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A review of spectral anisotropy and variance
anisotropy for solar wind fluctuations is given, with
the discussion covering inertial range and dissipation
range scales. For the inertial range, theory, simulations
and observations are more or less in accord, in that
fluctuation energy is found to be primarily in modes
with quasi-perpendicular wavevectors (relative
to a suitably defined mean magnetic field), and
also that most of the fluctuation energy is in the
vector components transverse to the mean field.
Energy transfer in the parallel direction and the
energy levels in the parallel components are both
relatively weak. In the dissipation range, observations
indicate that variance anisotropy tends to decrease
towards isotropic levels as the electron gyroradius is
approached; spectral anisotropy results are mixed.
Evidence for and against wave interpretations and
turbulence interpretations of these features will be
discussed. We also present new simulation results
concerning evolution of variance anisotropy for
different classes of initial conditions, each with typical
background solar wind parameters.

1. Introduction
Ample evidence exists for in situ heating of the
solar wind. In particular, observations of the proton
temperature, Tp(r), as a function of heliocentric radius,
r, are well above the level associated with a pure
adiabatic expansion of the medium (by factors of 10–100
in the outer heliosphere) [1]. Dissipation at shocks and

2015 The Author(s) Published by the Royal Society. All rights reserved.

 on April 9, 2015http://rsta.royalsocietypublishing.org/Downloaded from 

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2014.0152&domain=pdf&date_stamp=2015-04-06
mailto:seano@waikato.ac.nz
http://orcid.org/0000-0002-2814-7288
http://rsta.royalsocietypublishing.org/


2

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A373:20140152

.........................................................

reconnection zones, turbulent dissipation and various types of wave damping are all processes
that may contribute to the heating. These situations typically involve fluctuations in the velocity
and magnetic field over wide ranges of length and time scales, and in many of them fluctuation
anisotropies may lead to enhanced (or curtailed) dissipation. For instance, if a dynamical process
steers energy away from small parallel scales, this will obviously restrict the energy available to
dissipation channels active at those scales, e.g. ion cyclotron damping. Here, we review two types
of fluctuation anisotropy that are robustly observed in the solar wind: spectral anisotropy and
variance anisotropy. A summary of the observational results is presented, along with discussion
of candidate explanations for the origin of these anisotropies. Some roles they may play in the
dissipation of solar wind fluctuations are also noted.

Our focus is primarily at magnetohydrodynamic (MHD) scales because, at length and
time scales larger than those characteristic of proton gyromotion, the dynamics of solar wind
fluctuations can often be usefully described using MHD models. The relative simplicity of
these fluid models affords some advantages for theoretical and simulation work. Of course,
the dynamics near (and below) proton gyroscales involves various plasma processes, so that in
those ranges, it is appropriate to employ theoretical frameworks that retain more plasma and
particle effects than MHD does. We will include some discussion related to these scales. Following
traditional usage in the literature, we refer to frequencies above the proton gyrofrequency as the
dissipation range, even though the (plasma) physics at these scales differs significantly from the
viscous diffusion characteristic of Navier–Stokes dissipation (see appendix A).

This review is intended to complement existing reviews on solar wind anisotropy and related
matters [2–6], and also other papers appearing in this theme issue [7–11]. Thus, we do not
attempt a complete review of the literature. Familiarity with the basic features and properties
of the solar wind is assumed here, as is a basic understanding of turbulence concepts like inertial
range, dissipation range, spectra, correlation lengths and times, and energy cascades [12–14]. See
appendix A for a terse summary.

The paper is structured as follows. We begin by defining spectral and variance anisotropies
and discussing how these arise from distinct features of a vector field. Separate sections for each
type of anisotropy follow, wherein we review relevant observational studies and discuss possible
explanations. Some new results from compressible three-dimensional MHD simulations are also
included. A short summary concludes the main body of the paper. Appendix A covers some
primary points regarding spectra, spectral ranges and related ideas, and appendix B considers
issues related to global and local mean magnetic fields.

2. Two types of anisotropy: definitions and distinctions
Let us write the velocity and magnetic fields in terms of mean values plus fluctuations about those
means,

u(x, t) = U + v(x, t), U = 〈u〉 (2.1)

and
B(x, t) = B0 + b(x, t), B0 = 〈B〉, (2.2)

where 〈· · ·〉 denotes an appropriate space (x) and/or time (t) averaging operator, which might be
global or local. Throughout this paper, the magnetic field is in Alfvén velocity units, i.e. the actual
magnetic field (SI units) is

√
μρB, where ρ is the mass density and μ is the magnetic permeability

of the medium. We also make use of the Elsasser variables for the fluctuations, z±(x, t) = v ± b,
where these variables should not be confused with the Cartesian coordinate z. Usually, Cartesian
mean-field-aligned coordinates are employed, with B0 ‖ ẑ. The circumflex indicates unit vectors,
with that parallel to heliocentric radius being R̂, for example. To good approximation beyond
approximately 0.1 AU, the mean solar wind speed is U = UswR̂. Other standard notation used is
Alfvén speed VA, proton plasma beta βp, proton gyroradius ρi, proton gyrofrequency Ωci = 2π fci
and proton skin depth di ≡ VA/Ωci. It will sometimes be important to note that the mean field
employed is a local one, and we then write Bloc

0 in place of B0 (cf. appendix B).
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If the Cartesian components of the fluctuating field have unequal energies, then the field is
said to exhibit variance (also known as component) anisotropy. For v, this would mean departures
from 〈v2

x〉 = 〈v2
y〉 = 〈v2

z 〉. In the solar wind, one typically has 〈v2
x〉 ≈ 〈v2

y〉 � 〈v2
z 〉, if the averaging is

over many correlation lengths, Lcor, where Lcor ∼ 106 km at 1 AU [15–17].
However, considerable care is needed when interpreting observed variance anisotropy: even

for a perfectly isotropic distribution of energy, calculated variances will be anisotropic(!) if, in
effect, one only has access to reduced spectra (or, equivalently, to one-dimensional correlation
functions). A reminder of Batchelor’s [18, p. 50] original incompressible hydrodynamics
demonstration is enlightening. Suppose the energy distribution is isotropic, so that its spectral
tensor is Sij(k) = (1/2)(δij − kikj/k2)E(k), where E(k) is the modal spectrum with E(k) = Ck−α in the
inertial range; α = 5

3 + 2 for Kolmogorov scaling (see appendix A). Unfortunately, modal spectra
are often not experimentally available, with researchers having to make do with the reduced
spectra. (This is also the case for most single spacecraft solar wind datasets.) The reduced spectral
tensor relative to the x direction is defined as Sred

ij (kx) = ∫∫
Sij(k) dky dkz, and it is straightforward

to show that for kx in the (powerlaw) inertial range, the ratio of reduced spectral amplitudes is
anisotropic,

Sred
yy (kx)

Sred
xx (kx)

= α − 1
2

(2.3)

(the kx dependence has cancelled out). This is 4/3 for Kolmogorov scaling. Similarly, variances
calculated using only contributions from inertial range (and smaller) scales are also misleadingly
anisotropic. For instance, if we define v2

y(kx) = 2
∫∞

kx
Sred

yy (k′
x) dk′

x, etc., with the parameter kx in
the inertial range, then it follows from the same assumptions leading to equation (2.3) that
v2

y(kx)/v2
x(kx) = (α − 1)/2. So, somewhat counter-intuitively, a measured variance anisotropy does

not necessarily imply anisotropy of the modal energy spectrum. (Variance isotropy is recovered
when kxLcor � 1, i.e. when the v2

j (kx) integrals include all scales with significant energy.) Similar
results can be derived for isotropic MHD and axisymmetric MHD [19–21].

