and instabilities.
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