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ABSTRACT

We present various numerical and analytical solutions for the transport of solar wind turbulence.
The model used takes into aCCO1ll1t the effects of convection, expansion, and wave propagation,
as well as the recently illuminated effects of (non-WKB) 'mixing' terms. The radial evolution of
the fluctuating kinetic energy (Ek), magnetic energy (Eb) and normalized cross helicity (0",,) is
computed, and, it is demonstrated that in appropriate limits the solutions converge to the WKB
forms. In the general case, solutions which differ substalltially from those predicted by WKB theory
are obtained. The degree of turbulent 'mixing' shows considerable dependence on the nature of the
turbulence, giving rise to varying levels, at lAU, of the ratio of "inward" and "outward" fluctuation
energies and the ratio of kinetic to magnetic energies in the fluctuations. The transport properties
described here may provide at least a partial explanation for the observed mixing of cross helicities

with increasing heliocentric distance in the solar wind.

INTRODUCTION AND THE MODEL

The problem of how to adequately describe the physics of fluctuations of the interplanetary medium
has been present since the earliest spacecraft observations showed that such fluctuations are ubiq-
uitous in the solar wind. Recently developed theories of the transport ofMHD scale turbulence in a
weakly illlomogeneous background plasma provide a basis for computing both radial and temporal
dependence of the spectrum of solar wind fluctuations /1/. Here we report on the results of a
numerical and analytic investigation of such a transport model. As a consequence of the length
constraints to wlIich this paper is subject we are of necessity concise in our discussion, and we refer
the reader to previous and forthcoming publications for further details e.g., /1,2,3,4,5/, and also
to the companion articles of Grappin, Mangeney & Vellij Marsch; Tn; Velli, Grappin & Mangeney,
and in particular, Matthaeus et.al. appearing in this volume.

The interplanetary medium is assumed to be a single component magnetofluid obeying the usual
compressible MHD fluid equations. A two length (and time) scale decomposition of these dynamical
equations is performed, in which the the fields depend upon both large (R) and small (x) scale
spatial co-ordinates. Thus each field separates into two components: (1) a spatially slowly varying
'mean' part, depending only on the large-scale, and (2) a fluctuating portion which depends on both
the large and small spatial scales. On the basis of observational evidence (e.g., 16,7/), and also for
simplicity, we assume that the small-scale fluctuations are both incompressible and homogeneous.
Hence, the only fluctuating quantities are the velocity (v) and magnetic field (b). Note that the
large scale fields are not required to be either homogeneous or incompressible.

Straightforward algebraic manipulations yield a set of coupled transport equations for such phys-
ically important correlation functions as Sijb(R,r) =< vi(R, x) bj(R,x + r) >, where the angle
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brackets denote averaging over x /1/. These equations contain terms involving the large-scale
slowly varying fields, which we take to be specified. As a result of both the symmetries and the
simple physical interpretation associated with the Elsasser variables (z:2: = v:!: b /.;;r;r-p-), it proves
convenient to use tIns 'inward' and 'outward' propagating modes representation. Finally we Fourier
transform the equations with respect to the separation parameter r (conjugate variable k).

If we denote the energy in the Elsasser fields by P:i:(R, k,.), the energy difference (residual energy
/8/ ) by F cx Ek -Eb, and the helicity of the induced electric field by J cx Im{ v*(k) .b(k)}, then
the final set of equations is:

Before moving on to the results, a few words are in order regarding the nature of the 'mixing'
operators. Physically, we can interpret 'mixing' as a scattering of the z:f: modes due to large-scale
gradients of the mean fields. The operators have the form:

:f: 8Ui 1 8Boi 1 (u )Mji(R) = -aRj:f: ~a'R;" -25ij~' 2":f: VA

which is completely determined by the the large-scale gradients of the mean fields. However, because
the operators always appear coupled to small-scale spectral tensors (e.g., QnjM;), 'mixing' also
depends on the nature and rotational symmetry properties of the small-scale turbulence. Assuming
that the small-scale turbulence is either isotropic, slab, or two-dimensional (2-D) enables the trace
of QnjMj1 to be evaluated and written as M:f:Q, where Q = Qii, and the M:f: are effective 'mixing'
operators. For values of R ;::; 2AU these effective operators are all essentially the same. Inside lAU,
however, importallt differences exist between both the plus and minus versions for the same type
of turbulence, and also between M:f: for different types of rotational symmetry.

The impact of the 'mixing' term on the radial evolution of the physical quantities is crucially
affected by the size of k. VA. This factor is the coupling strength between the F and J fields and
may be considered as a 'WKB enforcing' term. If k .V A ~ 0, then strong mixing occurs, since
the initial dominance of the 'outward' mode causes growth of F, which in turll causes growth of
the 'ulward' mode. Thus o"c = (P- -P+)f(P- + P+) decreases significantly with heliocentric
distance. However, when F and J are strongly coupled, the energy in the 'inward' fluctuations
remains a tiny fraction of that in the 'outward' and WKB-like solutions are obtained.

'Note that for fully developed turbulence there is no net spectral transport of P* in the inertial range, i.e.,
NL% = o.