The above-mentioned calculations assume that the energy spectrum is accurately known.
When averaging intervals are less than a correlation scale, the system is likely to be
statistically/ergodically undersampled so that the estimate for the spectrum may involve random
anisotropies owing to non-convergence [22]. Unravelling these stochastic anisotropies from
‘kinematic’ ones like those of equation (2.3) and/or genuine physical anisotropies could be
very difficult. Moreover, locally computed anisotropy, even when adequately sampled, may be
properly viewed as higher-order statistics [23].

When the energy distribution at a given scale, say l, is not isotropic, one speaks of spectral (also
known as wavevector or correlation) anisotropy. In terms of a modal energy spectrum E(kx, ky, k‖),
where k = (kx, ky, k‖) is the Fourier wavevector, spectral anisotropy might take the form E(k, 0, 0) �
E(0, 0, k), for example, where k ∼ 1/l. Equivalently, considering a homogeneous correlation like
R(r) = 〈b(x) · b(x + r)〉, the existence of correlation anisotropy would mean that R(rê1) = R(rê2), for
some independent directions ê1, ê2. Naturally, spectral anisotropy is often associated with energy
transfer that is also anisotropic. In particular, for incompressible MHD, there is abundant evidence
that strong (and even moderate) mean magnetic fields engender significant suppression of energy
transfer in the parallel direction, so that the perpendicular energy cascade is much stronger than
the parallel cascade. Note that spectral anisotropy usually occurs over a range of scales, rather
than at (isolated) individual scales.

It is useful to elucidate the different kinematic origins of spectral anisotropy and variance
anisotropy. We make use of the vector potential for the magnetic fluctuations, defined by
b = ∇ × a. Solenoidality of b means that in Fourier space there are only two linearly independent
components to a(k), at each wavevector k, where a(k) is the Fourier transform of a(x). Choosing
ẑ ‖ B0 as the reference direction, a toroidal–poloidal decomposition for b(k) is

b(k) = ik × ẑaT(k) − k̂ × (k × ẑ)aP(k), (2.4)
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provided k × ẑ = 0.1 This decomposition is general and in no way assumes that the fluctuations
are waves (linear or otherwise). Nonetheless, in cases where linear MHD waves are present,
the two potentials are associated rather cleanly with the different types of waves. The toroidal
piece of b, proportional to aT(k), is polarized in the same sense as an Alfvén wave’s b, whereas
magnetosonic waves have their b polarized in the same sense as the aP(k) contributions. In the
incompressible limit, v may be decomposed exactly as above, while in the compressible case, a
component of v parallel to k must also be allowed for.

Assuming axisymmetry about B0, variance anisotropy is determined by the relative
magnitudes of the potentials aT and aP. For instance, if aP(k) = 0 for all wavevectors, then bz(x) = 0
identically, yielding an extreme case of variance anisotropy (a superposition of Alfvén waves
would have this configuration). Spectral anisotropy, on the other hand, is determined by how the
potentials vary with the direction of k. For example, how aT(5, 0, 0) differs from aT(3, 0, 4), where
these both produce a by(k).

Note that the connection between variance anisotropy (related to the minimum variance
direction, MVD) and spectral anisotropy is not unique. Hence, variance anisotropy information—
on its own—is usually not sufficient to infer the actual spectral anisotropy. A well-known example
involving two-dimensional turbulence and slab Alfvén waves illustrates this. Turbulence that is
strictly two-dimensional (with respect to the z-axis) has aP(k) = 0 = bz(x) and a toroidal potential
that is independent of k‖: aT(kx, ky). Its MVD is in the z-direction. Slab Alfvén waves also have
aP = bz = 0 and are polarized in the x–y plane. Thus, a superposition of them will have an MVD in
the z-direction—just as two-dimensional turbulence does. However, the wavevector dependence
of the slab waves is completely complementary to that of two-dimensional turbulence because
they have aT = aT(k‖). Clearly, an MVD analysis cannot discriminate between these physically
very different states. Recall, also, that the amplitude of a linear Alfvén wave with wavevector k is
in the k × B0 direction, so that the MVD is itself not unique here. That is, all directions in the k–B0
plane serve as MVDs for a non-slab Alfvén wave.

3. Spectral anisotropy
Measurements in laboratory plasma physics devices provided the first indications of the
prevalence of spectral anisotropy for systems with an energetically significant mean magnetic
field, B0 = B0ẑ [24,25]. In these studies, correlation lengths parallel to B0 were found to be
much larger than those in directions perpendicular to B0, indicating that at smaller scales
energy is mostly associated with perpendicular structure. Physical grounds for this behaviour
were presented [26,27], and Shebalin et al. [28] provided an explanation based on ‘weak MHD
turbulence’ and the associated suppression of parallel spectral transfer. Later, Goldreich & Sridhar
[29,30] proposed a strong turbulence (‘critical balance’, CB) phenomenology that accounts for
the anisotropy, and this and its cousins are widely used in current modelling approaches to
MHD turbulence. The derivation of reduced MHD (RMHD) owing to Montgomery [26,27] also
makes it clear how this anisotropy arises in a strong turbulence context: the strongest turbulence
occurs when nonlinearity operates more quickly than Alfvén wave propagation. This provides
the small parameter for deriving RMHD. The theory breaks down if there is too much parallel
spectral transfer; however, the argument of Shebalin et al. [28] shows that such transfer is
inhibited. Recently, an analytic explanation that is neither perturbative nor phenomenological
was advanced [31]. These explanations are reviewed in §3b.

In the solar wind, an early report of correlation anisotropy was provided by Crooker et al.
[32], using 1 AU magnetic field data from ISEE 1 and ISEE 3. Calculations of a hybrid correlation
coefficient between the data from the two spacecraft revealed the presence of anisotropic magnetic
features, with parallel scale lengths at least four times the perpendicular ones. Some years
later, a two-dimensional correlation function for the magnetic field was constructed, R(r⊥, r‖),

1‘Slab’ modes, i.e. Fourier modes v(k) and b(k) with their k parallel to ẑ, need to be handled separately. For example, as
b(k⊥ = 0, kz) = x̂ax(kz) + ŷay(kz).
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Figure 1. Fourier space regions associated with MHD turbulence models and phenomenologies. (a) Slab + 2D. (b) Critical
balance and the equal time-scale curve. (c) Quasi-two-dimensional fluctuations + wave-like fluctuations, with the arrows
indicating typical directions of spectral energy transfer; transfer within and between regions involves at least somewhat
different physics. (Online version in colour.)

using 1 AU data [33]. This too indicated that the magnetic energy distribution was anisotropic,
with contours of R(r⊥, r‖) displaying a ‘Maltese cross’-type pattern with power enhancements
approximately parallel to and perpendicular to the mean magnetic field. These results suggested
that two-component models for the fluctuations might be of use.

The many subsequent observational studies have added quantitative details and are, on the
whole, in broad agreement with each other. At MHD scales, results from nonlinear simulations
are often in accord with the solar wind observations. Below the proton gyroscales, there is still
much debate as to whether the important physics is due to particular wave modes, turbulence
and cascades, or some combination of these.

