
Planetary and Space Science 49 (2001) 1233–1237
www.elsevier.com/locate/planspasci

What canwe infer about the underlying physics from burst distributions
observed in an RMHD simulation?
N.W. Watkinsa ;∗, S. Oughtonb, M.P. Freemana

aBritish Antarctic Survey (NERC), High Cross, Madingley Road, Cambridge, CB3 0ET, UK
bDepartment of Mathematics, University College London, Gower St., London, WC1E 6BT, UK

Received 19 October 2000; received in revised form 19 March 2001; accepted 20 April 2001

Abstract

We determine that the sizes of bursts in mean-square current density in a reduced magnetohydrodynamic (RMHD) simulation follow a
power-law probability density function (PDF). The PDFs for burst durations and waiting time between bursts are clearly not exponential
and could also be power-law. This su6ces to distinguish their behaviour from the original Bak et al. sandpile model which had exponential
waiting time PDFs. However, it is not su6cient to distinguish between turbulence, some other SOC-like models, and other red noise
sources. c© 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The widespread occurrence of both self-a6ne time se-
ries with “1=f” power spectra and spatial fractals in nature
led Bak et al. (1987, 1988) (BTW) to propose the hypoth-
esis of self-organised criticality (SOC) (Bak, 1997; Jensen,
1998; Sornette, 2000) as their common origin. Their pro-
posal was based on the demonstration of a “sandpile” cel-
lular automaton (see also the earlier work of Katz, 1986)
which appeared to be attracted from arbitrary initial condi-
tions (“self-organisation”) to a critical state characterised by
Auctuations on all scales in the energy released by the sys-
tem (“criticality”). Power-law probability density functions
(PDFs) for the sizes and durations of energy bursts were
the main observed signatures of criticality, and were tested
by Bnite-size scaling of the PDFs with system size (Cardy,
1996).
One of the original applications proposed by BTW for

their idea was fully developed turbulence, in view of the
scaling behaviour of such systems, and the intermittency
of their energy dissipation. Furthermore, intermittent turbu-
lence has been an inspiration for later “sandpile”-like cellular
automata such as the forest Bre model of Bak et al. (1990).
The SOC paradigm has since found many applications (Bak,
1997; Jensen, 1998 Sornette, 2000), one of which has been
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its use by Lu and Hamilton (1991) and subsequent authors
to explain the observed power-law distributions for the mag-
nitudes, intensities, and durations of solar Aares. SOC has
since also been applied to other natural and artiBcial plasma
conBnement systems, notably the Earth’s magnetosphere (a
recent review is that of Chapman and Watkins, 2001) and
tokamaks (e.g. Chapman et al., 2001).
In turn, recent studies in the solar Aare context, of both

shell models (BoIetta et al., 1999) and simulations based
more directly on the magnetohydrodynamic (MHD) equa-
tions (Georgoulis et al., 1998; Einaudi and Velli, 1999) have
focused attention on the fundamental questions of the ways
in which SOC and turbulence may diIer (BoIetta et al.,
1999) or, conversely, the extent to which SOC may serve
as a model for turbulence (Einaudi and Velli, 1999). These
more general questions are our main focus in this paper.
Also included is some brief discussion of the application of
these ideas to solar Aares and plasma turbulence in the solar
wind, magnetosphere, and elsewhere.
Recent work has shown that magnetically forced 2D

