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Abstract. The scaling laws of mixed third-order structure functions for isotropic, homogeneous, and incompressible mag-
netohydrodynamic (MHD) turbulence have been recently applied in solar wind studies, even though there is recognition that
isotropy is not well satisfied. Other studies have taken account of the anisotropy induced by a constant mean magnetic field.
However, large-scale shear can also cause departures from isotropy. Here we examine shear effects in the simplest case, and
derive the third-order laws for MHD turbulence with constant shear, where homogeneity is still assumed. This generalized
scaling law has been checked by data from direct numerical simulations (DNS) of two-dimensional (2D) MHD and is found to
hold across the inertial range. These results suggest that third-order structure function analysis and interpretation in the solar
wind should be undertaken with some caution, since, when present, shear can change the meaning of the third-order relations.

INTRODUCTION

The so-calledfour-fifths lawfor the third-order structure
function [1, 2] is a central relationship in turbulence the-
ory, and has been widely used in characterizing the tur-
bulent energy cascade in incompressible hydrodynamics
[3]. This similarity law identifies the inertial range of the
energy cascade, where one finds that

〈(δuL(x, r))3〉=−4
5

εr, (1)

with δuL(x, r) = [u(x + r)− u(x)] · r̂ the longitudinal
velocity increment along the spatial separationr , and
〈. . .〉 indicating an ensemble average. The constantε
is the mean energy dissipation rate, and is assumed to
remain finite as the Reynolds number increases without
bound [4].

In magnetohydrodynamic (MHD) the analog of the
4/5-law was derived by Politano and Pouquet [5, 6].
They obtained symmetric scaling laws for each of the
Elsässer fieldsz± = v± b. Under the assumptions of
full isotropy and homogeneity, the mixed third-order
structure function relations in MHD are [5–7]:

δz∓L δz±i
2 =−4

d
ε±r, (2)

whered is the dimension,δz± = z±(x+ r)− z±(x) are
the increments of the Elsässer variables, andε± are
the corresponding mean energy dissipation rates ofz±.
Recently, MHD third-order laws have been applied in
solar wind studies, with the aim of measuring the energy
cascade rate. These studies either continue to assume

isotropy [7, 8], or deal with anisotropy caused by a
constant mean magnetic field [9–11].

An essential point is that homogeneity, time-
stationarity and isotropy must be satisfied, in some
form [12], in order to arrive at the law in the above
form of Eqs. (1) and (2). These constraints are rarely
verified in nature, so a generalization of this important
law of turbulence is needed. Regarding isotropy, in
the hydrodynamic case Casciolaet al. [13] extended
the 4/5-law to shear-dominated flows, where additional
terms enter the balance between dissipation and the
third-order structure function. This can have an inter-
esting counterpart in the MHD case. For example, in
solar wind applications, large-scale shear can be present
(in connection for example with the interfaces between
high-speed and low-speed streams [14]). It is of broad
interest to examine how the presence of such shear might
modify the law given by Eq. (2) in stationary turbulence.
Here we take a preliminary step in that direction by
examining the MHD law for an anisotropic but steady
and homogeneous medium with a uniform constant
specified shear in the velocity field [15], and then we
verify the new law using direct numerical simulations of
turbulence.

FORMULATION

Following procedures analogous to those used to obtain
the isotropic MHD 4/5-law [5–7], and the hydrodynamic
extension to the 4/5-law for constant shear [13], we
obtain an MHD third-order law with constant shear of
velocity [16]. Let us assume a decomposition of the
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velocity fieldv = U+u into a mean velocityU(x) and a
fluctuating componentu(x, t). We arrive at the modified
third-order law for MHD in integral form:

∮
[〈(δz∓k +δUk)|δz±i |2〉nk]dSr +2

∂Ui

∂xk

∫
〈δz±i δz∓k 〉dVr

=−16πr3

3
ε±. (3)

The volume integral is over a sphere of radiusr (Vr , Sr are
the volume and surface), andnk is a unit vector normal
to the surface. By settingU = 0, Eq. (3) will recover the
standard third-order law for isotropic MHD turbulence
[5], given by Eq. (2).

We now adapt the above MHD law to the case of 2D
geometry, to improve the statistical significance of our
numerical results. Moreover, a fully 3D treatment would
necessarily have a less extensive inertial range.