Several useful idealizations or phenomenologies for the observed spectral anisotropy exist,
and we now describe two of them. The first is a two-component ‘slab + 2D’ model [33], for
which excited wavevector modes have either k = k‖B̂0 (the slab piece) or k · B0 = 0 (the two-
dimensional piece; figure 1a). The modal energy spectrum is then E(k) = Eslab(k‖)δ(kx)δ(ky) +
E2D(kx, ky)δ(k‖). For incompressible fluctuations, the slab fluctuations are strictly transverse to
B0, whereas the two-dimensional ones could be so-called 2.5D meaning that they can have
an amplitude component parallel to B0. Usually, we will not need to distinguish between
slab+2D and slab + 2.5D. Further assumptions can be imposed, e.g. axisymmetry with respect
to the B0 axis and/or powerlaw inertial ranges. Note that this slab + 2D model does not
make any inherent assumptions about the specific nature of the fluctuations, only about the
wavevector dependence of each piece. That said, Alfvén waves and two-dimensional turbulence
are well-motivated candidates for the slab and two-dimensional components, respectively. When
dissipation range scales are considered, kinetic Alfvén waves (KAWs) are another candidate for
the two-dimensional piece.

Clearly slab + 2D is a rather drastic approximation, with excitations restricted to modes either
on the k‖ axis or in the k‖ = 0 plane. Thus, most of k-space is unpopulated and it seems likely this
is an oversimplification. Nonetheless, such idealized skeleton models provide attractive analytic
tractability and, perhaps surprisingly, have enjoyed some success in matching observations,
suggesting that they often capture the important elements of the situation.

A class of inertial range models with more realistic coverage of k-space than slab + 2D is the set
of phenomenologies based on CB ideas [29,30]. In these, the energy is concentrated in wavevector
modes for which the linear wave time scale τA(k) is comparable to the nonlinear time scale τnl(k)
(figure 1b). For MHD, the anisotropic nature of τA(k) = 1/|k‖B0|, along with the assumption of
isotropic forcing at scales of order Lcor (the energy-containing scale for the turbulence) leads to the
equal time-scale curve k‖B0 ∼ (u0/Lcor)(kLcor)2/3, where u0 is the RMS turbulence velocity.2 The key

2Boldyrev [34,35] has shown that if there is also a scale-dependent alignment of v and b fluctuations, the nonlinear time scale

is weakened, leading to a different scaling for the equal time-scale curve, e.g. k‖ ∼ k1/2
⊥ .
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point is that modes with ks ‘near’ the equal time-scale curve have important nonlinear physics,
whereas modes with ks well outside the curve may have some prominent wavelike physics,
because τnl(k) � τA(k) there. The width of the CB region around the equal time-scale curve is
not fully determined by the phenomenology and various models for it have been employed
[29,36,37]. Note that CB does not require wavevector modes with k‖ � k⊥ (e.g. slab-like modes)
to be unpopulated, although their energy level is assumed to be low. Many implementations of
CB treat this component as negligible, despite its importance in applications such as scattering
of cosmic rays [38,39]. Around the equal time-scale curve, the Alfvén wave time scale plays a
pivotal role. However, any waves at these ks are argued to only last for one or so periods and
thus are rather fleeting things [29]. The extent to which wave properties like dispersion relations
and eigenstructure are important in turbulence is still under investigation [11,40–42]. Figure 1c
indicates typical directions of spectral energy transfer inside and outside the equal time-scale
curve (cf. [3]).

(a) Review of observations
Following the original demonstration of correlation anisotropy [33], many examples of two-
dimensional correlation functions, e.g. R(r⊥, r‖), two-dimensional structure functions, and two-
dimensional spectra have been presented. Here, r⊥ and r‖ are relative to the mean field B0, and
similarly for k⊥ and k‖. Regrettably, it is not completely straightforward to compare results from
these studies, because they may employ distinct techniques, single or multiple spacecraft, and/or
pertain to different scale ranges. Table 1 lists results and some relevant parameters from many of
these studies, and we discuss a selection of them below.

Using 5 years of near-Earth (ACE) data, Dasso et al. [52] investigated correlation anisotropy
for scales around the middle decade of the inertial range. It was found that fast wind (Usw >

500 km s−1) was relatively more dominated by fluctuations with quasi-parallel k, whereas for
slow wind (Usw < 400 km s−1), the quasi-perpendicular modes were more dominant. As slow
wind takes longer to get to 1 AU, this can be interpreted as meaning its turbulence has
had more time to evolve, in this case, towards an energy distribution concentrated in quasi-
perpendicular ks. Intriguingly, at somewhat smaller scales than Dasso et al. studied, results from
the ‘spectrum ratio’ test (see below) indicate very little wind speed or distance (over 0.3–0.9 AU)
dependence to the spectral anisotropy [45,46]. Hamilton et al. suggest that at smaller scales the
turbulence may already be in approximate steady state by 0.3 AU, whereas at larger scales [52],
the distinct anisotropies seen in fast and slow wind may be a remnant of the solar source of
the fluctuations.

Wicks et al. [53] calculated magnetic energy (wavelet) spectra using Ulysses data. They report
that the power is roughly isotropic for scales larger than inertial range ones, kρi � 3 × 10−3. At
larger wavenumbers, anisotropy consistent with more power in oblique wavevectors is present
and its strength increases as kρi increases, until kρi ≈ 0.5 is reached.

The above results are consistent with the perpendicular energy cascade rate being greater
than the parallel one, as is also seen in direct 1 AU measurements of the cascade rate, via
third-order moment calculations [8,54]. Simulation results [3,28,36,55,56] and phenomenologies
[29,35,57,58] support the notion that small scales are more anisotropic, and achieve their quasi-
two-dimensional-type states more rapidly than larger scales.

A related method of investigating spectral anisotropy was proposed by Bieber et al. [19]. When
the fluctuations are modelled as slab + 2D, the frequency spectrum exhibits a dependence on
ψ—the angle between B0 and the mean solar wind speed U—that can be used to estimate the
fraction of energy in the slab and two-dimensional components. Assuming powerlaw slopes, α,
for each component, one obtains

fP( f ,ψ) = 2Cslab

(
2π f

Usw cosψ

)1−αslab

+ 2C2D

(
2π f

Usw sinψ

)1−α2D

, (3.1)
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Table 1. Observational results from slab+ 2D fits to magnetic spectra, as first used by Bieber et al. [19]. Slowwind is generally
Usw < 400 km s−1 and fast wind Usw > 500 km s−1. Frequencies above ≈ 0.3 Hz are treated as being in the dissipation
range. The dissipation range typically extends to much higher frequencies than the ≈ 1 Hz attainable in the cited studies.
Measurements are from the ecliptic unless ‘wind type’ column notes otherwise. ‘IR’ indicates frequencies are in the inertial
range and ‘diss’ that they are in the dissipation range. IR results usually show a dominance of two-dimensional (i.e. quasi-k⊥)
energy (an exception is the slowwind ahead of co-rotating interaction regions, CIRs), whereas in the dissipation range the slab
component is more likely to be predominant.

wind type distance (AU) 2D% freq. range (Hz) comments reference

mixed 0.3–1 74 0.001–0.02 Helios. 454 spectra [19]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mixed 1 89 0.01–0.2 Wind, 33 intervals [43]

54 0.5–1.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fast, high lat 2–3.5 56 IR Ulysses. Preliminary results [44]

mixed, low/high lat 3.4–5 70–80
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mixed 1 68 0.008–0.1 ACE, 567 samples [45]

26 0.3–0.8

fast 50 IR 101 samples

34 diss

slow 78 IR 234 samples

16 diss
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mixed 0.3–1 73 0.005–0.02 Helios. No distance or [46]

fast 67 speed dependence within

slow 84 errors
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mixed 1 62 0.008–0.1 ACE. 66βp > 1 intervals [47]

32 0.3–0.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fast, high lat 1.4 92 0.004–0.2 Ulysses. Wavelets, Bloc0 [48]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

slow 1 70–100 ∼ 104 km Cluster. Structure functions [49,50]

intermediate 50–85
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fast (behind CIR) 1 80 0.008–0.2 ACE. 5 CIRs and the [51]

45 0.4–0.8 fast/slow wind either side

CIR 99 IR

61 diss

slow (front CIR) 44 IR

0 diss
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where C2D and Cslab are the fitting parameters. Using Helios data (0.3–1 AU), they found a best-fit
value of 95% two-dimensional, 5% slab, for a frequency band in the inertial range. Bieber et al. also
proposed the ‘spectrum ratio’ test, which makes (separate) use of the diagonal components of the
spectral matrix, rather than the trace employed in equation (3.1). For this test, the best-fit value
was 84% two-dimensional, 16% slab. Both tests strongly support the conclusion that fluctuation
energy is mostly in Fourier modes with their wavevectors k perpendicular to the mean field B0.