MHD turbulence produces power-law PDFs in the size
and duration of bursts in spatially averaged Ohmic en-
ergy dissipation 〈�J 2〉 (Georgoulis et al., 1998; Einaudi
and Velli, 1999). Recall that such power-law PDFs are
a necessary but not su6cient condition for SOC (Jensen,
1998). In addition Einaudi and Velli (1999) showed that a
cellular automaton with rules chosen to be consistent with
the MHD model also produces avalanches (and power-law
PDFs).
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In contrast, BoIetta et al. (1999) and Giuliani et al. (2000)
(B99) attributed the presence of a power-law PDF in the
observed waiting time between solar Aares to turbulence.
Rather than simply being due to the scale-free turbulent cas-
cade itself, B99’s suggested mechanism for the production
of power law waiting time PDFs was on–oI intermittency.
They noted that simple prototype models of on–oI intermit-
tency and a many-oscillator shell model of turbulence both
had waiting time PDFs which were power-law, while the
original BTW sandpile algorithm did not, having instead an
exponential PDF of waiting times.
Two important criticisms of B99’s model and its interpre-

tation have recently been made in the context of solar Aares.
Einaudi and Velli (1999) pointed out that its attractors were
states in which velocity and magnetic Beld were aligned,
whereas they asserted that force free (aligned current and
magnetic Beld) states were probably more appropriate to the
corona. Wheatland (2000) showed how a Poisson process
varying on a long time scale (e.g. the quasi-periodic solar
cycle) could convert an exponential waiting time distribu-
tion such as that from the original sandpile model into a
power-law one of the type observed.
These results are however less relevant to the more

general plasma turbulence case. In physical systems
where there is no long-term periodicity to motivate the
“periodic-Poisson” assumption of Wheatland (2000) there
is no apparent reason to prefer such a mechanism for ob-
served power laws to an intrinsically scale-free one. In
addition, the work of Wheatland (2000) seems to have
been partly a response to B99’s over-general assertion that
all SOC models must have exponential waiting time PDFs.
This is not true in general (cf. the discussions in Galtier
(2001) and Freeman et al. (2000b); and the models stud-
ied by Paczuski et al. (1996)). In consequence, several
interesting questions remain open.
One is whether the burst size and duration PDFs found

in simulations of 2D MHD turbulence (Georgoulis et al.,
1998; Einaudi and Velli, 1999) are also observed for either
full MHD or reduced MHD (RMHD), in which “slow” kz
dependence is retained (see below).
The second is whether the power-law waiting time PDFs

seen in both the B99 one-dimensional shell model and the
Galtier (2001) 1D MHD simulation, are also seen in higher
dimensions.
Finally there is the question of whether a minimal set of

scale-free “burst” PDFs and power spectra can be identiBed
which su6ces to identify SOC (or turbulence) in a physical
system. This last question is also highly topical in magneto-
spheric and laboratory plasmas (cf. Krommes, 2000; Free-
man et al., 2000a, b; Kovacs et al., 2001).
In this paper, we address these questions by examin-

ing time series of various spatial averages of the squared
electric current density, j2(x; y; z; t), drawn from a RMHD
simulation. A threshold method, used by previous authors
to construct burst-size PDFs, is applied to the time series.
Power-laws in size (and arguably also in duration) are found,

extending the forced 2D MHD results of Georgoulis et al.
(1998) and Einaudi and Velli (1999) to forced RMHD. The
PDF of waiting times is also not exponential, conBrming
that higher-dimensional RMHD is in keeping with the pre-
dictions of B99 based on a 1D shell model. Because the
Bxed threshold method employed detects fractality, which
was a predicted feature of SOC but is also generic to red
noise, we then consider to what extent the current evidence
is unambiguous. We conclude by suggesting a direction for
future research.

2. Simulation data and analysis

The data analysed here is extracted from a (spectral
method) reduced MHD simulation which was used in con-
nection with a model for coronal heating via the coupling
of low-frequency AlfvMen waves and quasi-2D turbulence
(see, Oughton et al. (2001) for further details). Using stan-
dard (nonlinear) RMHD as a base (Montgomery, 1982;
Strauss, 1976; Zank and Matthaeus, 1992), the equations
were augmented with terms representing (i) forcing by
a single large-scale AlfvMenic mode, (ii) reAection of all
propagating modes, and (iii) transmission of outward prop-
agating modes. Physically, one may think of reduced MHD
as parallel planes of (incompressible) 2D MHD coupled to-
gether by a strong mean magnetic Beld (B0) perpendicular
to these planes. Long wavelength AlfvMen waves propagate
along the mean Beld. Thus, the Auctuating velocity and
magnetic Belds (respectively, v and b) are functions of all
three spatial coordinates, but gradients in the B0 direction
are restricted to be weak. Moreover, v and b are strictly
perpendicular to B0.
Here, we are primarily interested in various time se-