Let us now define in Eq. (3)P±3 (r) = 〈δz∓k |δz±i |2〉rk/r,
where r is the separation vector. For isotropic MHD,
we will have P±3 (r) = 〈δz∓r |δz±i |2〉, and then Eq. (3)
simplifies to

P±3 (r) =−2ε±r, (4)

which is the 2D version of the third-order law Eq. (2).
For anisotropic 2DMHD with a constant solenoidal

shear, that we impose in thex direction,α = dUy(x)
dx . In

this case, Eq. (3) can be simplified as:

∫ 2π

0
P±3 (r)πrdθ +

∫ 2π

0
δUr〈|δz±i |2〉πrdθ

+2α
∫ r

0

∫ 2π

0
〈δz±x δz∓x 〉πr ′dθdr ′ =−4πr2ε±,(5)

whereθ is the angler makes with the thex axis and
δUr = δU(r) · r̂ . We can then define:

S± =− 1
2π

∫ 2π

0
P±3 (r)dθ , (6)

S±U =− 1
2π

∫ 2π

0
δUr〈|δz±i |2〉dθ , (7)

S±α =− α
πr

∫ r

0

∫ 2π

0
〈δz±y δz∓x 〉r ′dθdr ′. (8)

In terms of Eq. (6)–(8), Eq. (5) can be rewritten as:

S±+S±U +S±α = 2ε±r. (9)

The second termS±U is similar to the ordinary third-order
structure functionS±, but involves the shear, andS±α is
another term that involves the shear and the second-order
structure function of the fluctuations.

To test how the modified third-order law is influenced
by these new terms, we now carry out an examination
below using turbulence simulation data.

r10-2 10010-4

10-3

10-2

10-1

100

<-δz-
L|δz+|2>

<-δz+
L|δz-|2>

2ε+r

FIGURE 1. The scaling of mixed third-order structure func-
tions for the isotropic MHD simulation.

NUMERICAL SIMULATIONS

We perform direct numerical simulations of turbulence in
order to test the validity of Eq. (9). We numerically sim-
ulated forced 2D incompressible MHD turbulence. The
specific approach we use is to solve the following modi-
fied equations for the vector potentiala and vorticityω:

∂tω +(v+U) ·∇(ω +Ω) = b ·∇ j +ν∇2(ω +Ω)+Fω ,
(10)

∂ta+(v+U) ·∇a = η∇2a+Fa, (11)

where the magnetic fieldb = ∇a× ẑ, the current density
j = −∇2a. The velocity is given byv = ∇ψ × ẑ, where
∇2ψ = −ω. The specified shear velocity isU = Uy(x)ŷ
and its associated vorticityΩ = ∇×U are constant in
time. Time t is in units of nominal large scale nonlin-
ear or eddy turnover times. A Fourier pseudo-spectral
method with periodic boundary conditions is used. The
time-dependent magnetic forcingFa is imposed by con-
straining the magnetic energy in the first two (lowest)
wavenumber shells ofb at constant level; the forcingFω
on the velocity is imposed also by constraining the en-
ergy in the first two wavenumber shells ofv, but the forc-
ing is only in the perpendicular direction relative to the
magnetic field, a condition that can be enforced at each
wavevector. For example,̃Fω(k) · ã(k) = 0, so that the
cross helicity will be kept small, wherẽ. means a quan-
tity in the Fourier space.

Isotropic MHD turbulence

First we simulate the 2DMHD system without the
presence of the shear, imposing simplyU = 0 in
Eqs. (10)–(11), with the parameters listed in Table 1.

In order to measure this inertial range, and extract the
mean energy transfer from the fluctuations, we analyzed
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TABLE 1. Parameters for the isotropic (α = 0)
and anisotropic simulations.

Resolution ν (=η) ε± α

Run 1 10242 0.001 0.21 0
Run 2 20482 0.0006 0.084 1.57

FIGURE 2. Shear velocity profileUy(x).

the classical mixed third-order structure functions. In
Fig. 1 we show the scaling ofP±3 (r). In some range,
both functions scale∝ r. The results are consistent with
the numerical results reported in [17]. From Eq. (4),
ε± can be extracted from the scaling ofP±3 (r), that is
ε± = −P3/(2r). Based on our data in Fig. 1, we obtain
ε+ = 0.21 andε− = 0.22. Comparing these values with
the definition of the dissipation rates,ε± = ν〈|∂kz

±
i |2〉, a

good agreement is found.

Anisotropic MHD turbulence with shear

We want to test the generalization of the MHD third-
order law, described in Eqs. (6)–(9), by examining turbu-
lence that evolves in the presence of a constant shear.
To enable a numerical experiment of this type that
employs an accurate and well-tested pseudo-spectral
method (same as the isotropic case described before), we
adopt the following strategy. We simulate 2D MHD tur-
bulence in periodic geometry, but impose a large-scale
velocity that is characterized by large regions of nearly
constant shear. In particular we impose the constant ve-
locity Uy(x); the particular form is plotted in Fig. 2.
The constant shear occurs in two regions with shear rate
α and −α, where α ≈ 1.57. Two buffer regions be-
tween the shear flows are present, where the imposed
shear changes sign. The parameters for the simulation
are listed in Table 1.

