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Abstract. We investigate the role of three-point
decorrelation due to Alfven wave propagation in three-
dimensional incompressible homogeneous MHD turbu-
lence. By comparing numerical simulations with the-
oretical expectations, we have studied how this effect
influences the decay of turbulent energy caused by both
an external mean magnetic field and the fluctuating tur-
bulent field. Decay is initially suppressed by a mean
magnetic field, as expected, but the effect soon satu-
rates. The decay rate does not scale with mean mag-
netic field for higher values. The disagreement with the-
oretical predictions can be accounted for by anisotropic
spectral transfer. Thus, phenomenological models for
energy decay that include decorrelation due to Alfvenic
propagation are not substantiated. This work comple-
ments our detailed study of various models of energy
decay in homogeneous MHD [Hollain et al., 1995].

Decay Rates and Propagation Effects

For homogeneous MHD turbulence we are particu-
larly interested in the dynamical behavior of the fluc-
tuation energy per unit mass, E = (lul2 + IbI2}/2 =
(Iz+ 12 + Iz-12) /4, and the fluctuation cross helicity den-
sity, He = (u' b). Angle brackets represent volume aver-
ages. These quantities are rugged invariants of the ideal
MHD equations and particularly relevant to the theory
of turbulent spectral transfer [Kraichnan, 1973;Frilch et
al., 1975; Stribling and MatthaeUl, 1991]. The amount
of E or He present is not modified by the nonlinear
terms that mediate spectral transfer among eddies of
different wavenumbers. In the high Reynolds number
limit, these quantities can change only when excitations
reach the dissipation region at very small scales. The so
called Elsasser energies z~ = (lz+12) and Z: = (lz-12)
are equivalent invariants.

Kraichnan [1965] and Dobrowolny et al. [1980b] ap-
plied the approach of Karman [1938] and Kolmogorov
[1941a,b] for hydrodynamic models to the turbulent de-
cay of the Elsasser energies zl in MHD. For the present
purposes, the first step is to write the decay of Zl in
terms of spectral transfer times T,%,

dZl Zl-d = -a% -::f""' (2)
t T,

Introduction

The parameters ax are phenomenological constants of
order unity; the degree to which they do remain con-
stant in the simulations indicates the validity of a con-
jectured T,:f=. The spectral transfer times are estimated
from several characteristic time scales arising from the
the dynamical equations (1). The first term on the right
yields T~I the characteristic nonlinear time generalized
for MHD in Elsasser representation [Dobrowolny et al.,

1980],
:t: ,}.:t:7"n! = z. (3)

Of

This time scale represents the approximate rate at which
an eddy at the energy-containing length scale ,}.:t: de-
cays due to correlations with turbulent structures of
the other sense. Consequently, the typical lifetime of
these correlations 7"f (called triple correlations, after
the Fourier representation of the term) is also impor-
tant. The spectral, nonlinear, and triple-decorrelation
timescales are related by [MatthaeU8 and Zhou, 1989]:

7"1' =~. (4)
7"3

The pressure term acts on very short times cales to en-
sure solenoidal vector fields and will be ignored. Dissi-
pation due to viscosity and resistivity, important mainly
at small scales, is represented by S%.
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MHD turbulence is recognized as being of central
importance to numerous subjects of ongoing research,
e.g., the sun, the heliosphere, space plasmas, and cos-
mic rays. While these applications may eventually re-
quire precise accounts of the dynamical evolution of
turbulence, an immediate need is to include reasonable
quantitative estimates ofMHD turbulence in dynamical
models appropriate to the specific application. The sim-
plest such models involve phenomenological treatments
of the energy decay, which can be used to estimate heat-
ing rates in solar wind transport models.

We start with the incompressible MHD equations in-
volving the solenoidal fluid velocity u and the magnetic
field B. The magnetic field is written as the sum of a
locally uniform mean value Bo and a fluctuating part
b. Because mass density is constant, the equations are
cast in Alfven speed units [Fyle and Montgomery, 1976],
where magnetic field variables are equivalent to their as-
sociated Alfven velocity, i.e., (47rp)-1/2Bo -Bo = VA.
The dynamical equations are conveniently written using
El.!Ii.!.!er [1950] variables z% = u :I: b as
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Figure 1. Evolution of total energy for three runs with
varying mean magnetic field Bo. Note the suppression
of decay as Bo increases from 0 to 3 and the compara-
tively negligible change when Bo is increased to 8.

the Alfven wave decorrelation hypothesis is incorrect in
the energy-containing range.

