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Abstract. A technique for analyzing multiple-time, single-point datasets is presented, which yields
information about the (spectral) variation of MIlD fields in directions perpendicular to the mean flow. The
analysis can be performed for any homogeneous solenoidal fields, including magnetic and incompressible
velocity fluctuations. A summary of the associated theory is given, along with initial results obtained using

an interval of Voyager data.

THEORYINTRODUCTION

General forms for the correlation functions and
spectra associated with homogeneous incompressible
MHD turbulence have been derived elsewhere. See
(18) for a summary/review. For example, if (...)
is an appropriate averaging procedure, and b(x) =
B -(B) is the fluctuating magnetic field, then the
correlation function for the magnetic fluctuations is
~j(r) = (bi(x) bj(x + r»). Taking the Fourier trans-
form yields the spectral tensor Sij(k), which consists
of index symmetric (Iij) and antisymmetric (Jij)
pieces. The former is determined by three scalar
functions (18) and contains, among other contribu-
tions, the magnetic energy spectrum which has been
studied extensively in the solar wind context (7, 22).
The antisymmetric portion is controlled by a sin-
gle scalar function H(k), proportional to the mag-
netic helicity spectrum, and has the specific form

(1,15,19)

Almost all in situ observations of solar wind and
magnetospheric parameters are obtained from mea-
surements using one spacecraft at a time. Associated
datasets usually consist of measurements of magnetic
field B, and plasma velocity V and density n, ob-
tained at regular time intervals along the spacecraft
trajectory. These measurements can be used to con-
struct correlation functions and spectra, e.g., (4, 11),
and the related analysis has added immensely to our
understanding of fluctuations at MHD scales.

Nonetheless, because data intervals are approxi-
mately equivalent to simultaneous measurements at
discrete points along a curve in space (see below),
there are strong constraints on the extractable in-
formation. For example, only limited information
regarding gradients in B oblique to the measure-
ment curve can be obtained. Recently we have shown
that suitably defined mean wavenumbers can be cal-
culated in directions perpendicular to the reduction
(measurement) direction, for certain fields provided
that the associated fluctuations are solenoidal (18).

The approach is an expansion of the technique,
introduced in (15), for extracting the magnetic he-
licity from one-point, multiple-time datasets. Thus,
even though only reduced spectra are available, it is
still possible to obtain information about the scale-
lengths characterizing the fluctuations in directions
transverse to the measurement direction. In the fol-
lowing section we summarize the associated theory
and apply it to several types of fluctuations believed
to be important in the solar wind (16). An interval
of Voyager 2 data is then analyzed in this context.

Jij = it:ijakaH(k). (1)

Thus, if one could simultaneously sample B(x, t)
at many locations throughout a given volume, then
~j(r) and hence Jij(k) could be estimated. Un-
fortunately, this is not achievable using data from a
single spacecraft, which is the usual situation for the
solar wind. Instead, one obtains values of B at a
sequence of times corresponding to positions along
the spacecraft trajectory. However, as the mean flow
speed UR is much greater than (a) the spacecraft
velocity, and (b) typical turbulent and wave veloci-
ties, one can invoke Taylor's "frozen-flow" hypothesis
(8, 21) to relate the time series at a single point to a
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spatial sampling in the flow direction at a fixed time:
b(x = O,tj) == b(-UtjR,O), where R is the unit
vector for the heliocentric radius. As a consequence
only reduced spectra, rather than the more informa-
tive and desirable full wavevector spectra, are avail-
able (1, 5, 11). For Cartesian coordinate systems
with the x-direction aligned with the radial (reduc-
tion) direction, one can show that the antisymmetric
component of the reduced spectral tensor is

Table 1. Mean wavenumbers for specific fluctuation
symmetries in the Cartesian coordinate system with
x in the radial direction and Bo in the x-y plane.

