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ABSTRACT

We study the statistics of coherent current sheets, the population of X-type critical points, and reconnection rates in
a coronal loop geometry, via numerical simulations of reduced magnetohydrodynamic turbulence. Current sheets
and sites of reconnection (magnetic X-points) are identified in two-dimensional planes of the three-dimensional
simulation domain. The geometry of the identified current sheets—including area, length, and width—and the
magnetic dissipation occurring in the current sheets are statistically characterized. We also examine the role of
magnetic reconnection, by computing the reconnection rates at the identified X-points and investigating their
association with current sheets.
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1. INTRODUCTION

Magnetic reconnection is a fundamental process that is crit-
ical for many laboratory, space, and astrophysical phenomena
(Parker 1963; Yamada et al. 2010). Turbulence, another fun-
damental process in space and astrophysics, is often studied
as a separate topic. However, turbulence can complicate, and
in some cases, accelerate the reconnection process (Matthaeus
& Velli 2011). When reconnection proceeds from a smooth,
laminar, and possibly equilibrium starting point, turbulence ef-
fects may be negligible. But in a highly dynamic driven case,
such as a coronal loop with magnetic footpoints constantly dis-
placed by photospheric motions, the same stresses that induce
the formation of current sheets (Parker 1972) may also drive a
turbulent cascade (Einaudi et al. 1996) and strongly contribute
to sustain the high-energy radiative losses (X-ray, EUV) of the
million degree closed corona (Reale 2010; Bingert & Peter 2011;
Dahlburg et al. 2012). This is the essence of the nanoflare sce-
nario (Dmitruk & Gómez 1997; Nigro et al. 2004). It is also
possible that magnetic field fluctuations and nonlinear turbulent
interactions may shape and reform magnetic flux tubes in inter-
planetary space, causing exchange of connectivity and particles
(McComas et al. 1989). This would necessarily involve forma-
tion of boundary regions organized around current sheets. Such
boundaries may be sites of heating and reconnection.

The association between reconnection and turbulence may be
a common occurrence in highly dynamic magnetized plasmas
(Servidio et al. 2010). The character of this association may
depend on many factors, including dimensionality, strength of
the mean magnetic field (if one is present), and the source and
nature of driving and turbulence. Previous studies have exam-
ined mainly the simpler and more tractable two-dimensional
(2D) case (Servidio et al. 2009, 2010), although it is clear that
the three-dimensional (3D) case is more relevant and also richer
(e.g., Zhdankin et al. 2013). Here we further examine current
sheets and reconnection in a weakly 3D model of a coronal loop
driven by low-frequency boundary motions.

In the coronal loop geometry with a strong axial mean
magnetic field, it is appropriate to use a representation based
on reduced magnetohydrodynamics (RMHD; Einaudi et al.

1996; Rappazzo & Velli 2011). The RMHD equations can be
derived from the full MHD equations with a strong DC magnetic
field (Montgomery 1982). In RMHD, the magnetic field can be
decomposed as B = b + B0, where b = b⊥(x, y, z), and the
mean magnetic field is chosen here to be along the ẑ axis,
namely B0 = B0 ẑ. We can then write the magnetic fluctuations
in terms of a vector potential a(x, y, z), b⊥ = ∇a × ẑ. Given
the vector potential field a, we can identify the magnetic
reconnection sites, or X-points, using the method we developed
in 2D MHD (Servidio et al. 2009, 2010, 2011; Wan et al.
2010, 2013). Note that in RMHD, the electric current density is
j = j (x, y, z) ