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Abstract. We examine the effects of including effects of both protons and electrons on the heating of the fast solar wind
through two different approaches. In the first approach, we incorporate the electron temperature in an MHD turbulence
transport model for the solar wind. In the second approach, we adopt more empirically based methods by analyzing the
measured proton and electron temperatures to calculate theheat deposition rates. Overall, we conclude that incorporating
separate proton and electron temperatures and heat conduction effects provides an improved and more complete model of the
heating of the solar wind.
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INTRODUCTION

The supersonic solar wind accelerates away from the
Sun through some combination of physical processes in-
cluding gradients in gas pressure (from the hot, 106 K
corona) and wave pressure, as well as possible collision-
less wave-particle interactions. The solar wind displays a
highly non-adiabatic temperature profile, requiring some
process(es) to provide additional heat sources. One pos-
sible, and successful, source of heating comes from mag-
netohydrodynamic (MHD) turbulence present in the so-
lar wind [1]. An active MHD turbulent cascade [2, 3]
transfers energy from the large-scale fluctuations down
to small scales where kinetic processes dissipate the en-
ergy as heat.

With some exceptions, [e.g., 4], turbulence theories
[such as 5, 6, 7, 8] often neglect electrons in favor of
the protons as the protons help set the scales of interest.
Neglecting electrons is justified in the case of the mo-
mentum content and the mass density of the solar wind
plasma. However the internal energy content of the elec-
trons is not negligible compared to that of the protons.
Indeed, in the mainly collisionless solar wind, the var-
ious particle species (i.e., protons, electrons, and heavy
ions) are not in thermal equilibrium with one another.
The particles exhibit a range of different outflow speeds,
temperatures, and velocity distribution anisotropies, par-
ticularly in regions with the least frequent Coulomb col-
lisions [9, 10].

In this work, we seek to understand how electrons and
protons conspire to heat the solar wind. For the case of
proton and electron temperatures (Tp and Te), we can
write down evolution equations assuming a steady state,

spherically expanding solar wind with a radially constant
bulk flow speed,U , and a number density profile varying
asn ∼ r−2;
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where r is heliocentric distance,Q{e,p} represents tur-
bulent heating per unit mass,qe is the electron heat
flux vector (proton heat flux vector has been neglected),
and kB is Boltzmann’s constant. TheTe − Tp terms in
Eqs. (1)–(2) model Coulomb collisions taking place over
a timescaleτ.

By using Eqs. (1) and (2), we can study the effects of
electrons on the heating of the solar wind. Two possible
avenues are available:

1) We may obtain the turbulent heating through the
use of a turbulence model [8] and then numerically
solve (1) and (2) to compare the results against
empirical observations;

2) We may use observations to “invert” (1) and (2) to
obtainQ{e,p}.

We will quickly examine both approaches in this paper.
Further details and other results of the two approaches
may be found in [11, 12], respectively.

Both approaches rely upon specifying the electron
heat flux vector,qe, taken parallel to the magnetic field.
(The perpendicular heat flux can be ignored as the mag-
netic field effectively acts as a thermal blanket, severely
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reducing the heat flux transverse to the field.) A colli-
sion dominated heat flux [13] would be inappropriate as
collisions do not dominate the solar wind. Collisionless
models for the heat flux [14] would be more appropriate,
despite the solar wind not being entirely collisionless ei-
ther. However, the collisionless models can still suffer
from missing non-local effects [15, 16].

As a result of these difficulties, we adopt an empirical
approach. We derive values forq‖ based on Helios [17]
and Ulysses [18, 19] observations. The procedure leads
to a radial profile forq‖ for r < 5.4 AU. Due to the lack
of observations farther out, we extrapolate the profile to
larger distances but note the obvious caveats in doing so
[see 11, 12, for more information on the fits].