ries characterizing such systems. SpeciBcally, those for
the spatially averaged mean-square electric current den-
sity J 2(t)= 〈j2(x; y; z; t)〉=2, and the kz-dependent x- and
y-averaged j2=2, denoted as J 2(t; kz), where kz is the Fourier
wavenumber in the direction parallel to the mean Beld
and angle brackets denote the spatial averaging. Clearly,
J 2(t)=�kzJ

2(t; kz).
The particular simulation employed has large-scale

Reynolds numbers of 800, a resolution of 2562 × 4,
(AlfvMenic) forcing of the k=(1; 1; 1) Fourier mode, and
reAection and transmission rates of 1.0 and 0.3, respec-
tively (Oughton et al., 2001). Note that the reAection and
transmission parameters are to be interpreted as inverse
time scales and not as fractions. The simulation was con-
tinued for 500TB where TB is deBned as the time taken for
a forced AlfvMen wave to cross the simulation box, which is
comparable to the large-scale nonlinear time. After a few
tens of TB, the system settles down into a state which is
more or less statistically steady, reminiscent of the similar
behaviour of the BTW sandpile (see, Fig. 4:3 of Jensen,
1998). The time series are obtained by calculating the ap-
propriate quantities every 1=10 of a box crossing time, after
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Fig. 1. (a) Time series of current density for the reduced MHD simulation.
(b) PDF of current density for the time series in (a). Overplotted is a
Gaussian distribution with the mean and standard deviation of the time
series in Fig. 1a. (c) CDF of current density for the time series in (a).

this steady state has been reached. This sampling interval
was chosen in order to have a manageable amount of sim-
ulation data. After removing the initial transient, each time
series J 2(kz; t) consists of ≈ 4500 points. The kz =1 plane
is special, since the single forced mode lies in it.
Fig. 1a shows, the statistically steady portion of the time

series of J 2(t; kz =2), for which the corresponding PDF
and cumulative distribution function (CDF) are shown as
Figs. 1b and c, respectively. Inspection of the time series
itself (Fig. 1a) does not show extreme values to the same
extent as, e.g. Fig. 1a of Georgoulis et al. (1998), and so
in consequence the PDF we Bnd for it (Fig. 1b) is substan-
tially more symmetric. This is illustrated by the dashed line
in Fig. 1b which shows a Gaussian with the same mean and
standard deviation as those of the time series.
To measure the distribution of bursts, a Bxed threshold

method was employed, as used by Freeman et al. (2000a, b)
(and previous workers, see references therein). The size e
of a burst was deBned as the integrated area under the curve
between a given upward crossing of a Bxed threshold and

the immediately subsequent downward crossing. The dura-
tion T was then the time between upward and downward
crossings, while the waiting time (or inter-burst interval, �)
was that between a given downward crossing and the next
upward crossing. The resulting PDF for burst size is plot-
ted in Fig. 2a, where the solid line indicates the curve cor-
responding to use of the median value of the time series
as the threshold, while the eight dotted lines correspond to
those resulting from the 10th; 20th; : : : ; 40th; 60th through
90th percentiles. PDFs for burst duration and waiting time
constructed by the same method are shown in Figs. 2b and c.
The number of bursts thus deBned will vary weakly with the
threshold chosen, in the case of the median threshold the size
distribution D(e) was formed from 198 events. Despite the
symmetrical PDF of J 2 shown in Fig. 1b, a power-law PDF
is obtained for burst sizes in the range 10−3 to 2 units (Fig.
2a), which remains stable even as the thresholds are varied.
Outside this region the points deviate from a power law but
their statistical weight is low. The dashed line shown is a
power law Bt to those points where the number of samples
per bin is greater than 4. The PDFs of burst durations and
waiting times also resemble power-laws in the range 0.2 to
2, beyond which the number of samples per bin again falls
below 5. Similar plots were obtained for all four kz planes
in the simulation, and on averaging over kz. Fig. 2d shows
the PDF for the waiting times plotted on semilog axes, on
which an exponential distribution would appear as a straight
line, conBrming that the waiting times (as deBned herein)
for this simulation are not exponentially distributed.