21D2isotropic 2D slab

k2(kl)

k3(k1)

arbitrary
but equal

0

0

k1 tan t/J

0

,

J[jd(k1) = / dk2dk3 Jij(k1, k2, k3), (2)

so that contributions from all directions perpendicu-
lar to the reduction one are integrated out. Substi-
tuting from Eq. (1) we have .Jf~d '" Jk3H(k). This
is a quantity that depends upon the structure of the
helicity spectrum in the z direction, but according to
Eq. (2) it can be evaluated from information obtained
from the frozen-in condition in the x direction! It is
tempting, qualitatively, to interpret .Jf~d as a mean
value for k3, weighted by the helicity spectrum. Cau-
tion is warranted, however, since the helicity cannot
strictly speaking be a density or weight function as it
is not a positive definite quantity. Hence, we define

- (k ) = J k3H(k) dk2dk3 = k:!!~
(3)k3 1 J H(k) dk2dk3 1 J2~d(k1)'

ffllf

II~i

11111~f~IWI.
nil!!!
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I

slab cases. For most of these symmetries we assume
the existence of a well-defined mean magnetic field
Bo = (B). This preferred direction makes some co-
ordinate systems more convenient to work with, and
here we choose x == ft, with Bo in the x-y plane
at an angle ~ to R. Thrther details on the full cor-
relation and spet1;ral tensors connected with these
symmetries are given in (I8), for example.

In the absence of any preferred directions one ex-
pects on physical grounds that the fluctuations will
be isotropic, for which case it is easily shown that
k2 = k3. Strictly 2D fluctuations, i.e., those with
wavevectors and Fourier amplitudes perpendicular to
Bo, have H(k) = 0, so that the kj also vanish.

The related case of 2 ~ D symmetry (k .Bo = 0
but no restriction on amplitude direction) can be
shown to have k3 (k1) arbitrary, but k2 (k1) = k1 cot ~
independent of H(k). The situation is similar for
slab (parallel propagating Alfven wave) fluctuations:
k3 = 0 and k2 = k1 tan~. These results are sum-
marized in Table 1. It is apparent that there is con-
siderable scope for using the k's as diagnostics for
distinguishing between the symmetry states of the
fluctuations present in the solar wind.

I

DATA ANALYSIS AND RESULTS

To illustrate the above technique for calculating
mean wavenumbers kj we have analyzed an interval
of Voyager 2 data from days 95-98 of 1978. At this
time the spacecraft was near 2.8 AU, and experienc-
ing a reasonably stable mean magnetic field, with
1/J ~ 600 and Eo ~ 24km/s in Alfven speed units.
The interval is a subset of one used in (11). The
data points consist of 96 second averages for V, B,
and n, with the entire set being rotated to the above
discussed coordinate system prior to analysis. Cor-
relation functions and spectra were computed using
the procedure described in (11), based on Blackman-
Tukey mean lagged product calculations of Rij with
20 degrees of freedom. While the stationarity and ho-
mogeneity of solar wind fluctuations has not been rig-

and similarly k2 = k1 ~~d / 4~d.
As the k are functions of the reduced wavenumber

k1 (component of k in the measurement direction),
we obtain helicity-weighted mean wavenumbers at
each reduced wavenumber. One can also integrate
over k1 to obtain "bulk" wavenumbers in the y and
z directions, e.g., K3 = Jk3(k1) dk1, which provide
estimates for the transverse lengthscales characteriz-
ing the large-scale (helical) structures present in the
fluctuations.

The above quantities are readily computed from
suitable datasets and can be employed to provide
previously overlooked or neglected information on
the structure and scales of solar wind fluctuations.

In view of H(k) not being positive definite, can-
cellation can occur in the averaging. This means that
right-handed and left-handed structures at nearly
equal scales give cancelling contributions, which tend
to push the net "mean wavenumber" towards zero.
It would perhaps be more useful to have access to
J k3IH(k)1 dk2dk3, etc, but this does not appear to
be achievable using single-spacecraft datasets (see,
however, the definitions for K j ) .

Special Cases. When the turbulence has a partic-
ular symmetry the kj can often be evaluated further.
Here we are interested in the isotropic, 2D, 2!D, and
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FIGURE 1. Plots of the mean wavenumbers and re-
lated quantities for the scalar function H(k), which gen-
erates the magnetic helicity, for a Voyager 2 interval near
2.8 AU. Open circles indicate data points with negative
values, plus signs those with positive values.

correlation scale Ab === 5.0xIO6km [see (11) for defini-
tions]. This suggests that the magnetic fluctuations
contain substantial transverse (helical) structure.