The ‘spectrum ratio’ test has since been employed on many other solar wind intervals
[43,45–47,51,59] (table 1). Inertial range results are mostly consistent with an energetic
predominance for two-dimensional modes, with the two-dimensional fraction ranging from
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50% to ≈ 100%. Moreover, in the inner heliosphere, there is only weak distance or wind speed
dependence in the results, at least towards the high-frequency end of the inertial range [45,46].

Slab + 2D-type fits similar to equation (3.1) have been widely used [48–50,53,60–62] and these
also report high values for the inertial range two-dimensional fraction, e.g. 70–100%. Interestingly,
Forman et al. [62] compared slab + 2.5D fits and CB fits for Ulysses inertial range data, finding that
both produce good agreement with the observations, although the CB fits are a little better.

He et al. [63] investigate the radial evolution of inertial range spectral anisotropy using Helios
data (0.3–0.87 AU). They report two-dimensional energy spectra that exhibit enhanced power
along a ridge at k⊥ > k‖, roughly similar to a CB scaling. Another power enhancement exists close
to the k‖ axis, suggestive of a slab component. At larger distances, the ridge is more oblique
and the slab-like component weaker. These results are obtained using a method, new to the
community, that involves fitting of processed data at an intermediate stage. First, the observations
are used to calculate a two-dimensional (r⊥, r‖) correlation function, with its arguments relative
to local mean fields Bloc

0 . Second, a direction θk is chosen, and the two-dimensional function
integrated over the coordinate normal to that direction to give a one-dimensional (projected)
correlation function. This is done for many different θk. Third, stretched exponentials are fitted
to each of these one-dimensional projections (to ensure their Fourier transforms are positive),
and then these two-dimensional fits are Fourier transformed and reassembled using their θk to
give the three-dimensional spectrum. Further calibration of this procedure on known (synthetic)
two-dimensional spectra would be welcome.

We turn now to the dissipation range (frequencies above ∼ fci), where spectral anisotropy
observations are a little puzzling. When the spectrum ratio test is employed, the usual finding
is that slab fluctuations are energetically dominant. See the rows in table 1 with either ‘diss’
or a minimum frequency of 0.3 Hz in the ‘freq. range’ column. Note that in all cases where
both inertial range and dissipation range scales were investigated as part of the same study,
the two-dimensional fraction for the dissipation range is substantially smaller than that for the
inertial range, and usually less than 50%. A possible explanation is that the two-dimensional
component is preferentially dissipated and associated with a steepened spectrum at those scales
[43,53,64]. Another possibility is that temperature anisotropy instabilities excite whistlers and/or
ion cyclotron waves at quasi-parallel wavevectors with k‖di ≈ 1, leading to increased dissipation
range energy for the slab-like component [9,65,66].

However, the situation is complicated, as shown, for example, by Podesta [60]. Using STEREO
data and a wavelet-based approach (with local mean fields), Podesta determined the fluctuation
power at different angles ψ between the solar wind velocity and Bloc

0 . Here, we are interested
in the power in the angle band near 90◦ (the quasi-k⊥ power), and that near 0◦ (the quasi-k‖
power). Their ratio, P( f ;ψ ≈ 90◦)/P( f ;ψ ≈ 0◦) = P⊥/P‖, is a measure of the dominance of quasi-
k⊥ power over quasi-k‖ power. An example from [60] is reproduced here as figure 2a. The
dissipation range behaviour is interesting: first the spectral anisotropy decreases, then increases to
a significant (absolute) maximum for the evaluated scales, at ≈ 1 Hz, and then decreases sharply
to its lowest dissipation range value. At all frequencies shown, the quasi-k⊥ power is dominant,
which differs from the typical dissipation range results listed in table 1, although the trend at
higher f is towards reduced dominance. Podesta attributes the initial dissipation range decrease
of P⊥/P‖ to an enhanced population of nearly parallel-propagating waves at k‖ρi ∼ 1, owing to
an unknown source, and the peak to a strong perpendicular cascade at those f . Results from eight
other intervals examined by Podesta [60] are similar.

Other studies, including those employing the multi-spacecraft k-filtering technique [68,69],
have also found that the quasi-perpendicular wavevectors remain energetically dominant in the
dissipation range [67,70–75], as in the inertial range. In k-filtering, multi-spacecraft observations
(e.g. from Cluster) are used to construct the spectral energy density as a function of k = (kx, ky, kz)
and spacecraft frame frequency, ωsc. Then, at each ωsc, peaks in the energy density are sought
and the associated ks employed, with the Doppler shift k · U, to determine the frequencies in the
plasma rest frame, and hence points on dispersion relations. Energy not associated with ωsc–k
peaks is apparently not usually considered further, or is treated as incoherent noise ([69,74]). The
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Figure 2. (a) Wavevector anisotropy from 1 AU study by Podesta [60]. P⊥ and P‖ are the reduced magnetic spectra in angular
bins close to the k⊥ and k‖ axes. Copyright AAS. Reproducedwith permission. (b) Observational (1 AU) frequency–wavenumber
pairs (circles) and linear theorydispersion relations for KAWsand fastmodeswithwavevectors at the statedangles (solid curves).
Dashed curves are associated linear theory damping rates, γ . Highly oblique KAWs are not inconsistent with the data, but the
data are also consistent with low-frequency quasi-two-dimensional turbulence. Reprintedwith permission from Sahraoui et al.
[67]. Copyright 2010 c© American Physical Society. (Online version in colour.)

method avoids using the Taylor frozen-flow approximation (appendix A), and thus can provide
more direct information on spatial structure.

Figure 2b, reproduced from Sahraoui et al. [67], presents some k-filtering results from Cluster,
finding ω�Ωci/10 when 0.05< k⊥di � 2, where ω is the plasma frame Fourier frequency.
Although this is consistent with linear Maxwell–Vlasov dispersion relations for very oblique
KAWs (θkB0 = cos(k̂ · B̂0) ≈ 88◦), with such strong obliquities of the ks the results can also be
interpreted as indicating the presence of relatively energetic quasi-two-dimensional turbulence.
Indeed, Narita et al. [71,72,76,77] use essentially the same multi-spacecraft technique, over similar
wavenumber ranges, and state that they find no evidence of a linear dispersion relation. They
favour an explanation in terms of well-developed strong quasi-two-dimensional turbulence.

Recently, two-component and/or CB energy spectrum models have been employed to
determine the associated normalized reduced magnetic helicity spectra, σm, as a function of
time scale and ψ , the angle between the solar wind and Bloc

0 [66,78]. These are compared with
observational determinations of σm, in efforts to constrain the free parameters of the energy
spectra models. The scales investigated are mostly in the inertial range but, as in many of the
studies discussed above, the beginning of the dissipation range is also sampled. The best fits are
obtained when the bulk of the energy is in quasi-k⊥ modes.