Fluctuating Field Effect

To examine possible effects of wave propagation due
to the fluctuating magnetic field, we treat examples
with no mean magnetic field. In that case .,.1 = A%/b
and

~ = -~~ (8)
dt A% ZT + b

We will evaluate this equation by testing the constancy
of Q%. First we consider the case when the cross helicity
and energy difference D are zero (i.e., equipartition in
kinetic and magnetic energies), so that Z+ = Z- == Z
and b2 = Zi/2 = Z~/2 = Z2/2. We also now have only
one length scale )., so that .,.1 = ..;2)./Z. Therefore,
the decay model with wave propagation effect due to
the fluctuating magnetic field is:

dZ2 1 Z3=- Q-
(1 + ..;2) ).

In addition, energy decay has been argued to depend
upon wave-propagation effects arising from the second
term and represented by a characteristic Alfvenic time
scale T;. The superscript :i: on each of these variables
admits the possibility that they are generally different
for the two Elsasser fields.

Each of these quantities has been discussed previously
[Kroichnan, 1965; Groppin et al., 1982, 1983; Groppin
et al., 1983; MatthaeU8 and Zhou, 1989], but mainly in
the context of inertial-range phenomenology, and in es-
sentially an approximation of isotropic turbulence. It
is not immediately clear how these inertial-range argu-
ments should be applied in the energy-containing range
for phenomenological models of MHD energy decay.

For steady inertial-range energy transfer, Kroichnan
[1965] argued that the triple correlation lifetime TJ
should be dominated by Alfvenic decorrelation when
propagation is sufficiently strong that TA < Tn'. He
suggested that TA should be the period of Alfven waves
of the appropriate scale in the mean magnetic field.
Pouquet et al. [1976] suggested that inertial-range triple
correlations also decay due to propagation in the fluc-
tuating magnetic field. Under the isotropy assumption,
the wave period at wavenumber k is of order (kV A)-l.
These ideas can be directly carried over to the energy-
containing range by using ),% in place of k-l. This leads
to a characteristic Alfven time

% ),%
T A = ITT2 I 1.2' (5)

YVA +b2

where b is the rms magnitude of b.
In general, triple correlations also decay due to the

nonlinear process characterized by Tn', but the K roich-
nan [1965] phenomenology neglects this effect because
the mean magnetic field strength is assumed to be large.
For cases where both effects are important, the total
rate of triple decorrelation is plausibly given by the sum
of the two rates [MatthaeU8 and Zhou, 1989]:

1 1 1~ = ~+~. (6)
TJ Tn' TA (9)dt

This suggests that the effect of wave propagation would
be to scale the decay rate by a simple numerical con-
stant of order unity. Given the inherent uncertainty in
the correct value of Q%, there does not appear to be
a practical way to distinguish the two theories in this
situation.

To demonstrate the level at which the models are
successful, we begin by computing the right-hand side
of the decay equation (8) with the propagation term b
first included then omitted. These values are compared
to the decay rate on the left-hand side determined by
taking finite differences in the simulations. The ratio
of the model value for dZi/dt to that determined from
the simulation can be thought of as a time-dependent
value of Q+, which is supposed constant in the models.
Figure 2 shows two values of computed Q+ (with and
without the propagation term b) for a run started from
D = 0 and Z+ = Z-. After an initial transient period,

Mean Field Effect

For strong mean magnetic field with Z=*, « Bo, the
extension of Kraichnan's [1965] model into the energy-
containing range predicts an energy decay rate of

dZ2 Z2 Z2
~=-Q=*,~. (7)

This suggests that decay should be suppressed by in-
creasing the mean magnetic field. To evaluate this pre-
diction, we plot the time histories of energy for three
comparable simulations with varied mean fields in Fig-
ure 1. The two runs with Bo = 3 and 8 clearly decay
slower than the Bo = 0 run, but the suppression seems
to have saturated with Bo = 3. If (7) were true, then
the decay rate in the Bo = 8 case would be almost three
times smaller than in the Bo = 3 case. Obviously, this
does not happen in the simulations (at least for the rel-
atively low Reynolds number cases reported here), so
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Figure 2. Computed Q+ from simulation data for zero
initial cross helicity and energy difference.

both curves approach level asymptotes, verifying that
either model reasonably represents the dynamic evolu-
tion of the turbulence.

