
J. Fluid Mech. (2023), vol. 963, R1, doi:10.1017/jfm.2023.236

New exact Betchov-like relation for the helicity
flux in homogeneous turbulence

Damiano Capocci1,†, Perry L. Johnson2, Sean Oughton3, Luca Biferale1 and
Moritz Linkmann4,†
1Department of Physics and INFN, University of Rome Tor Vergata, Rome, Italy
2Department of Mechanical and Aerospace Engineering, University of California, Irvine,
CA 92697-2700, USA
3Department of Mathematics, University of Waikato, Hamilton, New Zealand
4School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh,
Edinburgh EH9 3FD, UK

(Received 10 January 2023; revised 10 March 2023; accepted 11 March 2023)

In homogeneous and isotropic turbulence, the relative contributions of different physical
mechanisms to the energy cascade can be quantified by an exact decomposition of the
energy flux (Johnson, Phys. Rev. Lett., vol. 124, 2020, 104501; J. Fluid Mech., vol. 922,
2021, A3). We extend the formalism to the transfer of kinetic helicity across scales,
important in the presence of large-scale mirror-breaking mechanisms, to identify physical
processes resulting in helicity transfer and quantify their contributions to the mean flux in
the inertial range. All subfluxes transfer helicity from large to small scales. Approximately
50 % of the mean flux is due to the scale-local vortex flattening and vortex twisting. We
derive a new exact relation between these effects, similar to the Betchov relation for the
energy flux, revealing that the mean contribution of the former is three times larger than
that of the latter. Multi-scale effects account for the remaining 50 % of the mean flux, with
approximate equipartition between multi-scale vortex flattening, twisting and entangling.

Key words: homogeneous turbulence, turbulence theory

1. Introduction

The kinetic helicity, defined as the L2-inner product of velocity u and vorticity ω, has
dynamical, topological, geometrical and statistical interpretations in turbulence. It is a
dynamical and topological inviscid invariant, where the latter refers to its connection
with the linking number of infinitesimal vortex lines (Moffatt 1969). Geometrically, it
quantifies the alignment of velocity and vorticity in a volume-averaged sense. Within a
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statistical approach to turbulence, helicity is the correlation between velocity and vorticity.
In a rotationally invariant ensemble, it is connected to the breaking of the symmetry
under inversion of all axes. Inspired by its relevance to turbulence in atmospheric
flows (Lilly 1986), dynamical and statistical effects connected with helicity have been
studied in the atmospheric boundary layer (Deusebio & Lindborg 2014) and in rotating
turbulence (Mininni & Pouquet 2010a,b), and more generally in homogeneous and
isotropic turbulence (Chen, Chen & Eyink 2003a; Chen et al. 2003b; Gledzer &
Chkhetiani 2015; Kessar et al. 2015; Sahoo, Bonaccorso & Biferale 2015; Stepanov et al.
2015; Alexakis 2017; Sahoo, Alexakis & Biferale 2017; Yan et al. 2020; Milanese, Loureiro
& Boldyrev 2021), as well as shear flows (Yan et al. 2020; Yu et al. 2022) and in laboratory
experiments (Scheeler et al. 2017).

The level of helicity in a turbulent flow affects turbulent statistics and dynamics, and
is thus of relevance from a fundamental theory perspective as well as for subgrid-scale
(SGS) modelling. As an alignment of velocity and vorticity weakens the nonlinearity of
the Navier–Stokes equations, high levels of helicity have been connected with a depletion
of the kinetic energy flux across scales by an analysis of the coupling between helical
Fourier modes (Kraichnan 1973), and with regions of low dissipation (Moffatt 2014).
These effects can be quantified by upper bound theory applied to helical forcing and direct
numerical simulation – the energy flux of turbulence sustained by fully helical forcing is
approximately 30 % lower than in the non-helical case (Linkmann 2018).

Helicity affects turbulence not only globally, that is, in terms of mean energy fluxes,
but also on a scale-by-scale level. As a solenoidal vector field, the velocity field u can
be decomposed into positively and negatively helical components u± (Herring 1974;
Constantin & Majda 1988; Waleffe 1992), u(x, t) = u+(x, t) + u−(x, t), where u± are
obtained by projecting the Fourier coefficients û(k, t) onto basis vectors which are
eigenfunctions of the curl operator in Fourier space. That is, û±(k, t) = u±(k, t)h±(k),
where ik × kh±(k) = ±h±(k) and u±(k, t) = û(k, t)·h±(k). The energy flux can then
be decomposed into different triadic couplings between positively and negatively helical
velocity-field fluctuations (Waleffe 1992). Interestingly, interactions among helical Fourier
modes of like-signed helicity lead to an inverse energy transfer across scales in the
inertial range (Waleffe 1992; Biferale, Musacchio & Toschi 2012, 2013; Sahoo et al.
2015), while interactions of oppositely-signed helical modes transfer energy from large
to small scales (Waleffe 1992; Alexakis 2017; Alexakis & Biferale 2018). For turbulent
flows of electrically conducting fluids, such as liquid metals or plasmas in the fluid
approximation, helicity alters the evolution of both velocity and magnetic-field fluctuations
profoundly. Here, small-scale kinetic helicity facilitates the formation of large-scale
coherent magnetic structures through the large-scale dynamo (Steenbeck, Krause &
Rädler 1966; Brandenburg 2001; Brandenburg & Subramanian 2005; Tobias, Cattaneo
& Boldyrev 2013; Linkmann et al. 2016, 2017).

The cascade of kinetic helicity itself is predicted to be direct, that is, it proceeds from
large to small scales (Brissaud et al. 1973; Waleffe 1992), and scale-local (Eyink 2005). It
results, as discussed by Eyink (2006) in the context of a multi-scale gradient expansion,
from a twisting of small-scale vortices into a local alignment with the small-scale velocity
fluctuations by large-scale differential vorticity (‘screw’). However, being sign-indefinite,
numerical results on helicity fluxes can be difficult to interpret as a loss of positive helicity
at a given scale may be viewed as a gain of negative helicity at the same scale.

In the context of SGS modelling, the effect helicity has on a turbulent flow is usually
taken into account through additional diffusive model terms (Yokoi & Yoshizawa 1993;
Li et al. 2006; Baerenzung et al. 2008; Inagaki, Yokoi & Hamba 2017). However, a
combination of a priori and a posteriori analyses of different SGS models for isotropic
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helical turbulence found the effect of the additional diffusive model terms to be small and
that a classical Smagorinsky model best represents the resolved-scale dynamics (Li et al.
2006). Similarly, based on analytical and numerical results, Linkmann (2018) suggests an
adjustment of the Smagorinsky constant to account for high levels of helicity. So far, SGS
analyses of helical turbulence have mainly been concerned with energy transfers.

Here, we focus on the helicity flux across scales in statistically stationary homogeneous
and isotropic turbulence, with large-scale forcing breaking mirror symmetry. For the
energy flux, the Betchov (1956) relation states that the mean contribution from vortex
stretching to the energy cascade is triple that due to strain self-amplification. Carbone
& Wilczek (2022) recently showed that there are no further kinematic relations for the
energy flux in statistically stationary homogeneous and isotropic turbulence with zero net
helicity. However, we prove here that a new exact kinematic Betchov-type relation exists
for the mean helicity flux. Furthermore, we also present an exact decomposition of the
helicity flux in analogy to that of the kinetic energy flux derived by Johnson (2020, 2021),
whereby the relative contributions of physical mechanisms, such as vortex stretching and
strain self-amplification, to the energy cascade can be quantified in terms of the overall
contribution and their scale locality. The aim is to identify physical mechanisms that
transfer kinetic helicity across scales and to quantify their relative contributions to the
mean helicity flux and its fluctuations, which may be useful for the construction of SGS
models when resolving the helicity cascade is of interest.

2. Exact decomposition of the kinetic helicity flux

To derive the aforementioned exact decomposition of the helicity flux and
relations between the resulting subfluxes, we begin with the three-dimensional (3-D)
incompressible Navier–Stokes equations, here written in component form:

∂tui + ∂j
(
uiuj

) = −∂jpδij + 2ν∂jSij + fi, (2.1)

∂juj = 0, (2.2)

where u = (u1, u2, u3) is the velocity field, p the pressure divided by the constant
density, ν the kinematic viscosity, Sij the rate-of-strain tensor and f = ( f1, f2, f3) an
external solenoidal force that may be present. To define the helicity flux across scales, we
introduce a filtering operation to separate large- and small-scale dynamics (e.g. Germano
1992). Specifically, for a generic function φ, the filtered version at scale � is φ̄� = G� ∗ φ,
where G� is a filter kernel with filter width � and the asterisk denotes the convolution
operation. Applying the filter to the Navier–Stokes equations (2.1)–(2.2) results in

∂tū�
i + ∂j

(
ū�

i ū�
j + p̄�δij − 2νS̄�

ij + τ �
ij

)
= f̄ �

i , (2.3)

where τ �
ij = τ �(ui, uj) = uiuj

� − ū�
i ū�

j is the SGS stress tensor. Here, we follow the
notation of Germano (1992) in defining the generalised second moment for any two fields
as τ �(a, b) = ab

� − ā�b̄�. We also require the filtered vorticity equation

∂tω̄
�
i + ∂j

(
ω̄�

i ū�
j − ū�

i ω̄
�
j − ν∂jω̄

�
i

)
− ḡ�

i = −∂j

(
εimn∂mτ �

nj

)
, (2.4)

where g = ∇ × f . The large-scale helicity density, H� = ū�
i ω̄

�
i , then evolves according to

∂tH� + ∂j

[
H�ū�

j + (p̄� − 1
2 ū�

i ū�
i )ω̄

�
j − ν∂jH�

]
+ 2ν(∂jū�

i )(∂jω̄
�
i ) − ω̄�

i f̄ �
i − ū�

i ḡ�
i

= −∂j

[
2ω̄�

i τ
�
ij + εijkū�

i ∂mτ �
km

]
+ 2τ �

ij∂jω̄
�
i . (2.5)
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The last term in this equation is the helicity flux

ΠH,� = −2τ �
ij∂jω̄

�
i , (2.6)

and is the central focus herein. It has an alternative form (Yan et al. 2020),

Π̃H,� = −τ �
ij∂jω̄

�
i −

[
τ �(ωi, uj) − τ �(ui, ωj)

]
∂jū�

i , (2.7)

and it can be shown that the right-hand side of (2.6) and (2.7) differ by an expression
that can be written as a divergence and therefore vanishes after averaging spatially, at
least for statistically homogeneous turbulence (Yan et al. 2020). This implies 〈ΠH,�〉 =
〈Π̃H,�〉. Eyink (2006) links the first term in (2.7) – which is proportional to ΠH,� – to
vortex twisting and Yan et al. (2020) attribute the second term to vortex stretching. In
what follows we discuss an exact decomposition of ΠH,�, and show that both effects can
be identified therein. We also use ΠH,� for our numerical evaluations (cf. Chen et al.
2003a; Eyink 2006).

2.1. Gaussian filter relations for the helicity flux
So far all expressions are exact and filter-independent. To derive exact decompositions of
the helicity flux in both representations, we now focus on Gaussian filters. For that case,
Johnson (2020, 2021) showed that the SGS stresses can be obtained as the solution of a
forced diffusion equation with �2 being the time-like variable, resulting in

τ �
ij = τ �(ui, uj) = �2Ā�

ikĀ�
jk +

∫ �2

0
dθ τφ

(
Ā

√
θ

ik , Ā
√

θ
kj

)
, (2.8)

where φ(θ) = √
�2 − θ and Aij = ∂jui are the velocity-field gradients. Since the SGS

stress tensor τ �
ij is symmetric, for the first form of the helicity flux we obtain in analogy to

the energy flux

ΠH,� = −2τ �
ij S̄

�
ω,ij, (2.9)

where Sω is the symmetric component of the vorticity gradient tensor, with components
Sω,ij = (∂jωi + ∂iωj)/2. Employing (2.8) this yields

ΠH,� = −2�2S̄�
ω,ijĀ

�
ikĀ�

jk − 2
∫ �2

0
dθ S̄�

ω,ijτ
φ

(
Ā

√
θ

ik , Ā
√

θ
kj

)
. (2.10)

The first term involves a product of gradient tensors filtered at the same scale, �; hence we
refer to it as being single-scale, and denote it ΠH,�

s . In mean, it coincides with the nonlinear
LES model for the SGS stresses (Eyink 2006). In contrast, the second term encodes the
correlation between resolved-scale vorticity-field gradients and (summed) velocity-field
gradients at each scale smaller than �, so that we refer to it as multi-scale.

Splitting the velocity gradient tensors into symmetric and antisymmetric parts, that is,
into the rate-of-strain tensor S = (A + At)/2 and vorticity tensor 𝞨 = (A − At)/2, where
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At is the transpose of A, the helicity flux can be decomposed into six subfluxes:

ΠH,� = Π
H,�
s,SS + Π

H,�
s,ΩΩ + Π

H,�
s,SΩ + Π

H,�
m,SS + Π

H,�
m,ΩΩ + Π

H,�
m,SΩ, (2.11)

where the single-scale terms are

Π
H,�
s,SS = −2�2S̄�

ω,ijS̄
�
ikS̄�

jk = −2�2tr
{
(S̄�

ω)tS̄�(S̄�)t
}

, (2.12)

Π
H,�
s,ΩΩ = −2�2S̄�

ω,ijΩ̄
�
ikΩ̄

�
jk = −2�2tr

{
(S̄�

ω)t�̄��(�̄��)t
}

, (2.13)

Π
H,�
s,SΩ = −2�2S̄�

ω,ij

(
S̄�

ikΩ̄
�
jk − Ω̄�

ikS̄�
jk

)
= −4�2tr

{
(S̄�

ω)tS̄�(�̄��)t
}

, (2.14)

and tr {·} denotes the trace. We purposefully retained the transposition operation here also
for symmetric tensors to show what the approach needs to be when the tensors involved
are not symmetric. Similarly, the multi-scale terms are

Π
H,�
m,SS = −2

∫ �2

0
dθ S̄�

ω,ijτ
φ

(
S̄

√
θ

ik , S̄
√

θ
kj

)
, (2.15)

Π
H,�
m,ΩΩ = 2

∫ �2

0
dθ S̄�

ω,ijτ
φ

(
Ω̄

√
θ

ik , Ω̄
√

θ
kj

)
, (2.16)

Π
H,�
m,SΩ = −2

∫ �2

0
dθ S̄�

ω,ij

[
τφ

(
S̄

√
θ

ik , Ω̄
√

θ
jk

)
+ τφ

(
Ω̄

√
θ

ik , S̄
√

θ
jk

)]

= −4
∫ �2

0
dθ S̄�

ω,ijτ
φ

(
S̄

√
θ

ik , Ω̄
√

θ
jk

)
. (2.17)

We recall that 〈ΠH,�
s,ΩΩ〉, the spatial average of the contribution to the helicity flux due

to coupling of resolved-scale vorticity strain with resolved-scale vorticity, vanishes,

〈ΠH,�
s,ΩΩ〉 = −�2

4

〈(
∂jω̄

�
i + ∂iω̄

�
j

)
ω̄�

i ω̄
�
j

〉
= −�2

4

〈
∂j(ω̄

�
i ω̄

�
i ω̄

�
j )

〉
= 0, (2.18)

due to periodic boundary conditions and the divergence-free nature of the vorticity field,
as previously discussed by Eyink (2006) in the context of a multi-scale gradient expansion
of the SGS stress tensor.

The physics encoded in these transfer terms may be understood in terms of three effects:
(i) ‘vortex flattening’ – compression and stretching of a vortex tube into a vortex sheet by
large-scale straining motion, with the principal axes of the vorticity deformation tensor
Sω aligning with that of the strain-rate tensor at smaller scale, see (2.12) and (2.15);
(ii) ‘vortex twisting’ – a twisting of small-scale vortex tubes by large-scale differential
vorticity into thinner tubes consisting of helical vortex lines, and subsequent small-scale
alignment between the resulting vorticity vectors and the extensile stress generated
thereby (Eyink 2006), see (2.14) and (2.17); and (iii) ‘vortex entangling’ – twisting
of entangled vortex lines, see (2.13) and (2.16). Interpreting helicity as the correlation
between velocity and vorticity, a change in this correlation (or alignment) across scales
occurs by vorticity deformation through straining motions or differential vorticity. This
results in decorrelation at large scales and an increase in small-scale correlation.

The interpretation of vortex entangling, or twisting of entangled vortex lines, relies on
the topological interpretation of helicity in terms of link, twist and writhe of vortex tubes.
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The terms we interpret in this way do not involve strain-rate tensors; they only involve
vorticity and differential vorticity. As such they describe vortex–vortex interactions driven
by a twisting and stretching of a bundle of vortex tubes by differential vorticity. If we
consider a single bundle of vortex tubes, writhe is a global (or large-scale) quantity in the
sense that one needs to consider the entire bundle to describe it. In contrast, twist is a
local (or small-scale) concept that describes the winding of the entangled vortex tubes that
constitute the bundle around each other (Scheeler et al. 2017). What we loosely describe
as ‘twisting of entangled vortex lines’ can be thought of as a writhe-to-twist transfer of
helicity, by deformation of the vortex bundle, see e.g. Scheeler et al. (2017). This would
necessarily be a multi-scale process, and indeed we see in (2.18) that the single-scale term
〈ΠH,�

s,ΩΩ〉 vanishes in mean.

2.2. An exact Betchov-type relation for the helicity flux
In homogeneous turbulence, the Betchov (1956) relation is an exact expression connecting
the contributions associated with vortex stretching and strain self-amplification to the
mean energy flux across scales. Here we show that there is an analogous exact expression
relating two (single-scale) mean helicity subfluxes: 3〈ΠH,�

s,SS〉 = 〈ΠH,�
s,SΩ〉. These subfluxes

are associated with vortex flattening, 〈ΠH,�
s,SS〉, and vortex twisting, 〈ΠH,�

s,SΩ〉. Written in
terms of the definitions given in (2.12) and (2.14), this expression reads

3
〈
tr

{
S̄�

ωS̄�S̄�
}〉

= 2
〈
tr

{
S̄�

ω�̄�
�S̄�

}〉
. (2.19)

Before proceeding to a proof of this expression, we point out that it is a relation between
the respective traces of two tensors, that is, geometric objects. Consequently, (2.19) is
independent of the filter kernel and indeed also holds for the un-filtered case. Here, we
embed the derivation within the framework developed in § 2.1 so as to remain focused on
the physical interpretation of the terms in (2.19) as subfluxes across scales.

The main steps in a proof of (2.19) are now summarised. Following an argument
analogous to that used in proving the Betchov (1956) relation for the energy flux, and
using tensor symmetry properties and (2.18), one obtains (Eyink 2006)〈

tr
{

S̄�
ωS̄�S̄�

}〉
= −

〈
tr

{
�̄��

ω(S̄��̄�� + �̄��S̄�)
}〉

= −2
〈
tr

{
�̄��

ω�̄�
�S̄�

}〉
, (2.20)

where Ωω is the antisymmetric part of the vorticity gradient tensor. This yields

1
2

〈
tr

{
∇ω̄�

(
∇ū�

)t
[
∇ū� +

(
∇ū�

)t
]}〉

=
〈
tr

{
3
2

S̄�
ωS̄�S̄� − S̄�

ω�̄�
�S̄�

}〉
. (2.21)

Thus, showing that the left-hand side of this expression vanishes will prove the Betchov
relation for the helicity flux, (2.19). To do so, we express the left-hand side of (2.21) using
the chain rule and in index notation〈

∂jω̄
�
i ∂jū�

kS̄�
ki

〉
=

〈
∂j

[
ω̄�

i ∂jū�
kS̄�

ki

]〉
−

〈
ω̄�

i ∂j∂jū�
kS̄�

ki

〉

−
〈
ω̄�

i S̄�
kj∂jS̄�

ki

〉
−

〈
ω̄�

i Ω̄
�
kj∂jS̄�

ki

〉
. (2.22)

The first term on the right-hand side of this expression vanishes making use of periodic
boundary conditions. Using incompressibility and integration by parts it can be shown that
the last term also vanishes. The two remaining terms cancel out, which is shown by similar
arguments and using the properties of the Levi-Civita tensor. This completes the proof.
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N E ν ε εH L τ Reλ η/10−3 kmax kmaxη �t/τ No.

1024 7.26 0.001 3.33 5.02 1.12 0.50 327 4.20 340 1.43 0.60 39

Table 1. Simulation parameters and key observables, where N is the number of collocation points in each
coordinate, E the (mean) total kinetic energy, ν the kinematic viscosity, ε the mean energy dissipation rate,
εH the mean helicity dissipation rate, L = (3π/4E)

∫ kmax
0 dk E(k)/k the integral scale, τ = L/

√
2E/3 the

large-eddy turnover time, Reλ the Taylor-scale Reynolds number, η = (ν3/ε)1/4 the Kolmogorov microscale,
kmax the largest wavenumber after de-aliasing, �t the sampling interval which is calculated from the length of
the averaging interval divided by the number of equispaced snapshots, and ‘No.’ the number of snapshots. The
data corresponds to run 22 of Sahoo et al. (2017). It is available for download using the SMART-Turb portal
http://smart-turb.roma2.infn.it.

The mean single-scale terms also arise as the first-order contribution in a multi-scale
expansion of the SGS stress tensor (Eyink 2006), where (2.20) is used to deduce that
the full vorticity gradient, not only either its symmetric or antisymmetric component, is
involved in the helicity flux across scales. In consequence, (2.19) and (2.20) assert that the
mean transfers involving the symmetric or the antisymmetric parts of the vorticity gradient
can be related to one another, and thus the single-scale contribution to the mean helicity
flux can be written as

〈
ΠH,�

s

〉
= −8�2

〈
tr

{
S̄�

ωS̄�S̄�
}〉

= −16
3

�2
〈
tr

{
S̄�

ω�̄�
�S̄�

}〉
. (2.23)

3. Numerical details and data

Data has been generated by direct numerical simulation of the incompressible 3-D
Navier–Stokes equations (2.1) and (2.2) on a triply periodic domain of size Lbox = 2π
in each direction, where the forcing f is a random Gaussian process with zero mean,
fully helical f = f +, and active in the wavenumber band k ∈ [0.5, 2.4]. The spatial
discretisation is implemented through the standard, fully dealiased pseudospectral method
with 1024 collocation points in each direction. Further details and mean values of key
observables are summarised in table 1.

Figure 1(a) presents the time series of the total kinetic energy per unit volume, E(t).
Time-averaged kinetic energy spectra of positively and negatively helical fluctuations,
E±(k) = 〈1

2
∑

k≤|k|<k+1 |û±(k)|2〉 and the total energy spectrum E(k) = E+(k) + E−(k),
are shown in Kolmogorov-compensated form in figure 1(b). As can be seen by comparison
of E+(k) and E−(k), the large-scale velocity-field fluctuations are dominantly positively
helical, which is a consequence of the forcing. Decreasing in scale, we observe that
negatively helical fluctuations increase in amplitude, and approximate equipartition
between E+(k) and E−(k) is reached for kη ≥ 0.2. That is, a helically forced turbulent
flow, where mirror symmetry is broken at and close to the forcing scale, restores mirror
symmetry at smaller scales through nonlinear interactions (Chen et al. 2003a; Deusebio
& Lindborg 2014; Kessar et al. 2015).

4. Numerical results for mean subfluxes and fluctuations

Figure 2 shows the total helicity flux and all subfluxes, normalised by the total helicity
dissipation rate εH . As can be seen in the figure, the term 〈ΠH,�

s,ΩΩ〉 is identically zero,
which must be the case according to (2.18). Moreover, the helicity Betchov relation (2.19)
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Figure 1. (a) Time evolution of the total energy normalised by its mean value, E. Time is given in
units of large-eddy turnover time τ . The red dots correspond to the sampled velocity-field configurations.
(b) Time-averaged energy spectra in Kolmogorov-compensated form. The grey-shaded area indicates the
forcing range. The dashed line indicates a Kolmogorov constant CK ≈ 1.6.
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3〈ΠH,� 〉s,SS

Figure 2. Decomposed helicity fluxes normalised with the mean helicity dissipation rate εH . Filled markers
correspond to single-scale contributions while empty symbols are related to multi-scale contributions. The
error bars indicate one standard error. The subflux 〈ΠH,�

s,SΩ 〉 has been superposed with 3〈ΠH,�
s,SS〉 in order to

highlight the Betchov-type relation (2.19).

derived here is satisfied as it must be – the terms 〈ΠH,�
s,SΩ〉 and 3 〈ΠH,�

s,SS〉 are visually
indistinguishable, with a relative error between them of order 10−6 (not shown). A few
further observations can be made from the data. The non-vanishing multi-scale terms,
〈ΠH

m,SΩ〉, 〈ΠH
m,SS〉 and 〈ΠH

m,ΩΩ〉 are comparable in magnitude across all scales. They are
approximately scale-independent in the interval 10−2 ≤ kη ≤ 10−1, with each accounting
for approximately 15–20 % of the total helicity flux in this range of scales. Even though
clear plateaux are not present for the two non-vanishing single-scale terms, 〈ΠH

s,SΩ〉 and
〈ΠH

s,SS〉, one could tentatively extrapolate that at higher Re, approximately 30 % of the
mean flux originates from scale-local vortex twisting and 10 % from vortex flattening.
That is, the multi-scale contributions amount to 50–60 % and the scale-local contributions
to 40–50 % of the total helicity flux across scales, at least for this particular simulation.

Having discussed the mean subfluxes, we now consider the fluctuations of each subflux
term, in order to quantify the level of fluctuations in each term and the presence and
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Figure 3. Standardised p.d.f.s of helicity subfluxes Π
H,�
X , where X refers to the subflux identifier, for

(a) single-scale and (b) multi-scale contributions; σX denotes the standard deviation of each respective term.
Values of σX are provided in table 2.

ΠH,�
s Π

H,�
s,SS Π

H,�
s,SΩ Π

H,�
s,ΩΩ ΠH,�

m Π
H,�
m,SS Π

H,�
m,SΩ Π

H,�
m,ΩΩ

σ 2
X 1763 159 1200 248 563 53 283 72

〈(ΠH,�
X )3〉
σ 3

X
0.57 −0.34 0.42 −0.48 0.75 −1.62 0.39 −0.49

〈(ΠH,�
X )4〉
σ 4

X
24.0 22.6 23.1 34.2 27.6 19.58 34.6 27.9

Table 2. Values of variance, skewness and flatness for the subflux p.d.f.s at kη = 0.055 shown in figure 3.

magnitude of helicity backscatter. Figure 3 presents standardised probability density
functions (p.d.f.s) of all helicity subfluxes at kη = 5.5 × 10−2, which is approximately
in the inertial range. These p.d.f.s have wide tails, and are strongly non-Gaussian. Single-
and multi-scale terms all have strong fluctuations between 60 and 75 standard deviations.
Interestingly, the subflux term Π

H,�
s,ΩΩ , which necessarily vanishes in mean (see (2.18)),

has the strongest fluctuations (i.e. is the most intermittent).
Values of the variance, skewness and flatness for each of the p.d.f.s shown in figure 3

are provided in table 2. All p.d.f.s are more symmetric than for the kinetic energy fluxes
(Johnson 2021) (not shown) with generally low skewness values. The p.d.f.s of ΠH,�

s ,
Π

H,�
s,SΩ , ΠH,�

m and Π
H,�
m,SΩ are slightly positively skewed while the p.d.f.s of Π

H,�
s,SS, Π

H,�
m,SS

and Π
H,�
m,ΩΩ are slighly negatively skewed. The symmetry is more pronounced in the

single-scale rather than the multi-scale terms, as can be seen by comparison of the left
and right panels of figure 3, and by comparison of the skewness values reported in table 2.
As all averaged fluxes (except 〈ΠH,�

s,ΩΩ〉 which is zero) transfer positive helicity from large
to small scales, symmetry in the p.d.f.s indicates strong backscatter of positive helicity,
or forward scatter of negative helicity. The p.d.f.s become even broader with decreasing
filter scale (not shown). A comparison between the p.d.f.s of ΠH,� and the alternative
description based on SGS stresses related to vortex stretching, Π̃H,�, has been carried
out by Yan et al. (2020), indicating more intense backscatter in the latter compared with
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the former. Adding or removing a total gradient can strongly reduce the negative tail of the
SGS energy transfer (Vela-Martín 2022), and the same may apply to the helicity flux.

5. Conclusions

We have derived an exact decomposition of the helicity flux across scales in terms of
interactions between vorticity gradients and velocity gradients, and in terms of their
scale locality. Decomposing all gradient tensors into symmetric and antisymmetric parts
allows for a discussion and quantification of different physical mechanisms that constitute
the helicity cascade. Simulation results indicate that all subfluxes transfer helicity from
large to small scales, albeit with strong backscatter. In the inertial range, approximately
50 % of the total mean helicity flux is due to the action of two scale-local processes:
(i) vortex flattening and (ii) vortex twisting. We have also shown that these two effects
are related in mean through a newly derived exact (Betchov-type) relation, which implies
that the contribution of the former is exactly three times larger than that of the latter.
Multi-scale effects account for the remaining 50 %, with approximate equipartition
between multi-scale versions of the two aforementioned effects and multi-scale vortex
entangling. Thus, it seems likely that, in LES contexts, accurate modelling of the
helicity cascade should not neglect the multi-scale contributions. Although our numerical
quantification of the fluxes is obtained using data from a single simulation with an inertial
range of limited length, we conjecture that the results obtained are robust in the sense that
we expect them to hold for flows with larger Reynolds numbers. Increasing resolution and
Reynolds number is certainly a key step to understand whether single-scale and multi-scale
contributions are Reynolds-number independent in the asymptotic limit. We may address
this point quantitatively in the future. A brief discussion of Reynolds-number effects and
results at lower Reynolds number is provided in the Appendix. Similar flux decompositions
can be derived for magnetohydrodynamics. We will report results of these investigations
elsewhere in due course.
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Appendix. Reynolds-number effects

In order to discuss Reynolds-number effects in connection with the formation of plateaux
for the subfluxes, we carried out an additional simulation at lower Reynolds number,
Reλ = 240, on 512 collocation points in each spatial direction and a resolution of kmaxη =
1.25. Data was averaged over 40 equispaced snapshots separated in time by 0.6 large-eddy
turnover times. Figure 4 presents the helicity subfluxes. In comparison with the data shown
in the figure and the higher-Reλ data presented in figure 2, we note that plateaux are less
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Figure 4. Decomposed helicity fluxes normalised with the mean helicity dissipation rate εH for Reλ = 240.
Filled markers correspond to single-scale contributions while empty symbols are related to multi-scale
contributions. The error bars indicate one standard error.

extended for the multi-scale terms in the lower-Reλ data, and that no plateau-formation
is visible in the single-scale terms. In contrast, for the higher-Reλ data, the single-scale
terms are less scale-dependent in the (approximate) inertial range. It is thus plausible that
with increasing Reynolds number plateaux form, and indeed become more extended, for
all non-vanishing mean subfluxes.
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