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The scaling laws of third-order structure functions for isotropic, homogeneous, and incompressible
magnetohydrodynamic �MHD� turbulence relate the observable structure function with the energy
dissipation rate. Recently �Wan et al. Phys. Plasmas 16, 090703 �2009��, the theory was extended
to the case in which a constant velocity shear is present, motivated by the application of the
third-order law to the solar wind. We use direct numerical simulations of two-dimensional MHD
with shear to confirm this new generalization of the theory. The presence of the shear effect
broadens the circumstances in which the law can be applied. Important implications for laboratory
and space plasmas are discussed. © 2010 American Institute of Physics. �doi:10.1063/1.3398481�

I. INTRODUCTION

A very important result in the statistical description of
turbulent flows is the so-called four-fifths law for the third-
order structure function.1,2 The 4/5 law has been widely used
in the study of turbulence and is fundamental in characteriz-
ing the turbulent energy cascade in incompressible hydrody-
namics �HD�.3 The magnetohydrodynamic �MHD� analog of
the 4/5 law was derived by Politano and Pouquet,4,5 for the
case of steady, incompressible homogeneous isotropic MHD
turbulence. When the underlying assumptions of the third-
order law are satisfied, it offers a powerful tool for examin-
ing the cascade rate, a fundamental parameter in any appli-
cation of turbulence theory. Accordingly a number of recent
studies of interplanetary turbulence6–9 have employed the
MHD third-order law to characterize local cascade and heat-
ing rates, as an alternative to estimates of energy decay rates
based on large-scale energy and correlation scales.10–12 It
was recently pointed out13 that the third-order law can be
modified for MHD when a large-scale constant velocity
shear is present, in analogy to similar effects that occur for
homogeneous shear in HD.14 Here we examine in greater
detail the effects of large-scale shear in MHD on the third-
order law, in both its original form and in the modified form
obtained when shear is separated from fluctuations in the
sense of a Reynolds decomposition.

The third-order law for isotropic HD identifies the iner-
tial range of the energy cascade and is given by

���uL�x,r��3� = − 4
5�r , �1�

where �uL�x ,r�= �u�x+r�−u�x�� · r̂ is the longitudinal veloc-
ity increment along the spatial variation r, and �¯ � indicates
an ensemble average. The constant � is the mean energy
dissipation rate, assumed to remain finite as the Reynolds
number increases without bound.

For MHD4–6 the third-order law implies two symmetric
scaling laws in terms of Elsässer fields z�=v�b. For full
isotropy and homogeneity, the following laws are obtained:

��zL
���zi

��2� = −
4

d
��r , �2�

where d is the spatial dimension, �z�=z��x+r�−z��x� are
the increments of the Elsässer variables, and �� are the mean
energy dissipation rates of the corresponding variables z�.

A number of subtleties arise concerning the exact as-
sumptions that can lead to Eq. �1� �Ref. 15� and, analogously,
in Eq. �2�. The essential point is that homogeneity, time sta-
tionarity, and isotropy must be satisfied, in some form, in
order to arrive at the law in the above form of Eqs. �1� and
�2�. These constraints are rarely verified in nature, so a gen-
eralization of this important law of turbulence is needed.
Regarding the isotropy constraint, in the HD case Casciola et
al.14 extended the 4/5 law to shear-dominated flows, finding
that additional terms enter the balance between dissipation
and the third-order structure function. Their approach as-
sumes that the shear is a coherent large-scale field, distinct
from the fluctuations in that the latter are better described by
a statistical approach rather than a detailed description of
each realization. In contrast, the large-scale flows, including
the shear, are assumed to be prescribed. This suggests a Rey-
nolds decomposition,16 in which the velocity field v can be
written as v�x , t�=U�x�+u�x , t�, where U is the mean part
and u is the fluctuation part of the total velocity. The exis-
tence of nonuniform U can introduce anisotropy to the flow
and the simplest case, where �U is a constant matrix, has
been considered in Ref. 14. The case of large-scale coherent
shear has an interesting counterpart in the MHD case. The
details of the implications for the MHD third-order law when
the velocity shear is constant have been given recently13 and
will be reviewed below. Here we examine the extended
MHD law using direct numerical simulations of two-
dimensional �2D� MHD turbulence. Several analysis ap-
proaches are employed to improve understanding of the
physical meaning of the third-order law with shear. An ap-
preciation of these effects and an understanding of how to
deal with shear in this context may be of practical impor-
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tance in analysis of MHD turbulence datasets where shear
may be present. For example, in the solar wind,6–9 large-
scale shear can occur in connection with the interfaces be-
tween high-speed and low-speed streams.17

The outline of the paper is as follows: In Sec. II, the
third-order law for sheared MHD is briefly reviewed. The 2D
MHD equations, together with the numerical procedure, are
presented in Sec. III. In the same section, results of isotropic
�no shear� and anisotropic �with shear� turbulence simula-
tions will be compared. Initially Reynolds decomposition is
employed, both in deriving the appropriate third-order law
�Sec. II� and in the data analysis �Sec. III�. Subsequently in
Sec. IV, we show the theory and data analysis that obtain
without use of Reynolds decomposition. Finally, the sum-
mary and discussions are given in Sec. V.