Summarizing the dissipation range results, those obtained using the ‘spectrum ratio’-type
tests usually indicate a preponderance of quasi-k‖ power, whereas most studies employing other
techniques find the quasi-k⊥ power is dominant. A resolution of this discrepancy would be
welcome. Other recent reviews have further discussion of dissipation range anisotropy [4,6].
Given the disparate results from the various types of studies, it is evident that further work
is needed.

Finally, we note that cosmic ray scattering data also provide support for spectral anisotropy.
Models for the scattering based on slab waves show poor agreement with observations, whereas
slab+2D-type models display much better agreement [19,38,39,79–81].

(b) Theoretical explanations
Let us sketch the weak turbulence argument for the development of spectral anisotropy and
enhanced perpendicular energy transfer in incompressible MHD [28] (see also [82–85]). The
primary assumption is that at leading order the fluctuations are Alfvénic, meaning that at each
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point in space either v(x, t) = ±b(x, t), or there is a superposition of these two states. Equivalently,
in Fourier space, for (inertial range) wavevectors k, one has v(k, t) = ±b(k, t), or a superposition of
these two states. In the absence of nonlinear effects, such fluctuations are propagating (shear)
Alfvén waves with frequencies ω(k) = ±k · B0, provided k · B0 = 0. The waves with a group
velocity (vg = ∇kω) parallel to B0 have ω(k) = k · B0,3 whereas those with an antiparallel group
velocity have ω(k) = −k · B0. However, two-dimensional fluctuations—those with k · B0 = 0—are
not linear Alfvén waves and they do not propagate along B0. When their nonlinear self-
interactions are strong, they are the elements of two-dimensional turbulence. In ‘wave language’,
they may be called non-propagating modes or vortex modes. Whatever they are called, they play
a crucial role in the argument.

The next step is to use the leading-order Alfvénic fluctuations to calculate the first-order
nonlinear corrections. Recall that for incompressible three-dimensional MHD, ∂z−/∂t = −z+ ·
∇z− + · · · , with an analogous equation for z+. This Elsasser form highlights the key point that
nonlinear interactions only occur if both z+ and z− are non-zero. Now, consider the interaction of
Fourier modes z+(k′) and z−(k′′), with respective frequencies ω(k′) = −k′ · B0 and ω(k′′) = k′′ · B0.
These will combine to drive z−(k) which has frequency ω(k) = k · B0—if the well-known matching
(resonance) conditions for the wavevectors and frequencies are satisfied: k = k′ + k′′ and ω(k) =
ω(k′) + ω(k′′). Dotting the former with B0 and using the equations for the frequencies yields

k‖ = k′
‖ + k′′

‖ (quadratic nonlinearity) (3.2)

and
k‖ = −k′

‖ + k′′
‖ (frequency matching). (3.3)

Clearly, these can both be true only if k′
‖ = 0, i.e. z+(k′) is a two-dimensional mode.4 Physically,

this can be interpreted as two Alfvén waves with the same k‖ and frequency, propagating through
a ‘two-dimensional structure’.5 The two-dimensional structure enables the transfer of energy
from one wave to the other, necessarily at constant k‖, so that it is the perpendicular structure
of the waves that alters. Assuming approximate locality of the Fourier space interactions, i.e.
k′

⊥ ∼ k′′
⊥, means that typically |k⊥| � |k′′

⊥| and the net energy transfer will tend to be towards
larger k⊥: a forward cascade in the k⊥ plane. Because, at this order, no energy is transferred in the
parallel direction, it is evident that the energy spectrum will become anisotropic. In essence, this
is an argument about how fluctuations that retain a strong wave-like character (i.e. are non-two-
dimensional) evolve. Details of the formal application of weak turbulence theory are available
[84,85], including a derivation of the associated powerlaw slopes for the energy spectra. For the
zero cross helicity case, the inertial range energy spectra scale as k−2

⊥ , with the k‖ dependence set
by the driving and/or initial conditions (ICs).

Gary [86] has presented a similar analysis for modes in linear Vlasov–Maxwellian plasmas
with βp = 0.01–1. Assuming a two-dimensional (radial) k-space cascade, and the interaction of
either three Alfvén modes, three magnetosonic modes (both at MHD scales: kdi < 0.5) or three
magnetosonic-whistler modes (0.4< kdi < 4) he generally finds that the cascade leads to energetic
predominance for k⊥ > k‖. The exception is the βp = 1 magnetosonic mode cascade, which seems
to favour k⊥ ≈ k‖. One conclusion is that there appear to be no cases in which an enhanced parallel
cascade occurs.

Although this weak turbulence approach—nonlinear corrections to the linear wave
dynamics—appears plausible for systems with low levels of nonlinear activity, it is striking, and
intriguing, that spectral anisotropy is also a well-observed feature in numerical simulations of
strong MHD turbulence, that is, in systems where the nonlinear effects are strong, rather than
perturbative [28,36,55,83,87–90]. A strong turbulence explanation is needed.

3Since then exp (i[k‖z − ω(k)t]) → exp (ik‖[z − B0t]), which has the correct sense of propagation. Note that k‖ = k · B̂0 may be
positive or negative.
4The special case where all three of k, k′ and k′′ are perpendicular to B0, giving a purely two-dimensional interaction, is
sometimes referred to as the ‘trivially resonant’ case.
5See [84] for a Bragg scattering analogy.
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One possibility is that even in strong turbulence, the fluctuations retain some wavelike
characteristics, such as time scale, eigenstructure or polarization for the mode. CB
phenomenologies include such assumptions, as does the recently posited quasi-linear premise
which states that ‘some properties of magnetized plasma turbulence can be understood by
modelling the turbulence as a collection of randomly phased linear waves’ [42], the idea being
that the nonlinear interactions transfer energy between linear wave modes, with the latter in some
sense dominant, because they retain (at least some) linear wave characteristics. In particular, it
is argued that for ‘a turbulent fluctuation with a given wavevector, the amplitude and phase
relationships between different (vector) components of that fluctuation are likely to be related
to linear eigenfunctions of the characteristic plasma wave modes’. Numerical and observational
evidence for and against this premise is discussed by Klein et al. [42], and it is not yet clear whether
the premise correctly describes the physics of turbulence. Note that as quasi-linear premise
proponents acknowledge, third- and higher-order correlations will probably be incorrect, because
the random phase assumption makes it difficult to achieve the appropriate phase correlations
inherent in these higher-order correlations. Such correlations are of course essential to the
existence of coherent structures, including current sheets. Thus, magnetic reconnection—robustly
seen in MHD, hybrid and particle-in-cell simulations, and solar wind and magnetospheric
observations—may be difficult to reconcile with the quasi-linear premise (cf. [11]). Note that weak
turbulence approaches do not always require random phases [91,92].