In Fig. 3, we show the scaling ofS+, S+
U andS+

α using
data from the positive shear region, where2ε+r is plotted
for comparison. Although we can observe a short range
whereS+ scales∝ r, this range is much smaller than
the isotropic case (see Fig. 1). If one was to attempt to
use this linear scaling ofS+ as a substitute for the full
modified third-order law Eq. (3), there is no assurance
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FIGURE 3. The scaling of the individual third-order terms
S+, S+

U , S+
α , and their sum for a positive shear region.

that the result would be relevant to the actual dissipation
rate. (However, one might be tempted to carry out this
procedure if, for example, this were experimental data
and the experimenter were unaware of the presence of the
shear, and therefore assumed that Eq. (2) was valid.) In
fact, for this particular case the dissipation extrapolated
from this scaling would beε+ ≈ 0.03, which grossly
underestimates the actual dissipation rate.

There is no reason thatS+, S+
U , andS+

α should each
have a (separate) scaling law; in fact, as obtained in
Eq. (9), only the sum of these quantities obeys the scaling
law. We can see evidence, in Fig. 3, that the modified
third-order law produces a very good linear scaling. For
the sum of the three terms, we get a much longer range
of scaling∝ r (as compared to any individual term), and
the dissipation extracted from this scaling isε+ ≈ 0.1,
which just slightly overestimates the actual dissipation.

SUMMARY AND DISCUSSIONS

We examined the mixed third-order MHD structure func-
tions, incorporating a constant sheared velocity in addi-
tion to homogeneous fluctuations, under a set of assump-
tions that parallels those used in standard turbulence the-
ory to derive the Kolmogorov 4/5-law. In analogy to the
findings of Casciola [13] and Lindborg [18] for hydrody-
namics, we find that a law can be obtained for stationary
homogenous turbulence that relates third-order structure
functions and dissipation, but which also involves ad-
ditional terms. For MHD with imposed constant shear,
there are new, additional terms that appear in this modi-
fied third-order law, as in the hydrodynamic case.

We have employed 2D simulations to demonstrate the
modified law, a strategy designed to enable high statis-
tical weight tests to be done using an accurate pseudo-
spectral code. We found that the modified relationship
S± + S±U + S±α = 2ε±r is well satisfied. The sum of the
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three structure function terms scales linearly with sepa-
ration in the inertial range.

However, as indicated in [7], isotropy is not fully sat-
isfied in the solar wind. Anisotropic MHD turbulence,
arising, for example, due to the presence of a strong uni-
form magnetic field [19] has attracted wide interest in the
context of the solar wind [20–22]. Indeed, recent studies
[10, 11] have also extended the treatment of the third-
order MHD laws to a form in which spectral anisotropy
can be accommodated. In particular MacBrideet al.
[10] model the solar wind magnetic fluctuations using
both isotropic and non-isotropic model (a hybrid 1D+2D
model) when they evaluate heating rates using the homo-
geneous third-order law. However, their formulation, and
similar studies that have appeared recently (e.g., [7, 8]),
have so far maintained the assumption that the large-
scale magnetic field and plasma flows are uniform. This
eliminates by assumption the possibility that large-scale
shear can enter the balance between cascade and dissi-
pation, as it does in the hydrodynamics study and its an-
tecedents [13, 18].

Solar wind applications have dealt with these issues in
various ways, such as simply adopting the isotropic form
[7], or employing alternate symmetries, such as 2D [10]
or by introducing additional conservation laws [11], or
assumptions about angular variation of anisotropy [23].
The present results are complementary to these, in that
the new third-order structure function relations include
effects of anisotropy. However for the case of uniform
shear there is the additional significant complication that
the functional form of the third-order relation itself is
changed.

It is unclear how extensive the implied changes to the
interpretation of the third-order law might be for the solar
wind. On the basis of a very simple estimate we expect
the new terms in the third-order equation to be of sig-
nificance when the large-scale velocity increments are
of the same order or larger than the fluctuation incre-
ments at the same separation,δU ∼ δz. For the solar
wind, near a stream interface one might estimate that the
large-scale velocity changes∆U ≈ 100 km/s over a dis-
tance of 1/100 AU. Since this is comparable to correla-
tion scale, one can estimate that over the same distance
the velocity increments are of the order of 30 km/s. In
such regions, shear could be a major factor. In weaker
shear regions at high latitude, microstreams could con-
tribute∆U ≈ 50 km/s over six hours, and the fluctuation
increment might be of order 40 km/s in these regions.
Again, shear emerges as a possibly significant factor. On
this basis we suggest caution in developing interpreta-
tions that define either cascade rates or the span of the
inertial range on the basis of the observed linear behavior
of the third-order mixed structure function. The present
simplified constant shear third-order law indicates that
additional terms, and alternative interpretations, may be

needed.
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