TURBULENCE MODELING APPROACH

Following a von Kármán and Howarth [20] style phe-
nomenology, we write thetotal turbulent dissipation rate,
Q = Qp + Qe, as,

Q =
1
2

αρ f +(σc)
Z3

λ
. (3)

α is an order-unity constant,σc is the normalized cross
helicity, λ is the correlation scale (energy containing
scale) of the turbulence, andZ2/2 is the total energy
available in turbulent fluctuations.Q must be partitioned
between the electrons and protons. We accomplish this
by defining Qp ≡ fpQ and Qe ≡ (1− fp)Q, with fp
clearly being the fraction of heat going into the protons.
Observational evidence suggests that near 1 AU,fp ≈
0.60 [21, 22]. In principle,fp may be determined by the
underlying kinetic physics [23], which operates at scales
far smaller than the energy-containing scale described by
λ . This point deserves further study, which is outside
the scope of this paper. For now, we simply a adopt a
constantfp = 0.60.

ComputingQ requires specifying values for the turbu-
lent quantitiesZ2, λ andσc. We obtain these quantities
from the following turbulence model [see 8, and refer-
ences therein];
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,
and f ′(σc) = σc f + − f−. Driving of the turbulence
comes from stream shear, modeled throughCsh, and

Protons [K]

0.1 1.0 10.0 100.0
103

104

105

106
Electrons [K]

0.1 1.0 10.0 100.0
Heliocentric Distance [AU]

103

104

105

106
Both [K]

0.1 1.0 10.0 100.0
103

104

105

106

FIGURE 1. Model solutions for the proton and electron tem-
peratures computed without collisions and without electron
heat conduction.

pickup protons,ĖPI. M = 1/2 relates to the underlying
turbulence geometries andσD = −1/3 approximates the
normalized energy difference (kinetic minus magnetic)
of the fluctuations. More details on the model itself, and
its parameters, can be found in Breech et al. [8].

We numerically solve the model equations, (4–6), us-
ing the results to compute the proton and electron tem-
peratures as per Eqs. (1) and (2). The bounds of the
equations run from 0.3 AU to 100 AU, though, properly
speaking, the heat conduction fits may not apply beyond
5.4 AU. The initial values for the solutions shown be-
low areZ2 = 5000 (km/s)2, λ = 0.03 AU, andσc = 0.6.
Other parameters are set asU = 774 km/s,Csh= 0.25,
α = 2β = 0.5, and MσD = −1/6. The initial values
for the temperatures are taken asTp = 2.0× 106 K and
Te = 4.0× 105 K, and were chosen because they pro-
duce best fits for the observations when all effects are
included. Due to space limitations, we only show the
temperature solutions [see 8, 11, for more discussions on
the turbulence model solutions]. For comparison, we use
temperature values observed by Ulysses in the high lat-
itude, fast solar wind. We use the total electron temper-
ature, rather than the core, halo or strahl populations, as
the turbulence should heat all electrons.

Figure 1 displays the temperature solutions without
heat conduction and almost without collisions. The col-
lision timescaleτ was set equal to the time for plasma
to transit to 100 AU, which effectively removes collision
effects from the results. The proton solution agrees very
well with the observed data, but the electron solution
misses almost all the data.

Turning on heat conduction and allowing collisions
(τ = transit time to 10 AU), produces interesting results
as shown in Fig. 2. Both effects are important, but in dif-
ferent regions. Compared to Figure 1 collisions attempt
to equalize the temperatures beyond 10 AU, while heat
conduction produces higher temperatures near 3 – 5 AU.
[see 11, for more information on this point]. The elec-
tron temperature now features a “shelf” region between
1 and 10 AU whereTe(r) does not decrease as rapidly
as it does outside that region. Interestingly, the electron
temperature solution crosses the proton temperature so-
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FIGURE 2. Model solutions for the proton and electron tem-
peratures computed with both collisions and electron heat con-
duction turned on. The proton solution remains reasonable.The
electron solution displays a “shelf-like” region between 1and
10 AU.
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FIGURE 3. Solutions for the electron temperature using dif-
ferent profiles of the heat flux vector,q‖.

lution near 5 AU, after which the electrons are actually
warmer than the protons. Collisions then begin to take
hold, resulting in higher proton temperatures and lower
electron temperatures.