We are aware of only one explanation for spectral anisotropy that is neither perturbative nor
phenomenological and also allows for strong turbulence [31,93]. It is based on the coupling
of third-order (and higher) correlations to the second-order correlations (e.g. the energy
spectrum), and we now outline it. Consider the infinite set of two-point correlation functions
in homogeneous incompressible MHD, such as R+

ij (r, t) = 〈z+
i (x)z+

j (x + r)〉 ≡ 〈z+
i z+′

j 〉 and Qi(r, t) =
〈z−′

i z+ · z−′〉, where the prime (′) is shorthand for evaluation of the field at position x + r, rather
than x. Their evolution is governed by the unclosed hierarchy of von Kármán–Howarth (vKH)
equations [93–97]. We write the first three of these schematically for a generic fluctuation u,

∂

∂t
〈uu′〉 = 〈uu′u′〉 + ν〈uu′〉, (3.4)

∂

∂t
〈uu′u′〉 = 〈uuu′u′〉 + B0j〈uu′∂ju

′〉 + · · · (3.5)

and
∂

∂t
〈uuu′u′〉 = 〈uuu′u′u′〉 + B0j〈uuu′∂ju

′〉 + · · · . (3.6)

Most terms involving pressure and dissipation (e.g. viscosity, ν) are not shown, and the only
spatial derivatives indicated are those involving B0 · ∇ = B0j∂j. (The schematic equations are thus
not dimensionally correct. See Wan et al. [93] for the full equations.) The vKH equations hold for
all homogeneous flows, whether laminar, weakly turbulent or strongly turbulent.

Inspecting the terms in the vKH equations, it is striking that B0 appears in the third-
order and all higher-order equations, but not in the second-order one. And yet, simulations,
solar wind observations, and theories and phenomenologies all indicate that the mean field
exerts considerable influence on second-order correlations, inducing anisotropy in the energy
spectrum, for example. This apparent inconsistency is resolved by considering the coupling of
these equations. Equation (3.5) shows that 〈uu′u′〉 has an explicit dependence on B0 (and also
an implicit one via the dependence of the fourth-order correlation on B0). In particular, its
characteristic time scale will be a function of B0, presumably related to the Alfvén time scale
for the lag r. Hence, the evolution of 〈uu′〉, equation (3.4), has a hidden, or implicit, dependence
on B0 through the third-order correlation, and this produces anisotropy at second order.

Note that this explanation does not assume anything about the nature of the fluctuations
(e.g. wave-like or turbulence), except that the correlations are homogeneous. On the other hand,
although the pathway for the development of second-order correlation anisotropy is clear (with
the B0 dependence ‘cascading in’ from (all) higher orders), the specifics of the process are not
apparent. In this sense, we are still seeking a full strong turbulence explanation.
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4. Component (variance) anisotropy
This is conveniently quantified using ratios. There are numerous possible choices, many of which
have seen use in the literature; however, provided the same averaging procedure is used in each
case, it is straightforward to transform between these variants. Here, we employ a mean-field-
aligned coordinate system with B0 along the z-axis, and define the magnetic anisotropy ratio for
fluctuations b = (bx, by, b‖) as

Ab =
〈b2

x + b2
y〉

〈b2
‖〉

= 〈b2
⊥〉

〈b2
‖〉

, (4.1)

where 〈· · ·〉 is an appropriate averaging operator, which might be global or local and carried out
in either physical space or Fourier space. In addition, whether B0 is computed as a global or
local mean is an important issue [23,48,60,61,98–102]; see appendix B. The velocity anisotropy
ratio, Av, is defined analogously. A popular alternative ratio is the magnetic compressibility,
C‖ = 〈b2

‖〉/〈b2
⊥ + b2

‖〉, although it is sometimes defined as the square root of this. We remind
readers that for averaging intervals shorter than a correlation length or correlation time, Ab = 2
does not necessarily imply that the energy distribution is anisotropic. See the discussion around
equation (2.3).

Table 2 summarizes the observational results for Ab, and also Av in the few cases where it has
been reported. Pertinent features of each study include the wind type sampled (e.g. fast, slow,
trailing edge of high-speed stream), heliocentric distance and the time scale (or frequency range)
over which the fluctuations were averaged to obtain the anisotropy ratios. In many cases, the
mean field was calculated as a global average, i.e. over the whole interval. However, in some
structure function- or wavelet-based studies, a local mean field Bloc

0 (x) is used, and this has been
argued to be a more physically motivated approach, because the fluctuations should respond to
the local conditions [98,100,101]. Several studies [101,102] indicate that using the global mean field
rather than a Bloc

0 typically leads to a larger estimate for 〈b2
‖〉, and thus a reduced Ab estimate.

Some trends are evident, although caution should be exercised given the relatively small
number of studies listed. First, the dominance of perpendicular power over parallel power is
essentially ubiquitous in the inertial range, often by more than a factor of 10. Second, Ab appears
to increase with heliocentric distance up to ≈ 1 AU, and decrease thereafter. The data suggest this
is the case both at high latitudes (where the wind is almost always fast), and in the ecliptic. Third,
Ab >Av in both fast wind and slow wind, and from 0.3 to 10 AU. Finally, although not particularly
clear from the table, above the proton gyrofrequency Ab( f ) decreases (often monotonically) with
f towards isotropy. In particular, Kiyani et al. [102] report, using 1 AU data, how Ab goes from
anisotropic values at MHD scales to isotropic ones as the electron gyroradius is approached
(figure 3). An increasing relevance of KAWs is a candidate explanation, and, more generally, they
show how the Hall term in Ohm’s law causes the parallel variances to increase at sub-ion scales.
Other studies report results consistent with this behaviour [43,45,67,108–111].

Perri et al. [99] have analysed Cluster data in terms of the eigenstructure of the magnetic
variance matrix [103,112] averaged over 13 different time scales from 0.09 to 360 s. They report
on the statistics of the ratio of the maximum eigenvalue to the minimum one, Γ , which is related
to Ab. Indeed, if the MVD is along the mean field, then Ab ≥ Γ . This is typically the case at large
scales in the solar wind, but is not as likely at smaller scales [99], and thus Ab can be less than Γ .
Because Perri et al. report the statistics for Γ and the MVD angle to Bloc

0 , it is not straightforward to
determine Ab for their data. They find that Γ > 1 almost always, and that the most probable values
are large: Γ ≈ 100 for averaging times of 0.2 s and 1.5 s, and Γ ≈ 30 for 46 s averages. Overall,
at both inertial range and dissipation range scales, substantial and scale-dependent MVD-type
anisotropy is found. The anisotropy increases at f > fci, with the fluctuation amplitude tending to
lie in the direction of maximum variance (i.e. be approximately one-dimensional). Note that this
is not necessarily inconsistent with the results discussed in the previous paragraph, because as
the averaging scale decreases, the MVD tends to lie at a larger angle to the local mean field [99].

 on April 9, 2015http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


13

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A373:20140152

.........................................................

Table 2. Anisotropy ratios for the magnetic (and velocity, where available) fluctuations from observational solar wind studies.
Data are from the ecliptic unless the ‘wind type’ column states ‘high lat.’ ‘Mixed’ means both fast and slow wind intervals
are included. In the time scales column, times indicate the averaging period, whereas frequencies indicate that averaging
occurs over frequencies; see original papers for details. The high frequency end of the inertial range is, roughly, the proton
gyrofrequency (approx. 0.1 Hz at 1 AU). Essentially, all inertial range cases exhibit ‘excess’ perpendicular power. Some studies
[45–47,59] also show scaling withβp and relative fluctuation strength.