II. THE THIRD-ORDER LAW FOR 2D MHD
WITH CONSTANT SHEAR

Following procedures analogous to those used to obtain
the isotropic MHD 4/5 law,4–6 and the HD extension to the
4/5 law for constant shear,14 one can obtain an MHD third-
order law with constant shear of velocity.13 This is based on
the assumption that the velocity shear is not a statistical
quantity, and therefore one adopts a decomposition of the
velocity field v=U+u into a mean velocity U�x� and a fluc-
tuating component u�x , t�. In this way, we arrive at the modi-
fied third-order law for MHD in integral form,

� ����zk
� + �Uk���zi

��2�nk�dSr + 2
�Ui

�xk
	 ��zi

��zk
��dVr

= − 4V��. �3�

Here dSr and dVr are the surface and volume elements, nk is
a unit vector normal to the surface, V is the actual volume of
integration, and the mean energy dissipation rates are ��


����kzi
��2�. The law is valid in both two and three dimen-

sions. See Ref. 13, for details. Setting U=0 in Eq. �3� re-
duces it to the standard third-order law for isotropic MHD
turbulence,4 given herein as Eq. �2�.

In order to carry out numerical tests, we now specialize
to the case of 2D geometry. This will improve the statistical
significance of our numerical results. Moreover, a fully
three-dimensional treatment would necessarily have a less
extensive inertial range.

Let us define P3
��r�= ��zk

���zi
��2�rk /r, where r is the

separation vector. For isotropic MHD �with U=0�, we will
have P3

��r�= ��zr
���zi

��2�. Choosing the integration “volume”
to be a circle of radius r means that Eq. �3� simplifies to

P3
��r� = − 2��r , �4�

which is the 2D version of the third-order law, Eq. �2�.
For anisotropic 2D MHD with the shear chosen to be

constant, solenoidal, and in the x direction, �=dUy�x� /dx,
Eq. �3� becomes

	
0

2�

P3
��r�rd� + 	

0

2�

�Ur���zi
��2�rd�

+ 2�	
0

r 	
0

2�

��zy
��zx

��r�d�dr� = − 4�r2��, �5�

where � is the angle r makes with the x axis and �Ur

=�U�r� · r̂. We can then define

S� = −
1

2�
	

0

2�

P3
��r�d� , �6�

SU
� = −

1

2�
	

0

2�

�Ur���zi
��2�d� , �7�

S�
� = −

�

�r
	

0

r 	
0

2�

��zy
��zx

��r�d�dr�. �8�

In terms of Eqs. �6�–�8�, Eq. �5� can be rewritten as

S� + SU
� + S�

� = 2��r . �9�

The second term SU
� is similar to the ordinary third-order

structure function S�, but involves shear effects, and S�
� is

another term that depends on the shear and also the mixed
second-order structure function of the fluctuations.

III. STRATEGY AND NUMERICAL SIMULATIONS

To test how the modified third-order law, Eq. �9�, is in-
fluenced by these new terms, we now compare it to results
obtained from turbulence simulation data. After first verify-
ing that in isotropic 2D MHD the usual law of Eq. �2� holds,
we move on to the case of central interest here, namely,
when shear is present. We not only retain a periodic geom-
etry but also impose a large-scale coherent velocity that is
characterized by wide regions of constant shear.

We perform direct numerical simulations of turbulence
in order to test the validity of Eq. �9�. We numerically simu-
lated forced 2D incompressible MHD turbulence, solving the
following modified equations for the vector potential a and
vorticity 	:

�t	 + �v + U� · ��	 + 
� = b · �j + ��2�	 + 
� + F	,

�10�

�ta + �v + U� · �a = ��2a + Fa, �11�

where the magnetic field b=�a� ẑ, and the current density
j=−�2a. The velocity is given by v=�� ẑ, where �2=
−	. The specified shear velocity is U=Uy�x�ŷ with associ-
ated vorticity �=��U, and both are constant in time. Time
t is in units of nominal large-scale nonlinear �eddy turnover�
times. In the present paper, we only study cases in which the
kinetic viscosity � and magnetic diffusivity � are equal.