The shelf is somewhat sensitive to the underlying elec-
tron heat flux vector,q‖, used to compute the solutions.
Figure 3 shows the electron temperature solutions com-
puted using three different profiles forq‖. The baseline
profile is the observationally derived profile used in the
solutions shown in Figure 2. The other two solutions use
a heat flux vector where the baselineq‖ was multiplied
by 2 and divided by 2. Since Scime et al. [19] found
small variations in the heat flux with latitude, any vari-
ation in the heat flux measurements should lie between
these two extremes. The electron temperature solutions
show that increasing the heat flux makes the shelf more
pronounced. Lowering the heat flux lessens the shelf.

IN-SITU DATA ANALYSIS APPROACH

Rather than use a turbulence model, we can use obser-
vations to “invert” Eqs. (1) and (2) to obtainQ{e,p}. Fig-
ure 4 shows observations ofTp and Te taken from the
fast wind solar wind data (U > 600 km/s) of Helios and
Ulysses. Best fit curves are also shown. To avoid the
larger number of Ulysses data points overwhelming the

FIGURE 4. Observed electron and proton temperatures from
Helios and Ulysses along with best fit curves.

FIGURE 5. Empirically derived heating rates for protons
(solid lines) and electrons (dashed lines) in the fast solar wind,
with multiple curves showing results foru = 600, 650, 700,
750, and 800 km s−1 (from bottom to top for each set of
curves). Shown for comparison isQturb, an approximation to
the turbulent heating rate [12], for different values ofλ .

Helios data points in the least-squares fitting process, the
data sets from the two spacecraft were weighted equally.

We solved Eqs. (1) and (2) for the volumetric heat-
ing ratesQp andQe over the range of heliocentric dis-
tances covered by the Helios and Ulysses measurements.
An interesting aspect of this approach is that because the
internal energy equations are not being solved for the
temperatures—but instead for the heating rates—we can
avoid complicated numerical differential equation tech-
niques and use a straightforward algebraic solution for
Qp andQe. Even the radial derivatives can be computed
analytically from the fits given in Figure 4.

Figure 5 shows the results, plotted asr4Qp(r) and
r4Qe(r) rather than the rates themselves, because the
latter decrease very steeply with distance. Removing
the dominant radial variation makes the subtle relative
differences betweenQp andQe easier to see. ClearlyQp

can be approximated by a power law, withQp ∝ r−3.5.
Although not shown, the turbulence model discussed
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FIGURE 6. Ratios of the proton heating rate to the total
(proton+ electron) heating rate.

above produces results consistent with such a scaling.
Note that it is not possible to fit the electron heating rate
Qe(r) with a simple power-law function because of the
nonlocal heat conduction.

Figure 6 shows the ratio ofQp/(Qp + Qe), as it varies
with wind speed. This is thefp ratio used in partitioning
the turbulent heating computed for the turbulence model.
The ratio atr ≤ 1 AU appears to be insensitive to the
wind speed because bothQp andQe vary linearly with
the bulk flow speed at these distances. Near 1 AU,fp ≈
0.60, consistent with other observations [21, 22]. Further
out, fp shows an increased spread, which is the result
of the electron heat conduction having a larger relative
impact onQe as the wind speed changes.fp can rise
above 80% at these distances before apparently relaxing
back towards 60%. It is unknown what behaviorfp may
have beyond 5.4 AU.

CONCLUSIONS

In this paper, we have explored the effects of electrons
and protons on the heating of the solar wind. We sum-
marized two different, but complementary, approaches;
1) modeling of the solar wind turbulence and then com-
paring against the observed electron and proton temper-
atures; and 2) in-situ data analysis by using the obser-
vations to derive the heating rates for the electrons and
protons. More details of these approaches can be found
in Breech et al. [11] and Cranmer et al. [12], respectively.

In general, we find that observations are reasonably
explained with∼ 60% of the turbulent dissipation to heat
the protons at 1 AU, weak collisional coupling between
the protons and electrons (at least to around 10 AU),
and a reasonable fit for the observed electron heat flux
vector. The amount of heating that goes into the protons
increases significantly between 2 and 5 AU. Modelling
results suggest the existence of a “shelf” region in the
electron temperature at those same distances. The exact
details of these results are subject to uncertainties in the
heat conduction fits.
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