To distinguish between the two models, we turn to
a case with large cross helicity. Consider a situation
with D = 0 again, but let cross helicity be so large that
z+ < Z- and b ~ Z+/2. In that case 7"1 ~ 2A.i;/Z+,
so the decay equation becomes:

Figure 3. Similar to Figure 2, only a significant and
variable croBB helicity is present in these simulations
to distinguish between the model predictions. The
Q+ curves have qualitatively different behaviors that
demonstrate the advantage of the model without prop-
agation (dashed curve) compared to that with it (solid).

dZ2 Z2 Z2~ ~ -Q% A%(Z:%;j+/2). (10)

By putting almost all the fluctuation energy into the
Z+ field, the symmetry between the :f: equations has
been broken. For the Z+ field,

Summary and Discussion

~

dZ; Z;Z- [ 2Z_ ] ( )-=-a+- -, 11

dt A+ Z+

where the term in brackets appears only when the prop-
agation term is included. This extreme example sug-
gests that simulations with variable cross helicity should
yield profiles of a+ that plateau better for one model
than for the other. No pronounced difference is ex-
pected for the minority fluctuations, apart from a con-
stant of order unity between the a- values as in the
previous test.

We now evaluate the models against a simulation
with nonzero initial cross helicity. The ratio Z+ / Z-
is initially 1.5 and rises to 4.5 by t = 8. Figure 3 shows
the values of ax computed from equation (8) with and
without the propagation term, as before. Between t = 1
and 8, the case with propagation rises by a factor of
4, while the other remains within a factor of about 2
of unity. While neither asymptotes as definitively as
the zero helicity case, it is clear that the model without
propagation is significantly better. There remains room
for improvement, but including propagation does not
appear to be a step in the right direction. The a- pro-
files generally support either model to the same degree
of confidence and confirm that the two behave similarly
to each other, as suggested by our simple analysis.

These simulations suggest that the Alfven decorre-
lation effect associated with the propagation of small-
scale structures along the large-scale fluctuating mag-
netic field does not contribute to the overall decay of
the energy. This implies that the mechanism proposed
by Pouquet et al. [1976] for the inertial range does not
apply for the energy-containing range. Dropping this
effect returns to a fluid-like model for the decay of the
energy-containing eddies in MHD turbulence. A class
of such models and their properties have been examined
in a recent paper [Ho88ain et al., 1995].

Regarding the Alfven wave propagation effect due
to an external mean magnetic field, we showed that
the decay rate does not scale with the strength of the
mean field as predicted by adapting Kraichnan's [1965]
model to the energy-containing range. However, for
finite mean field the decay is indeed diminished from
that when it is zero, an effect that has been attributed
to anisotropic spectral transfer [Ho88ain et al., 1995].
Numerical simulations of both freely decaying [Shebalin
et al., 1983; Carbone and Veltri, 1990; Oughton et al.,
1994] and driven [Ho88ain et al., 1985] MHD turbulence
have shown that wavenumber spectra become distinctly
anisotropic in the presence of a uniform mean magnetic
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1
(12)

1 Z2
=:t:"=::f:.-T. A:t:(Z'f+Bocos8:t:)'

where cos8:i: measures the degree of anisotropy [She-
balin et al., 1983] of the Z:i: spectrum in the energy-
containing range. Accounting for anisotropy by using
the spectral transfer rate (12) to modify the decay equa-
tions (2) has been successful [Ho.f.fain et al., 1995].

The straightforward extension of Kraichnan's [1965]
inertial-range phenomenology to the energy-containing
range does not work as well as a simple energy de-
cay model of the Karman-Kolmogoroff type. That is,
there appears to be no explicit dependence of the mod-
eled spectral transfer or the decay rates upon either the
large-scale Alfven speed (for large enough Bo) or that
associated with the rms value of b. The mean magnetic
field does influence the simulation results, however, and
a better phenomenological model can be obtained by
taking spectral anisotropy into account [Ho.f..ain et al.,
1995]. This model has the energy decay equations

~ = _.!.~ (13)dt A A:i: '

where A ~ 1 when Bo ~ 0, and A ~ 2 when Bo ~ 1.
Under suitable conditions this parameter emulates the
effects of spectral anisotropy.

In closing, we note that one might expect Alfven wave
propagation effects to remain valid for inertial-range dy-
namics. But if spectral transfer through the inertial
range into the dissipation range is reduced by whatever
mechanism, then that effect should slow the decay of the
total turbulent energy and be reflected in the evolution
of the energy-containing eddies. Because no such effect
is evident, the conclusions of this study for the energy-
containing eddies suggest that the wave-propagation ef-
fect may not be operative in the inertial range. Al-
though propagation effects may strongly influence the
angular distribution of energy flux in the inertial range,
our results imply they do so without changing the total
energy flux.
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