A fully dealiased, pseudospectral code with periodic
boundary conditions is used. The external forces F	 and Fa

are time dependent and are imposed to retain constant kinetic
and magnetic energy in the first two wavenumber shells �1
�k�2�. Moreover, each time step, the two forcings are cho-
sen to be orthogonal �adjusting the phases of the Fourier
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coefficients�. For example, F̃	 · ã=0 for each wavevector,

where ˜ denotes a quantity in Fourier space. This procedure
keeps the cross helicity �v ·b� very small. Note that an arbi-
trary introduction of cross helicity, or substantial growth of
it, would prevent development of a steady state because it
suppresses the nonlinear terms.18

A. Isotropic MHD turbulence

For the first case, we simulate the 2D MHD system with-
out imposed shear, setting U=0 in Eqs. �10� and �11�. Figure
1 shows time evolution of total energy ��v�2+ �b�2� /2 from a
representative simulation. In investigating the third-order
law, we use the data from t=20 to 200, which we believe
reasonably represents a steady state; snapshots of the full
data are saved at a time interval of 1. The time-averaged
omnidirectional energy spectrum, averaged over more than
1800 energy spectra in this period, is shown in Fig. 2. For
k=4–30, the averaged spectrum is found to be close to k−5/3.
This is an indication of the inertial range.

In order to better characterize the inertial range, and ex-
tract from the data the mean energy transfer rate, we now
analyze the classical mixed third-order structure function as
in Eq. �4�. In Fig. 3 we show the scaling of P3

��r�, with 2�+r
plotted for comparison. �Since cross helicity is kept very
small in the simulation, �+��−.� Both functions scale, in
some range, �r. The results are consistent with the numerical
results reported in Ref. 19 and validate Eq. �4� for the inertial

range. An alternative �and more sensitive� way to identify the
inertial range is to look at the slope �or logarithmic deriva-
tive, d�ln P3� /d�ln r�� of P3 as a function of r, shown in Fig.
4. Clearly, a range where the slope is very close to 1 is
present. At scales where the dissipation effects are dominant
�r�0.1�, or where the increments are larger than the corre-
lation length �r�0.9�, the third-order law is not valid.

Using Eq. �4�, estimates for �� can be extracted from an
observed linear scaling range of P3

��r�. Based on the data in
Fig. 3, we obtain �+�0.21 and �−�0.22. These values com-
pare favorably with those calculated directly from the defi-
nition of the dissipation rates, ��
����kzi

��2�=0.21.
We note in passing the importance of using the signed

third-order structure function in this analysis. Sometimes,
when the amount of data available is insufficient to obtain
good statistics, researchers have resorted to use of the un-
signed third-order structure functions ���zL

��zi
�2�� instead of

��zL
���zi

��2�.19,20 While the unsigned quantities are useful for
other purposes, they are not appropriate for the third-order
law, as can be readily demonstrated. In Fig. 5 we show the
scaling of ���zL

��zi
�2�� from our simulation. Although

���zL
��zi

��2� exhibits a smooth scaling behavior in r, its be-
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FIG. 1. �Color online� Time evolution of the kinetic �dotted red line�, mag-
netic �dashed green line�, and total �full blue line� energy for the isotropic
MHD simulation �run 1�. See Table I for more details on the simulation.
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FIG. 2. �Color online� Time-averaged omnidirectional energy spectrum for
the isotropic MHD simulation �full red line�. For comparison, the Kolmog-
orov prediction k−5/3 is also shown �dashed black line�.
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FIG. 3. �Color online� The scaling of mixed third-order structure functions
for the isotropic MHD simulation �blue dashed and red solid line�. The
prediction of the inertial range scaling is also reported �dotted black line�.
See text for more details.
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FIG. 4. �Color online� Slope as a function of the increment r for the scaling
of the mixed third-order structure functions �red solid and blue dashed
lines�. The slope of the third-order moment computed with the absolute
value is also reported �filled green squares�.
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havior differs from that of ��zL
���zi

��2�, as the slope is smaller
and the linear range is extended beyond the normal inertial
range. The slope of ���zL

��zi
�2�� in its linear range is mea-

sured to be close to 0.8, consistent with the results in Ref. 21.
This difference can be understood in the following way.
Without the absolute value there are many terms that annihi-
late each other in the ensemble average, this cancellation
effect is a genuine phenomenon of turbulence. Indeed, the
third-order law �e.g., Eq. �4�� can be interpreted as being a
consequence of the skewness in the distribution of the third-
order moment. By taking the absolute value when calculating
the structure function, this important feature of turbulence is
discarded. In our analysis below we always employ signed
moments.

B. Anisotropic MHD turbulence with uniform shear

We wish to test the above generalization of the MHD
third-order law, described in Eqs. �6�–�9�, by examining tur-
bulence that evolves in the presence of a constant shear. To
enable a numerical experiment of this type that employs an
accurate and well-tested pseudospectral method �as with the
isotropic case in Sec. III A�, we adopt the following strategy.
We simulate 2D MHD turbulence in periodic geometry, but
impose a large-scale coherent velocity that is characterized
by alternating large regions of constant shear. Specifically,
we apply a large-scale velocity Uy�x� with the profile shown
in Fig. 6. In the same figure, we also show the corresponding
large-scale shear profile 
. The constant shear occurs in two
regions, with a shear rate ��, being �
�Uy /�x. As can be
seen two buffer regions between the shear flows are present,
where the imposed shear changes sign. The parameters for
the simulation are listed in Table I.