CONCL USIONS

orously established, empirically it appears that when
the traced correlation function ~Q (r) is of Lanczos
type [that is, for some L, RQQ(r > L)jRQQ(O) « 1]
then weak homogeneity is an acceptable assumption
(11, 12). For the interval considered here RQQ(r)
approaches Lanczos type.

Figure 1 ( a) displays the spectrum for the magnetic
energy and kl times the helicity spectrum obtained
from the Voyager 2 interval. The mean radial solar
wind speed for the interval, 442kmjs, has been used
to convert from frequency to reduced wavenumber.
The behavior shown is fairly typical of near eclip-
tic fluctuations, see, for example, (6). Figure l(b)
shows the ratio I = k3jk2, with the isotropic value
of unity overplotted as a dashed line. Clearly, this
result is not compatible with isotropy of the fluctu-
ations. Since the interval is characterized by a sig-
nificant Bo this lack of isotropy is consistent with
expectations based on the dynamical emergence of
anisotropy in the presence of mean magnetic fields
(10, 17,20). Nonetheless ~ 38% of the fluctuations
have ~ < III < 2, so that much of the departure
from isotropy is not extreme. The plot also gives an
indication of the split between 2~D and slab fluctu-
ations. Pure slab fluctuations are characterized by
I = 0, whereas the 2~D symmetry has I arbitrary
(Table 1). Only about 1% of the If I values fall below
0.01, which suggests that slab fluctuations are not a
dominant component in this interval [d. Fig. 2(b)].

Turning to the plots of k2 and k3 (Fig. 2), we ob-
serve general increasing trends as kl increases, with
the scatter about best-fit straight lines being more
pronounced for kl ~ 10-6 kIn-I, which is of order the
correlation scale for the magnetic field (see below).
The straight lines overplotted on Figure 2(a) are the
scalings applicable for fluctuations which are purely
2! D (dashed) and slab (solid) for the same mean field
direction as the actual data interval. The agreement
at low kl between the data and the 2~D prediction is
strikingly good, however the interpretation of these
scales (larger than the correlation scale) is not un-
ambiguous, e.g., (13). At smaller scales a single pure
symmetry state seems an unlikely option. As 2! D
modes have arbitrary values for k3, it is harder to
draw conclusions from Fig. 2(b), although, clearly
slab modes are not a dominant component.

The bulk wavenumbers are calculated to be K 2 ==
-3.2 X 10-9 km-2, and K3 == -4.2 X 10-9km-2.
Taking the square roots and converting to the associ-
ated lengthscales gives, respectively, 1.1 x 105 km and
1.0 x 105 kill. These values are substantially smaller
than the lengthscales associated with the kl and ki
moments of H;:d, both"", 107 kill, and the magnetic

The technique presented above complements ex-
isting methods (2, 9) which help discriminate be-
tween various types of fluctuation and may provide
further support for the perspective that MHD-scale
solar wind fluctuations consist of (at least) two-
components: quasi-2D turbulence and slab Alfven
waves (2, 14,22), or perhaps some other mixture of
pure symmetries (3).

We have focussed here on mean wavenumbers as-
sociated with the magnetic helicity spectrum. The
theory holds, however, for the index antisymmetric
part of any homogeneous auto or cross-correlation
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FIGURE 2. Helicity-weighted mean wavenumbers for
the 2.8AU Voyager interval. See Figure 1 (and text).

tensor, when the underlying fields are solenoidal (18).
For example, mean wavenumbers can be defined for
incompressible velocity fluctuations via the velocity
helicity spectrum, and for the induced electric field
E = -(v x b) using the antisymmetric piece (Jij) of
the "minus" correlation tensor Rij(r) = (vibj-bivj),
where primes indicate evaluation at x+r rather than
x. As shown in (18), Jij is directly related to the
electric potential for E. On the assumption that so-
lar wind velocity fluctuations are approximately in-
compressible, one could then obtain kj for these and
similar fields and such an investigation is in progress.

Finally, we note that there are many questions still
be answered regarding the mean wavenumbers. For
example, their variation with heliocentric distance,
stream speed, and solar cycle. Data from the Ulysses
mission may be particularly useful in this regard as
it contains numerous (long) intervals where Bo is rel-
atively stable.

We are grateful to N.F. Ness for providing access
to the Voyager 2 magnetometer data, R.J. Leamon
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