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Abstract.
We present a model for the transport of solar wind fluctuations, based on the assumption that they can be well-represented

using two distinct components: aquasi-2D turbulencepiece and awave-likepiece. For each component, coupled transport
equations for its energy, cross helicity, and characteristic lengthscale(s) are derived, along with an equation for the proton
temperature. This energy-containing “two-component” model includes the effects of solar wind expansion and advection,
driving by stream shear and pickup ions, and nonlinear cascades. Nonlinear effects are modeled using a recently developed
one-point phenomenology for such a two-component model of homogeneous MHD turbulence [1]. Heating due to these
nonlinear effects is included in the temperature equation.Numerical solutions are discussed and compared with observations.

1. BACKGROUND

Spatial transport of MHD-scale fluctuations in the solar
wind has been investigated for over 40 years. It is, how-
ever, yet to be completely understood. Even in the sim-
plest case of radial transport there are numerous effects
that may need to be represented to obtain accord with ob-
servations. These include wave and turbulence activity,
forcing processes (e.g., stream shear, pickup ion driving),
and the spatial and spectral anisotropy of the fluctuations.

Studies which take into account some or all of these
processes have appeared in the literature [e.g., 2–13],
with useful reviews available [13–15]. Many of these
are concerned with the transport of quantities based on
energy-containing scales, e.g., rms values of the fluctu-
ation fields and their characteristic lengthscales. More-
over, they often approximate the fluctuations as being of
a single kind, e.g., only Alfvén waves or only turbulence.

However, there are multiple lines of support for the
presence—and relevance—of at least two distinct types
of fluctuations. For example, from early solar wind ob-
servations it was inferred that both turbulence features
[16] and wave features [17] were present. Subsequent
support has come from numerous observational studies
[18–27], theory [28–32], and simulation studies [e.g.,
33–36]. Furthermore, the physics of how the fluctuations
are driven is of at least two types: (stream) shear drives
low-frequency fluctuations, while pickup ions inject en-
ergy at much higher frequencies and shorter lengthscales.
It is clearly problematic to address both types of driv-
ing consistently with only a single component. Thus, it
would seem appropriate, and advantageous, to develop

an energy-containing style model for the transport of so-
lar wind fluctuations which allows for distinct types of
fluctuations. We present such a “two-component” model
below. A major advantage of this approach is that it
yields much improved radial profiles for the correlation
lengths, as compared with observations. (Note that mod-
els for the spatial transport ofspectrarather than energy-
containing range quantities, typically do include two (or
more) components [14, 37–41].)

2. DEVELOPMENT OF THE MODEL

2.1. Two-component turbulence

A key ingredient for a two-component transport the-
ory is a suitable model for the nonlinear interactions
of the two components. A recently developed energy-
containing phenomenology for homogeneous MHD tur-
bulence with a mean magnetic field [1] provides this ele-
ment. It models the fluctuations as two interacting com-
ponents, conveniently (if not quite accurately) referred
to asquasi-2Dand wave-like. Alternative designations
are the low-frequency and high-frequency pieces. Each
component is represented by its energy, cross helicity,
and characteristic lengthscale (perpendicular to the mean
magnetic field). Evolving the wave-like component also
requires knowledge of its characteristic parallel scale,λ‖.
We recall the form of this phenomenology before pro-
ceeding to the full transport model.

Denote the quasi-2D energy asZ2/2, the wave-like en-
ergy asW2/2, and their respective perpendicular length-
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scales asℓ and λ . The simplest version of the phe-
nomenology is the zero cross helicity case [1]:
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is the “exchange” term between the two components,
which can be positive or negative. The other RHS terms
are also readily identified. In (1), the first term is a
Kármán–Taylor model [42] for the self-decay of theZ
component (the energy-containing partner to the Kol-
mogorov cascade), while the second term represents
decay ofZ due to Z-W interactions. Similarly, in (2)
the first term models the resonant perpendicular cas-
cade [43, 44], sometimes referred to as weak turbulence
[45, 46]. Note that it requiresZ 6= 0. The second repre-
sents a Kraichnan-like cascade [47, 48]. Except for the
latter, these correspond to (approximately) perpendicular
cascades. Typically, the leading-order term in each equa-
tion is the first one on the RHS [1].

For the more general situation of non-zero cross he-
licities, as needed for the solar wind, the equations are
similar with each term being multiplied by cross helicity-
dependent attenuation factors, denoted generically asf
[11]. The essential points are that the structure is un-
changed but the nonlinearities are weakened.

2.2. Transport Model

Solar wind fluctuations evolve due to the effects of
wind expansion and advection, stream shear, nonlinear
interactions, and, in the outer heliosphere, pickup ion
driving. (See [13] for an up-to-date summary and details
of the approach employed below.) The linear portions of
the transport equations for general fluctuations are read-
ily derived [13, 37, 38]. The starting point is the MHD
equations subject to an assumption of scale-separation
between the fluctuations and the large-scale fields. The
Elsässer fluctuations are then decomposed into quasi-
2D and wave-like pieces. The steps and approximations
made thereafter are as documented in earlier works [e.g.,
11, 13], along with use of orthogonality properties of
products of the two components (when averaged over the
small scales) [1]. Replacing the nonlinear terms with the
generalization of (1)–(2), yields steady-state equations
for the energies (T is plasma temperature, andmp pro-
ton mass):
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Here r is heliocentric distance andU the uniform solar
wind speed. (See [7, 9] for considerations regarding vari-
able solar wind speed.) For clarity, only the leading-order
and exchange terms from the non-zero cross helicity ver-
sion of (1)–(2) have been written here. (When computing
the numerical solutions, all terms are included.)