In analogy to the isotropic case, we run the simulation
for a time that is sufficient to establish a near steady state. A
large number of snapshots of the fluctuating fields are stored,
and the analysis of the terms entering the modified third-

order law Eq. �3� is carried out in the regions of nearly con-
stant shear indicated in Fig. 6, avoiding the small buffer re-
gions where the shear changes sign.

The evolution of kinetic energy, magnetic energy, and
total energy, shown in Fig. 7, suggest that the simulation
reached steady state after about t=30. For analysis, we have
used the data from t=30 to 50, which we identify as a qua-
sisteady period. The �total� energy spectrum, averaged over
direction and over this period of time, is shown in Fig. 8. The
averaged spectrum is found to be close to k−5/3 for k=4–30,
which suggests an inertial range. Note that the modal energy
spectrum is anisotropic and we revisit this below. These in-
dicators suggest that this is a reasonable interval of data for
carrying out an analysis of the shear-modified third-order
law.

Figure 9 displays contours of electric current density.
The field is strongly affected by the shear, with structures
elongated in the y-direction. The correlation length � is dif-
ferent along the x and y axes, with �x�0.5 and �y �1.0.
Clearly the shear has rendered invalid the usual procedures
employed for third-order analysis in isotropic turbulence.

The modal total energy spectrum �as a function of kx and
ky� is reported in Fig. 10, using a logarithmic scale. It is clear
that the shear introduces strong anisotropy, with the spectrum
“stretched” along the kx direction. The effect is mainly at low
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FIG. 5. �Color online� Scaling of mixed third-order structure functions with
absolute sign. For comparison, the scaling r �black dashed line� is reported
as well.
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FIG. 6. �Color online� �a� Shear velocity profile Uy�x�; �b� shear profile of

; �c� the averaged �in the y-direction� dissipation as a function of x.
Clearly, the buffer regions at x1.6 and x4.7 introduce local anisotropy
in the energy transfer rate. Regions A and B delimit quasihomogeneous parts
of the domain.
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wavenumbers. Large-scale shear induces a spectral
anisotropy22 similar to the case in which a uniform external
magnetic field is imposed.23,24

In Fig. 11, we show the scaling of S+, SU
+ , and S�

+ using
data from the positive shear region, with 2�+r plotted for
comparison. Here �+=0.084 is also evaluated only in the
selected region. �Results for S−, SU

− , etc., are similar.� Al-
though we can observe a short range where S+ scales �r, this
range is much smaller than the isotropic case �see Fig. 3�. If
one was to attempt to use this linear scaling of S+ as a sub-
stitute for the full modified third-order law, Eq. �3�, there is
no assurance that the result would be relevant to the actual
dissipation rate. However, one might be tempted to carry out
this procedure if, for example, this were experimental data
and the experimenters were unaware of the presence of the
shear, and therefore assumed that Eq. �2� was valid. In fact,
for this particular case the dissipation extracted from this
scaling would be �+�0.03, which grossly underestimates the
actual dissipation rate.

Even though we observe a very long range where SU
+

�r, there is no reason that S+, SU
+ , and S�

+ should each have a
�separate� scaling law; in fact, as obtained in Eq. �9�, only the
sum of these quantities obeys the scaling law. We can see
evidence, in Fig. 11, that the modified third-order law pro-
duces a very good linear scaling. For the sum of the three
terms, we get a much longer range of scaling �r, compared
to any individual term, and the dissipation extracted from
this scaling is �+�0.1, which only slightly overestimates the
actual dissipation.

Although our simulations yield encouraging agreement
with the third-order law modified for shear, they are only at
modest Reynolds numbers. It follows that dissipative effects
might be degrading the agreement. We now investigate
whether better agreement is attainable by allowing for these
effects. Recall that in deriving Eq. �3�, a term involving vis-

cosity was neglected by restricting r to lie in the inertial
range �see Ref. 4�. In fact, this term is an additional contri-
bution to the left side of Eq. �3�, namely,

− 2�� �

�rk
���zi

��2�nkdSr. �12�

For 2D MHD, this viscous term can be written as

S�
� =

�

�

�

�r
	

0

2�

���zi
��2�d� . �13�

Thus Eq. �9� changes to

�� 
 S� + SU
� + S�

� + S�
� = 2��r , �14�

which is valid for all r �much� less than the correlation
length. To test this exact law, in Fig. 11 we also show the
scaling of �+. The result agrees with the theory quite well
over the whole range, with �+ slightly bigger than 2�+r.