3. Discussion and conclusions

We Bnd that the PDF of burst size measured in our sim-
ulation is power-law in form, independent of the choice of
threshold. The PDFs of duration and waiting time appear to
have the same basic form (although the evidence is much
less clear cut). Intriguingly, we have observed this prop-
erty in a time series (Fig. 1a) whose PDF (Fig. 1b) is not
long-tailed but rather symmetric. Power-law burst PDFs are
often seen coupled with long-tailed underlying PDFs, and so
it is sometimes thought that the scaling range of a signal will
be controlled by the mean to peak ratio (governed by � and �
for Gaussian data, � for Poisson data, etc.) In fact, however,
burst size is also governed by the degree of persistence � in
the signal, because it is not just aIected by the probability of
N points being above a line but is controlled by the probabil-
ity of N non-independent, successive points all being above
the line. Malamud and Turcotte (1999) have noted that �
can be varied independently of the PDF of the members
of a time series, so that even a time series with a Gaussian
distribution of amplitudes but a non-zero � would have a
non-negligible probability of several successive values ex-
ceeding a threshold. In addition, for such a series, the scaling
properties of the distributions of waiting time and inter-burst
interval are set entirely by � and could be power laws.
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Fig. 2. (a) Burst size PDF obtained by the threshold method for the time series of Fig. 1(a). The solid line corresponds to the use of the median of the time
series as the threshold while the dotted lines show the 10th; 20th; : : : 90th percentiles. The dashed line passes through those points for which a statistically
signiBcant number of points is available. (b) Burst duration PDF obtained by the method of Fig. 2(a). (c) PDF of waiting times between bursts obtained
by the method of Fig. 2(a). (d) The PDF of Fig. 2(c) plotted on a log-linear scale, illustrating that the PDF cannot be Btted well by an exponential.

This raises an interesting question, however (see, also
Freeman et al. (2000b)). Red noise (“1=f”) time series of
the type which SOC systems were originally expected to
produce, and whose appearance SOC was proposed to ac-
count for, are fractal. The distribution of isosets 1 of such a
time series is a power-law (Addison, 1997). Hence the burst
duration and waiting time PDFs of red noise when found
by a threshold method should be power-laws, regardless
of whether the noise is produced by turbulence or one of
the class of SOC-type models which do produce red noise.
The original BTW model can be eliminated as its waiting
time series was later shown to be uncorrelated and thus not
red noise (Jensen, 1998; BoIetta et al., 1999; Freeman
et al., 2000b). To determine if a process is SOC in the sense
of BTW’s original proposal, one needs information about
spatial correlations as well as temporal correlations. This is
because SOC was proposed as a mechanism linking spa-
tial fractality and temporal persistence (“1=f” noise). This
reinforces the point that, rather than simply temporal in-
formation (burst durations and waiting times) or avalanche
distributions (“burst sizes”), to diIerentiate between turbu-
lence and SOC it will be necessary to make unambiguous
predictions about spatial structure for each phenomenon,
requiring at minimum then availability of spatial correlation

1 DeBned as the set of times at which the time series crosses a Bxed
level.

functions. We note that correlation between bursts, e.g. the
debated “sympathetic” quality of solar Aares (Wheatland
et al., 1998) could in principle occur through time or space
correlation. This line of investigation will be pursued in
future papers.
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