wind type distance (AU)
〈b2⊥〉
〈b2‖〉

〈v2⊥〉
〈v2‖〉

time scales comments reference

fast 0.7–1 8 3 min, 22 min Mariner 5 [103]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.7–1 5 3 h
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

trailing edge 0.3 34 3 min Helios [104]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.9 56
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

trailing edge 0.3 13 13 1 h Helios [105]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.9 19 11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mixed 1 9 4 1 h Voyager [106]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 6 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fast, high lat 1.7 39 5 min Ulysses [107]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.4 35
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.8 29
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mixed 1 3–53 0.01–0.3 Hz Wind [43]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 2.4–13 0.5–1.5 Hz
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mixed 0.3–1 1–45 0.01–0.1 Hz Helios [46]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fast 1 1–50 0.008–0.01 Hz ACE [45,47,59]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 1–40 0.3–0.8 Hz
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

slow 1 1–100 0.008–0.01 Hz
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 0.6–20 0.3–0.8 Hz
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

slow 1 5–600 0.02–2 Hz Cluster [108]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fast 1 3–20 0.03–4 Hz Cluster. Bloc0 [101,109]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fast 1 1–19 0.004–60 Hz Cluster. Bloc0 [102]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Explanations for variance anisotropy in terms of linear wave properties have a seductive
simplicity. Numerous authors have used linear kinetic theory to calculate polarizations and
other features associated with specific wave modes (e.g. KAWs, whistlers), and then compared
these results with observations. Unfortunately, Ab is often insufficient, at least on its own, to
make an unambiguous identification of a mode [42,101]. The point has been made that it is
important to use the kinetic wave modes, because there are important differences between
them and the MHD wave modes [42,101]. For instance, the collisionless Vlasov–Maxwell Alfvén
mode has a component along the mean field (finite Ab), whereas the MHD Alfvén mode is
polarized strictly transverse to it (Ab = ∞). Reasonable agreement between linear theory and
observations is used to conclude in favour of one mode or another. The majority of studies
cite KAWs as the most likely candidate, with whistlers typically (but not always [64]) being
a poor fit to measurements [42,43,64,101,108,109,113,114]. Note that linear theory predictions
are overwhelmingly determined using a uniform and constant global mean field, whereas recent
observational results often employ space (or time)-dependent Bloc

0 . However, if the direction, say,
of Bloc

0 varies on a time scale only somewhat slower than that of the fluctuations of interest, then
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Figure 3. Magnetic compressibility versus wavenumber from a Kiyani et al. [102] study at 1 AU. Local mean fields are typically
employed, although a comparisonwith an analysis based on the global field is also shown, alongwith some linear Vlasov theory
results. In the dissipation range, note the tendency towards isotropy with decreasing length scale. Copyright AAS. Reproduced
with permission. (Online version in colour.)

Bloc
0 is not a very stably defined mean quantity. The relevance of the linear theory results to the

observational ones is then unclear. Similar comments apply to the length scale over which Bloc
0

is defined [23]. Moreover, these explanations all presume that the fluctuations are dominantly
wave-like. Although there is some numerical support for the wave-based explanations of variance
anisotropy, for example in particle-in-cell simulations [113] and gyrokinetic simulations [101], it
remains unclear whether strong turbulence has this property, at either MHD scales or sub-ion
ones [115–117]; cf. §3b.

Another way of analysing variance anisotropy is in terms of the power in the toroidal and
poloidal components of the fluctuations (and the longitudinal component for v). As stressed in §2,
this decomposition is general and does not imply the fluctuations are waves. Nonetheless, the
toroidal and poloidal directions do match up cleanly with the polarizations for linearized MHD
waves, Alfvén and magnetosonic, respectively. Wicks et al. [118] performed such an analysis using
Ulysses data. A physical interpretation of their results is that (inertial range) solar wind turbulence
mostly consists of toroidal fluctuations that have energy concentrated in quasi-perpendicular
wavevectors. The poloidal component is less energetic, for a given k, yielding a net elliptical
polarization to b(k).

To explore this toroidal/poloidal anisotropy further, we present new results from a set of
decaying compressible (polytropic) three-dimensional MHD turbulence simulations (see [119] for
the equations solved). A periodic pseudospectral method with a resolution of 512 Fourier modes
in each Cartesian direction was employed. Figure 4 shows some quantities related to variance
anisotropy for three particular runs, each with uniform mean field strength B0 = 2, initial plasma
beta βp = 1, initial sonic Mach number Ms = 0.5, and initially excited wavevectors satisfying
3 ≤ |k| ≤ 9. In the column headings, the angle brackets 〈·〉 denote averaging over the whole
simulation domain, and perpendicular and parallel are computed with respect to the global mean
field B0ẑ. The first column of figure 4 indicates that Ab >Av (as seen in the solar wind), aside from
some early-time transients associated with generation of either longitudinal velocity fluctuations
(top two rows) or toroidal and poloidal v (bottom row), depending upon the ICs. From the
second column, it appears that when there is some toroidal b present initially, the dynamics
acts to make this component ≈ 70–80% of the fluctuation magnetic energy, at least for these
particular simulations. The v fluctuations evolve similarly, although their toroidal component is
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less dominant because an O(M2
s ) longitudinal velocity component emerges [120]. The final column

of figure 4 displays three different v2/b2 ratios: that for all the fluctuations (rA), that for just the
toroidal components (rtor

A ), and that for just the k‖ = 0 components (r2D
A ). Although there can be

significant fluctuations about the average values, in all cases (i) rtor
A ≈ 1, which is not inconsistent

with this component being strongly Alfvén wave-like, (ii) r2D
A < 1 (except at short time), which, as

expected, is inconsistent with wave-like features [90], and (iii) rA > rtor
A is a little bigger than 1.

The energetic dominance of the toroidal fluctuations in these turbulence simulations is
consistent with the Wicks et al. [118] results; however, solar wind observations also usually
report rA < 1, corresponding to ‘excess’ magnetic energy rather than the ‘excess’ velocity energy
seen here. Part of the explanation may be that the simulations have a two-dimensional energy
fraction of ≈ 10% of the fluctuation energy—which is quite different from the typical ∼ 80% two-
dimensional–20% slab results discussed in §3. A fuller study exploring a range of βp values and
two-dimensional energy fractions is underway.

5. Summary
Regarding the velocity and magnetic field fluctuations, one can state with confidence that
in the solar wind inertial range, observations indicate that they are predominantly polarized
transverse to the mean magnetic field, and that their spectral energy distribution is not
isotropic. Indeed, there is multi-pronged evidence for fluctuations with quasi-perpendicular
wavevectors being considerably more energetic than those with quasi-parallel wavevectors (of
comparable magnitude). These features are consistent with channelling of energy towards small
perpendicular scales. It appears to be more difficult to move inertial range energy towards small

 on April 9, 2015http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


16

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A373:20140152

.........................................................

parallel scales. Thus, dissipation and heating processes that favour large quasi-perpendicular
wavenumbers may be of most relevance.

More recently, results extending well into the solar wind dissipation range have been presented
and some of these indicate that the spectral and variance anisotropies of the fluctuations may
differ from those typically seen in the inertial range. However, for spectral anisotropy the results
are not all in accord so that its nature is still uncertain. For example, fits of the slab + 2D kind
suggest quasi-parallel wavevectors are energetically important, whereas other techniques often
report energetic dominance for quasi-k⊥ fluctuations. For variance anisotropy, observational
analyses are more consistent and there are good indications that it progressively weakens with
scale, towards isotropy at about the electron gyroradius. Note that at kinetic and smaller length
scales the fluctuations can still have nonlinear time scales comparable to the typical wave-
based time scales, often ∼ 1/Ωci [121]. Naturally, additional physics comes into play at kinetic
scales. Wave–particle effects, distinct cascades and modified and/or new wave modes may all be
significant.

At present, wave-based explanations and turbulence-based explanations are both viable
candidates for the observed anisotropies and it may well be that this represents the true situation.
New observational data—from upcoming missions such as Solar Orbiter and Solar Probe Plus—
should assist with uncovering the specifics of anisotropies at small scales in the solar wind, and
thereby further our understanding of heating and dissipation in the medium.