In Fig. 12, we show the slopes of S+, S++SU
+ +S�

+, and
�+. At very small scales �dissipation scales�, the slopes of S+

and S++SU
+ +S�

+ are found to be very close to 3. The slope of
S+ is found to be decreasing quickly with separation r in-
creasing. However, there is little evidence for S+ having a
region of constant slope. In contrast, we observe a quite long
range where the slope of S++SU

+ +S�
+ is nearly constant, al-

though it tends to be slightly larger than the value of unity
predicted by Eq. �9�. This discrepancy can be viewed as be-
ing mainly caused by viscous effects �or that the inertial
range is too short�, as the slope of the viscous compensated
total, �+ is found to be much closer to 1.

The above analysis was performed using data from the
positive shear region “A” �see Fig. 6�, since 
 tends to be
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FIG. 7. �Color online� Time evolution of the kinetic �dotted red line�, mag-
netic �dashed green line�, and total energy �full blue line� for the shear MHD
simulation �run 2�.

FIG. 8. Time-averaged omnidirectional energy spectrum for the shear MHD
simulation; for comparison, k−5/3 is plotted as a dashed line.

TABLE I. Parameters for the isotropic ��=0� and anisotropic simulations, where rdiss
� 
��3 /���1/4 are the

Kolmogorov scales, and �T
�
���z��2� / ����z��2��1/2 are the Taylor microscales.

Run Grid �=� �+ /�− rdiss
+ /rdiss

− �T
+ /�T

− �

1 10242 0.001 0.21/0.21 0.0083/0.0083 0.12/0.11 0

2 20482 0.0006 0.071/0.063 0.0074/0.0077 0.11/0.11 1.57
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quite constant in this region and homogeneity—a crucial as-
sumption in deriving Eq. �3�—would be expected to be bet-
ter satisfied there. Also plotted in Fig. 6 is the �time and y�
averaged dissipation,

�+�x� =
1

2�T
	

0

T 	
0

2�

���kzi
+�2dydt , �15�

as a function of x. As we can see, the dissipation profile is
not constant. Clearly, �+�x� is bigger in the center region, but
much smaller close to the buffer region, which does not sat-
isfy homogeneity. For this reason, we have repeated the

analysis using the data from region “B,” where we anticipate
that homogeneity will be better satisfied.

In Fig. 13 we show the scaling of the individual third-
order terms S+, SU

+ , S�
+, their sum S++SU

+ +S�
+, and �+ using

data from region “B.” 2�+r is also plotted for comparison,
where averaged dissipation �+=0.138 in region “B” is used.
Comparing Fig. 13 with Fig. 11, the biggest difference is that
there is a much longer range in Fig. 13 where S+ scales with
r, while in Fig. 11 S+ falls off quickly with r. This is revealed
more clearly in Fig. 14, which plots the slopes themselves. In
contrast to Fig. 12, we observe a good range of scales where
the slope of S+ is close to 1. However, if we just use this
scaling of S+ to predict �+, we would still seriously underes-
timate the dissipation, as was also the case in Fig. 11. The
point to emphasize is that unless one knows that shear is
absent, scaling of S+�r� cannot be used in isolation to deter-
mine the dissipation rate.

IV. REYNOLDS DECOMPOSITION REVISITED

In the previous sections we have discussed the third-
order law for fluctuating quantities when a �uniform and con-
stant� background shear flow is present. As Reynolds decom-
position is widely used in turbulence studies, this seems to be
a reasonable approach. For example, in Fig. 15 we show a
typical signal of the fluctuation velocity component uy, as

FIG. 9. �Color online� Color map of the magnetic current j for the shear
MHD simulation �run 2�. The shear produces anisotropy, with the structures
stretched along the y-direction. Scale �right� indicates values of the current
density j.
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FIG. 11. �Color online� Scaling of the individual terms in the third-order
law: S+ �full red line�, SU

+ �dashed green line�, and S�
+ �dashed-dot blue line�.

Their sum S++SU
+ +S�

+ �long-dashed red line�, �+ �dashed-dot-dot black
line�, and the prediction given by Eqs. �9� and �14� �dotted black line� are
also shown.
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FIG. 12. �Color online� Slope of the mixed third-order structure functions as
a function of the increment r for run 2. See caption of Fig. 11.

FIG. 10. �Color online� Modal total energy spectrum, showing the aniso-
tropy that develops due to the presence of velocity shear. The logarithmic
color scale �right� indicates the energy spectrum level in each region.
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well as the full velocity component uy +Uy, as a function of x
from Run 2. With Uy representing a nearly constant planar
shear, it seems completely reasonable to remove that compo-
nent of the mean flow, or equivalently, to detrend the dataset,
prior to analyzing the fluctuating components. However, for
the fluctuations defined in this standard �decomposed� way,
we have seen that the third-order structure functions do not
provide a simple account of the cascade rates. We therefore
now examine a different approach. Specifically we will not
attempt a separation of the large-scale shear flow from the
fluctuations, instead we simply treat the velocity and mag-
netic fields in their entirety.