The notation is based on that used in earlier, single-
component, transport models [12, 13]. For the quasi-
2D piece,σc is the normalized cross helicity,σD the
normalized energy difference, andα, β areO(1) fitting
constants. Tildes indicate the analogous quantity for the
wave-like component. The strength of the large-scale
shear driving is controlled with the constantsCsh, Ĉsh,
the mixing tensorM represents large-scale gradients of
the large-scale fields, anḋEPI is the pickup ion driving,
approximated as in earlier works [e.g., 5, 6, 11, 12]. Only
a small fraction of the ’available’ pickup ion energy ends
up being transferred to the wave-like component [10].
The attenuation factors,f , fX , f ′, etc., depend upon one
or both ofσc andσ̃c; all are bounded by±1 [11].

The approach also yields lengthscale equations,
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and equations for the normalized cross helicities,
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where again for clarity some higher-order terms are not
written. The additional quantityλres is the (parallel)
wavenumber of the waves resonant with the pickup ions.
We employ the functional formλres∼ r, as developed in
[10]. In the lengthscale equations, the forms of the non-
linear terms (theβ , β̃ ones) arise from imposition of con-
servation laws [see 1, 13, 49].

Several further features of the two-component model
warrant discussion. As noted above, pickup ion driving
occurs at high frequencies [8, 10], and hence should ap-
pear in theW2 equation (and not in theZ2 one), as is the
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FIGURE 1. (color online) Sample solutions withU =

380 km/s,MσD = Mσ̃D =− 1
6 , CZ,W

sh = 1,ĈZ,W
sh = 0, α = 2β =

1
4 . Boundary conditions may be read off the left-hand scales.

case herein. In single-component models, this physical
distinction is difficult to make. In fact, it is even more im-
portant in connection with the lengthscales: Pickup ions
are thought to interact with the parallel wavenumber of
the fluctuations, injecting energy at that scale [10], per-
haps subject to a conservation law connectingW2 and
λ‖. In transport models without aλ‖, the physics is in-
corporated incorrectly since the driving occurs instead
at the correlation scale, which has lead to difficulties in
matching observations [5, 6, 8]. Numerical solutions of
the present model produce correlation lengths which are
in better accord with observations (see below).

As far as heating of the fluctuations is concerned,
the various turbulent cascades discussed after (2) all
contribute, as seen in the square-bracketed term in (5).

Ostensibly, moving from a one- to a two-component
model for solar wind fluctuations has introduced consid-
erably more complexity. There are now eight equations
to solve instead of four, and the number of nonlinear
terms is also much larger. From a numerical perspective,
however, this is still a small system of well-behaved ordi-
nary differential equations and thus is no harder to solve
than the single-component models used previously.

2.3. Numerical Solutions

We now discuss a representative solution to the two-
component model, using parameters appropriate for the
ecliptic, and compare it with observational data. Note
that this solution isnotan optimized fit to the data. Thus,
we anticipate that the already encouraging agreement can
be significantly improved. Solutions were obtained using
a standard fourth-order Runge–Kutta package.

Figure 1 displays the energies and lengthscales of
the components. Injection of pickup ion energy into the
wave-like component is evident. The correlation lengths
ℓ andλ are not greatly affected by the pickup ions, unlike
the parallel scaleλ‖, which tracks just underλres for
r & 10AU. The bump inℓ and flattening inZ2 near 50 AU
are due to the exchange termX becoming significant.
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FIGURE 2. (color online) Model solutions (curves) and Voy-
ager observational data (symbols). See [6] for details on the
observational data. In (c), the dotted curve is the composite σc
and observational values are from Helios and Voyager [50].

Figure 2 shows results from the two-component model
in forms suitable for comparison with observations.
Panel (a) plots the total magnetic energy in the two com-
ponents normalized to its value at 1 AU. The agreement
with the ‘N’ component of Voyager magnetic field RTN
data is of a similar quality to single-component mod-
els [e.g., 5, 6]. Similar comments hold for the tempera-
ture [panel (d)]. For the correlation length, we plot the
composite “centre of mass”-style quantityL = (Z2ℓ +
W2λ )/(Z2 +W2), asℓ andλ are difficult to obtain ob-
servationally. The model solution forL is in good agree-
ment with the data, and is a significant improvement to
the behavior seen in single-component models [5, 6, 8].

Figure 2(c) displaysσc and σ̃c and their composite
form, defined analogously toL. The latter is a reasonable
fit to the data points. We recall that 1 AU results indicate
the normalized cross helicity is approximately isotropic
with respect to the mean magnetic field direction [21],
implying that a two-component model should haveσc ≈
σ̃c. For the solution shown, this is true near 1 AU, but
not for 5–40AU. Clearly, further study is warranted from
both the modeling and observational sides.

3. CONCLUSIONS

We have presented an (energy-containing) two-
component transport model for solar wind fluctuations,
with the components corresponding to (a) quasi-2D
turbulence, and (b) wave-like fluctuations. Allowing for
separate energies and lengthscales for these components
enables the physics of shear driving and pickup ion driv-
ing to enter more realistically than in single-component
versions. Partitioning of the turbulent energy into two
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components leads to several distinct energy cascades.
However, as the total energy cascaded is approximately
the same as in single-component models, the heating
is also largely unchanged and remains consistent with
observations.

Numerical solutions afford good agreement with ob-
servations of proton temperature, fluctuation energy,
cross helicity, and correlation length. The numerical so-
lutions have yet to be optimized. We anticipate that the
model will be of use in various space physics applica-
tions, including scattering of energetic particles.
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(BAB).
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