Acknowledgements. We thank K. Kiyani, J.J. Podesta and F. Sahraoui for kindly supplying figures from their
papers for reproduction here.
Funding statement. This research was supported in part by the UK STFC, US NSF Solar Terrestrial grant nos. AGS-
1063439 and SHINE AGS-1156094, the NASA Heliospheric Grand Challenge project NNX14AI63G and Solar
probe Plus ISIS project (SWRI subcontract D99031L), and the NASA/EPSCoR Programme (NNX13AB30A).

Appendix A. Types of spectra and spectral ranges
Turbulence theories and phenomenologies make considerable use of wavevector (k) spectra
[13,18]. The most fundamental of these is the modal spectrum E(k), which describes the
distribution of energy in three-dimensional wavevector space. The total energy is Etot =∫∫∫

E(k)d3k. Several different integrals of the modal spectrum are useful. The omnidirectional
spectrum is obtained by employing spherical polar coordinates in k-space and integrating
over the two angular coordinates: E(k) = ∫∫

dθ dφk2 sin θE(k, θ ,φ), and is particularly relevant
for isotropic distributions. The reduced spectrum (relative to the k3 direction) is Ered(k3) =∫∫

dk1 dk2E(k1, k2, k3), where k1, k2, k3 denotes some choice of Cartesian coordinates. For
measurements made in systems with a strong mean flow—like the solar wind—it can be
approximated using a timeseries obtained at a single point in space, via the Taylor ‘frozen flow’
assumption [12,122]; see below. Except in special high symmetry cases, it is not possible to obtain
E(k) from the omnidirectional or reduced forms [18,123]. This is because the reduced spectrum is
a projection of the modal spectrum, and hence different modal spectra can yield the same reduced
spectrum.

Spacecraft speeds are usually much slower than those of the supersonic solar wind. Thus, for
time intervals that are not too long, the measurements made are a timeseries at approximately
the same point in space. These datasets can be used to calculate temporal correlation functions
and frequency power spectra, say P(f ). Let the mean solar wind speed be U = UswR̂, where R̂ is
the unit vector for the heliocentric radius coordinate. Under the Taylor frozen-flow assumption
[122], namely that Usw greatly exceeds typical wave speeds and fluctuation speeds, the frequency
spectrum is equivalent to a reduced wavenumber spectrum: Ered(k3) = UswP(f = k3Usw/2π ),
where k3 = k · R̂ is the component of k parallel to U, and the wavevector components transverse
to U have been integrated over [123]. This enables some information about the spatial structure
of the turbulence to be obtained from measurements at a single position.

Spectral ranges. For large Reynolds-number isotropic hydrodynamic turbulence, there are three
scale (or wavenumber) ranges of particular interest. These are related to two characteristic scales
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of a steady turbulent flow: the integral scale6 Lcor = (π/2Etot)
∫∞

0 (E(k)/k) dk and the Kolmogorov
dissipation scale �diss = (ν3/ε)1/4, where ν is the kinematic viscosity of the fluid and ε the rate
of energy injection. At the large scales is the energy-containing range, with scales �∼ Lcor, often
associated with the scale of the driving. The dissipation range comprises the small scales �� �diss,
and viscous dissipation is the dominant physics there. In between these—and well separated
from both of them—is the inertial range, �diss � �� Lcor, for which the direct effects of forcing
and dissipation are treated as negligible. The physics of the inertial range is then argued to be
self-similar, leading to its famous Kolmogorov spectrum E(k) = Cε2/3k−5/3, with C the order unity
Kolmogorov constant. MHD turbulence is more complicated, in part because of anisotropies and
wave effects associated with mean fields [14]. Plasmas, too, have additional richness.

A few words are in order regarding the definition of the inertial range and, particularly, the
dissipation range in solar wind data, because plasma effects lead to some differences from the
hydrodynamic case. For common 1 AU (ecliptic) conditions the inertial range frequencies are an
MHD-scale band from ∼ 10−4 to ∼ 10−1 Hz, and approximate powerlaw behaviour is often seen.
The high-frequency end is roughly the proton gyrofrequency, fci, and there is usually a fairly sharp
transition about there to a steeper powerlaw, with a slope that shows considerable variation [45].7

If the solar wind were a viscoresistive magnetofluid, this f > fci range would correspond to a fluid
dissipation range with approximately exponential falloff and dynamics dominated by viscous
and resistive diffusion. Instead, however, the solar wind is a strongly ionized plasma and this
range may involve dissipation processes that are more complicated than viscous diffusion. For
example, dissipation might occur via wave–particle interactions, wave damping and/or further
cascades [7–11]. These processes are expected to become relevant at scales near (and smaller than)
the proton gyroradius (ρi) and/or proton inertial length (di = VA/Ωci). Although the physics is
not exclusively dissipative, the solar wind literature still commonly refers to this set of scales as
the dissipation range, and we follow this usage herein. An alternative designation is the dispersion
range [64,124].

Note that when the wavevector energy spectrum is anisotropic, owing to a mean field B0, say,
the frequency at which P(f ) transitions from the inertial range to the dissipation range can depend
on the angle the measurement direction makes with B0 [43,125].

Appendix B. Mean magnetic fields: global and local
An important issue for many types of anisotropy is the scale over which the mean magnetic field is
defined. For a local mean field, Bloc

0 , it might be the same scale as that of the considered fluctuations,
or perhaps 2, 5 or 10 times that. Studies employing either wavelets or structure functions now
commonly take this approach. For a global mean field, B0, the averaging occurs over the whole
data interval (or simulation domain), so that B0 is uniform. The particular mean field used can
lead to significant differences in results [23,100,101]. Possibly the most well-known solar wind
case concerns the energy spectrum and how the inertial range slope depends on the angle between
the measurement direction and the direction of B0 or Bloc

0 . No systematic difference in slopes is
seen when a global field is used, but steeper spectral slopes are seen at small angles when local
mean fields are employed (see [6] for a review).

Note that wavelet ‘spectra’ computed relative to local mean fields are, in fact, not spectra in the
classical second-order moment sense [23]. Rather, because the direction of Bloc

0 is itself a random
variable, wavelet ‘spectra’ also involve third- and higher-order correlations.

Recall that the properties of linear wave modes are typically derived assuming a homogeneous
background with a mean magnetic field that is uniform and constant [126]. If one wishes to
investigate the properties of wave modes relative to a Bloc

0 , this is clearly a more complicated
situation. In the extreme cases where Bloc

0 is defined over the same scale as the fluctuations,

6This is closely related to the correlation scale and the energy-containing scale [13,18].

7When the electron gyrofrequency is reached the behaviour changes again, with claims for powerlaws, exponential
dependence and combinations of these. See [4] and references therein.
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it is possible or even probable that Bloc
0 changes direction on the same time scale that the

fluctuations evolve. It is then difficult to see how features requiring some stableness relative
to the Bloc

0 direction—for example, k exactly perpendicular to Bloc
0 for supposed analogues of

ion Bernstein modes—can persist long enough to justify their interpretation. Similar comments
apply to exactly two-dimensional turbulence. However, because two-dimensional turbulence
does not rely on a dispersion relation or specific modal eigenstructures, the exactness of the two-
dimensionality is not as relevant, and quasi-two-dimensional turbulence (i.e. allowing large-scale,
but not small-scale, dependence on the parallel coordinate) remains a sound concept.

There are other issues associated with averaging intervals that are shorter than a correlation
time or correlation length. In particular, such short averaging intervals may produce unconverged
spectral estimates, containing stochastic anisotropies owing to undersampling of the data.
Separating such distortions from the true signal is difficult. Thus, observations of variance
anisotropy do not necessarily imply actual anisotropy of the energy spectrum! See the discussion
around equation (2.3) [18–21].
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