In the absence of a mean magnetic field B0, Eq. �7� in
Ref. 13 can be rewritten as

�t��Ui + �zi
�� = − ��Uk + �zk

���k���Ui + �zi
�� − �zk

� + Uk�

���k� + �k���Ui + �zi
�� − ��i� + �i��P

+ ���k��k� + �k�k���Ui + �zi
�� , �16�

with U a constant, uniform shear velocity.
Multiplying the previous equation by 2��Ui+�zi

�� and
averaging yields

�t���Ui + �zi
��2� = −

�

�rk
���Uk + �zk

����Ui + �zi
��2�

+ 2�
�2

�rk
2 ���Ui + �zi

��2�

− 4����k�Ui + zi
���2� . �17�

In arriving at this expression we make use of �k� • �
=−�� /�rk�� • � and �k�� • �= �� /�rk�� • �. These latter relations
follow from spatial homogeneity �i.e., translation invariance
of the statistical properties�, which can be considered for
some systems to be an exact property or an approximation,
e.g., in the case of a weakly inhomogeneous system.

The last term of Eq. �17� can be identified with the dis-
sipation rates,

�T
� = ����k�Ui + zi

���2� , �18�

for the whole field Ui+zi
�. In the present study with constant

shear velocity U, it is not difficult to show �T
�=���kUi�2

+��. Under the hypothesis of steady-state turbulence and in
the limit of vanishing viscosity �→0, Eq. �17� simplifies to

�

�rk
���Uk + �zk

����Ui + �zi
��2� = − 4�T

�. �19�

Specializing to 2D, integrating Eq. �19� in r over a circle
of radius r, and using the divergence theorem on the left
hand side yields

ST
� = 2r�T

�, �20�

where

ST
� = −

1

2�
	

0

2�

r̂k���Uk + �zk
����Ui + �zi

��2�d� . �21�

To verify Eq. �20�, we computed ST
+ for different separa-

tions r using data from the anisotropic 2D MHD simulation.
The results are plotted in Fig. 16. We have calculated ST

+ and
�T

+ using data from the whole simulation domain �upper
panel� and also only the data in subregion A �lower panel�.

We see from the above results that examining the flow
and magnetic fields directly—that is, not separating them
into mean and fluctuating parts—gives a third-order structure
function relation that is simple to interpret, and that is readily
realized in the simulation data. The third-order total direction
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FIG. 13. �Color online� The scaling of the individual third-order terms S+,
SU

+ , and S�
+, their sum S++SU

+ +S�
+, and �+, using data from region B. See

caption of Fig. 11 for more details.
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FIG. 14. �Color online� Slope for the scaling of mixed third-order structure
function, and terms contributing to it, using data from region “B.”
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FIG. 15. �Color online� A typical fluctuation velocity component uy �full red
line� as a function of x, extracted from the central region of the periodic
domain in which there is a nearly constant shear �see Fig. 6�, here compared
with the total velocity component uy +Uy �dashed green line�.
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averaged energy flux vector is simply related to the steady
total cascade rates of Eq. �18�, much as the standard third-
order law relates the similar quantities that are defined solely
in terms of the fluctuation quantities �see Eq. �4��. Familiar
though these relations might appear to be, they are not stan-
dard in that they include the coherent, imposed shear flow on
the same footing as the turbulent fluctuations. It is interesting
to note that in Fig. 16 the third-order relation from the se-
lected data region A in which the shear is approximately
uniform does not work as well as the same relation computed
over the full domain. Evidently, sampling the full coherent
shear flow is required for an accurate third-order law when
this approach is adopted.

V. SUMMARY AND DISCUSSION

We examined the mixed third-order Elsässer structure
functions for MHD turbulence, incorporating a constant
sheared velocity field in addition to homogeneous fluctua-
tions, under a set of assumptions that parallels those used in
standard turbulence theory to derive the Kolmogorov 4/5
law. In analogy to the findings of Casciola et al.14 and
Lindborg25 for HD, we find that a law can be obtained for
stationary homogeneous turbulence that relates third-order
structure functions and dissipation, but which also involves
additional terms. For MHD with an imposed constant shear,
there are shear related terms that appear in this modified
third-order law, as in the HD case.

The 2D simulations that we carried out to demonstrate
the new relationship were designed to enable high statistical
weight tests to be done using an accurate pseudospectral

code. We found that the modified relationship S�+SU
�+S�

�

=−2��r is well satisfied in the sense that the sum of the three
structure function terms scales linearly with separation in the
inertial range, even though the slope is found to be slightly
larger than 1. We believe this steeper slope is caused by
viscous effects, or, to put it another way, the Reynolds num-
bers of the simulations are not large enough to support
asymptotic results for which the viscous effects are negli-
gible. Moreover, retaining the viscous term S�

� in the deriva-
tion of the �modified� third-order law leads to the relation
S�+SU

�+S�
�+S�

�=−2��r, which is found to be valid over the
whole range from the dissipation scale to the integral scale,
with its slope very close to 1.