{}J {}J U J
-+ U- + -J + (2k.YA)F = NL
{}t {}R R

where U is the constant, radially directed mean wind speed, Bo is the mean magnetic field-taken
equal to the standard Parker spiral, p <X 1/ R2, is the large-scale fluid density, Y A = Bo/ V;J:n:p, is
the large-scale Alfven velocity, and we refer to M~ as the 'mixing' operators. In order to facilitate
comparisons with observations we take r to be in the radial direction, the spectra then being
reduced ones (i.e., functions of k,. rather than k). It should be stressed that we have made no
approx.imations regarding the relative abundances of the 'inward' and 'outward' modes. In fact
the model supports completely arbitrary admix.tures of these modes. The terms on the left of the
equations are all linear and represent the effects of convection, expansion, wave propagation and
'mixiIlg', wlIile those on the right represent non-linear interactions. Note that in contrast to the
case of WKB transport all of these effects, including 'mi:x.ing', are present at leading order. In
tlIis preliminary study we focus upon the properties of the linear transport operators, drOpplllg
hereafter all non-linear terms*,
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h1 order to solve the equations we have, in most cases, resorted to numerical techniques, namely
Chebyshev spectral (collocation) methods /9,10/, where the equations are integrated in time to
steady-state solutions. We choose to impose the boundary conditions on the fields at Ro (= 10R.un)
so that the fluctuations there are purely outwardly propagating. This allows the inner boundary to
be ll1terpreted as the Alfven radius, i.e., the distance at which the (radial) flow velocity becomes
equal to the (radial) Alfven velocity. Chebyshev techniques were chosen to facilitate the subsequent
ll1clusion of non-linear terms, and also because they support arbitrary boundary conditions.

The first case we consider is that of isotropically distributed fluctuations. The power-law (k-a) in-
ertial range turbulence is characterised by a single parameter, namely its spectral slope a. Typically
we choose values corresponding to the Kolmogorov (a = 5/3) or Kraichnan (a = 3/2) scenarios. It
can be shown that for isotropic symmetries J is identically zero. An analytic solution to the VA = 0
version of these equations was presented by Zhou & Matthaeus /1/, alid this provided a useful test
of our numerical accuracy. Since J is explicitly zero, the WKB enforcing term CanIlot come into
play, alid thus we see a substantial falloff in the normalized cross helicity with increasing heliocen-
tric distance. The solutions show significant dependence on (a) the spectral index a: increasing
values causing faster radial decay of O'C; and (b) the value of Ao = VA..(Ro)/U, where VA.. is the
radial component of the large-scale Alfven velocity (Figure 1a). This latter dependence decreases
the effect of 'mixing' as Ao is increased from zero to unity. The case of Ao = 1 corresponds to Ro
being the Alfven (critical) radius, while smaller positive values may be interpreted as Ro exceeding
tIlls radius. hI such cases we still enforce purely outward fluctuations at the inner boundary, despite
the fact that this is no longer physically necessary. The Ao = 0 case represents the situation in the
absence of a large-scale magnetic field, e.g., within the current sheet.

The second case relates to slab geometry, where the fluctuations are in the plane perpendicular to
the wave-vector k. The direction of k is taken to be parallel to either R or Bo, the results being
similar for both cases. Strong 'mixing' is seen in the separate cases of k = 0 alid VA = O. However
as the radial component of k is increased towards a reciprocal correlation scale, the results rapidly
return to WKB-like solutions. As mentioned above this is because non-zero k .VA meallS that F
alid J are tightly coupled. Such coupling constrains F to oscillate about zero (i. e., remain small),
and thus, suice P+ is driven only by F at this order, 'mixing' is strongly inhibited (Figure la).

Finally we consider 2-D turbulence, by which we mean (a) k -L Bo. (b) fluctuations are perpendic-
ular to both k aIld Bo, and (c) fluctuations are distributed isotropic ally (in the planes normal to
Bo) with a power-law inertial range. As a consequence of this geometry k .VA = 0, ensuring that
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Fig. 1. Plots of the numerical solutions for the normalized cross helicity as a function of distance.
(a) isotropic alld slab solutions, (b) comparison with data.
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F and J are decoupled, and thence that 'mixing' is always strong. In fact, J is identically zero
for reasons wluch are essentially the same as those applying in the fully isotropic case. Significant
dependence on the values of the spectral index a, and Ao is again seen. Simulation results /11/
have shown that in the presence of a mean magnetic field, energy is transferred to the -L components
of the fluctuations much more rapidly than it is to the II ones. In other words the 2-D spectrum
'switches on' first. This suggests that 2-D fluctuations may be particularly releVaIlt to the solar Wllld
system, and indeed there is also some observational evidence that the solar wind can be modeled as
an admixture of slab (k II Bo) and 2-D fluctuations /12/. To this end we show in Figure 1b several
numerical solutions for the normalized cross helicity with observational data points from Relios
and Voyager data superimposed (3 hour averages). Without attempting to optimise the agreement
between theory aIld data, we note that the 60% 2-D, 40% isotropic mixture provides a remarkably
good fit to the data. We are not suggesting that this is in fact the state of affairs in the solar wind,
only that the theory clearly shows strong potential to explain the observations.
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