We further examined the third-order structure functions
for a periodic shear flow by analyzing the imposed coherent
flow and the fluctuations together, instead of using the usual
decomposition. While somewhat appealing intuitively, this
procedure departs from the standard approaches, exemplified
by Reynolds decomposition, in which mean flows are re-
moved by detrending, filtering, or subtracting an average
value, prior to analyzing the remaining fluctuations as the
“turbulence.” We carried out this alternative examination
both analytically and in the simulation data. The conclusion
emerges in both cases, that the third-order relation is restored
to a simple form in the presence of large-scale coherent
shear, if the coherent modes and the fluctuations are grouped
together as a single entity. When analyzed in this way, the
familiar anisotropic form of the third-order law is restored.

The implications of the above results for applications
such as the solar wind are intriguing. A number of authors
have examined third-order structure functions in the avail-
able interplanetary magnetic field datasets. Some linear scal-
ing of third-order structure functions is observed,6 even
though isotropy is not fully satisfied in the solar wind,26–28

due to the presence of a strong large-scale magnetic field.23,24

Other recent studies7,29 have also extended the treatment of
the third-order MHD laws to a form in which spectral aniso-
tropy can be accommodated. In particular, MacBride et al.7

model the solar wind magnetic fluctuations as either an iso-
tropic or a nonisotropic model �a mixture of one-dimensional
and 2D fluctuations� when they evaluate heating rates using
the homogeneous third-order law. However, their formula-
tion as well as other similar studies �e.g., Refs. 6, 8, and 29�
have so far maintained the assumption that the large-scale
magnetic field and plasma flows are uniform. This eliminates
by assumption the possibility that large-scale shear can enter
the balance between cascade and dissipation, as it does in the
Casciola HD study and its antecedents.14,25

The present results are complementary to these and may
provide some guidance concerning selection and preparation
of datasets for third-order analysis. Our results suggest that
when fluctuations are separated from the mean flows and
magnetic fields, the results may be affected by large-scale
shear, and moreover data selection has only a limited influ-
ence on improvement of the results. In contrast, the novel
procedure suggested above, of carrying out the analysis with-
out separation into mean fields and fluctuations, appears to
work much better and eliminates the need to take into ac-
count several new terms in the third-order relationships.
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FIG. 16. �Color online� Total third-order moment ST
+, defined in Eq. �21�

�full blue line�, using data from the whole field �top� and data from region A
�bottom�. For comparison, the prediction 2r�T

+ �see Eq. �20�� is plotted
�dashed black line�.
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Lacking details concerning preparation of datasets in the
above mentioned observational analyses, we cannot com-
ment further on the results. However, we do suggest for fu-
ture studies that the issues raised above be considered. Fi-
nally, we remark that similar simplifications may be possible
for HD third-order analysis, but pursuing this is beyond the
scope of the present paper.

ACKNOWLEDGMENTS

This research supported in part by the NSF Solar Terres-
trial Program under Grant No. ATM0539995 and by NASA
under the Heliophysics Theory Program Grant No.
NNX08AI47G.

1A. N. Kolmogorov, C. R. Acad. Sci. URSS 32, 16 �1941� �reprinted in
Proc. R. Soc. London, Ser. A 434, 15 �1991��.

2A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics �MIT, Cam-
bridge, 1975�, Vol. 2.

3U. Frisch, Turbulence �CUP, Cambridge, 1995�.
4H. Politano and A. Pouquet, Geophys. Res. Lett. 25, 273, doi:10.1029/
97GL03642 �1998�.

5H. Politano and A. Pouquet, Phys. Rev. E 57, R21 �1998�.
6L. Sorriso-Valvo, R. Marino, V. Carbone, A. Noullez, F. Lepreti, P. Veltri,
R. Bruno, B. Bavassano, and E. Pietropaolo, Phys. Rev. Lett. 99, 115001
�2007�.

7B. T. MacBride, C. W. Smith, and M. A. Forman, Astrophys. J. 679, 1644
�2008�.

8R. Marino, L. Sorriso-Valvo, V. Carbone, A. Noullez, R. Bruno, and B.
Bavassano, Astrophys. J. 677, L71 �2008�.

9C. W. Smith, J. E. Stawarz, B. J. Vasquez, M. A. Forman, and B. T.
MacBride, Phys. Rev. Lett. 103, 201101 �2009�; J. J. Podesta, M. A.
Forman, and C. W. Smith, Phys. Plasmas 14, 092305 �2007�.

10T. de Kármán and L. Howarth, Proc. R. Soc. London, Ser. A 164, 192
�1938�.

11M. Hossain, P. C. Gray, D. H. Pontius, Jr., W. H. Matthaeus, and S.
Oughton, Phys. Fluids 7, 2886 �1995�.

12B. Breech, W. H. Matthaeus, J. Minnie, J. W. Bieber, S. Oughton, C. W.
Smith, and P. A. Isenberg, J. Geophys. Res. 113, A08105, doi:10.1029/
2007JA012711 �2008�.

13M. Wan, S. Servidio, S. Oughton, and W. H. Matthaeus, Phys. Plasmas
16, 090703 �2009�.

14C. M. Casciola, P. Gualtieri, R. Benzi, and R. Piva, J. Fluid Mech. 476,
105 �2003�.

15R. J. Hill, J. Fluid Mech. 353, 67 �1997�.
16H. Tennekes and J. L. Lumley, A First Course in Turbulence �MIT, Cam-

bridge, 1972�.
17D. J. McComas, L. Barraclough, H. O. Funsten, J. T. Gosling, E. Santiago-

Muñoz, R. M. Skoug, B. E. Goldstein, M. Neugebauer, P. Riley, and A.
Balogh, J. Geophys. Res. 105, 10419, doi:10.1029/1999JA000383 �2000�.

18R. H. Kraichnan, Phys. Fluids 8, 1385 �1965�.
19L. Sorriso-Valvo, V. Carbone, A. Noullez, H. Politano, A. Pouquet, and P.

Veltri, Phys. Plasmas 9, 89 �2002�.
20H. Politano, A. Pouquet, and V. Carbone, Europhys. Lett. 43, 516 �1998�.
21D. Biskamp and E. Schwarz, Phys. Plasmas 8, 3282 �2001�.
22D. A. Roberts, M. L. Goldstein, W. H. Matthaeus, and S. Ghosh, J. Geo-

phys. Res. 97, 17115, doi:10.1029/92JA01144 �1992�.
23J. V. Shebalin, W. H. Matthaeus, and D. Montgomery, J. Plasma Phys. 29,

525 �1983�.
24S. Oughton, E. R. Priest, and W. H. Matthaeus, J. Fluid Mech. 280, 95

�1994�.
25E. Lindborg, J. Fluid Mech. 326, 343 �1996�.
26J. W. Belcher and L. Davis, Jr., J. Geophys. Res. 76, 3534, doi:10.1029/

JA076i016p03534 �1971�.
27W. H. Matthaeus, M. L. Goldstein, and D. A. Roberts, J. Geophys. Res.

95, 20673, doi:10.1029/JA095iA12p20673 �1990�.
28J. W. Bieber, W. Wanner, and W. H. Matthaeus, J. Geophys. Res. 101,

2511, doi:10.1029/95JA02588 �1996�.
29J. E. Stawarz, C. W. Smith, B. J. Vasquez, M. A. Forman, and B. T.

MacBride, Astrophys. J. 697, 1119 �2009�.

052307-9 The third-order law for magnetohydrodynamic turbulence… Phys. Plasmas 17, 052307 �2010�

Downloaded 12 May 2010 to 128.175.14.7. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp

http://dx.doi.org/10.1098/rspa.1991.0076
http://dx.doi.org/10.1098/rspa.1991.0076
http://dx.doi.org/10.1029/97GL03642
http://dx.doi.org/10.1103/PhysRevE.57.R21
http://dx.doi.org/10.1103/PhysRevLett.99.115001
http://dx.doi.org/10.1086/529575
http://dx.doi.org/10.1086/587957
http://dx.doi.org/10.1103/PhysRevLett.103.201101
http://dx.doi.org/10.1063/1.2783224
http://dx.doi.org/10.1098/rspa.1938.0013
http://dx.doi.org/10.1063/1.868665
http://dx.doi.org/10.1029/2007JA012711
http://dx.doi.org/10.1063/1.3240333
http://dx.doi.org/10.1017/S0022112002003142
http://dx.doi.org/10.1017/S0022112097007362
http://dx.doi.org/10.1029/1999JA000383
http://dx.doi.org/10.1063/1.1761412
http://dx.doi.org/10.1063/1.1420738
http://dx.doi.org/10.1209/epl/i1998-00391-2
http://dx.doi.org/10.1063/1.1377611
http://dx.doi.org/10.1029/92JA01144
http://dx.doi.org/10.1029/92JA01144
http://dx.doi.org/10.1017/S0022377800000933
http://dx.doi.org/10.1017/S0022112094002867
http://dx.doi.org/10.1017/S0022112096008348
http://dx.doi.org/10.1029/JA076i016p03534
http://dx.doi.org/10.1029/JA095iA12p20673
http://dx.doi.org/10.1029/95JA02588
http://dx.doi.org/10.1088/0004-637X/697/2/1119

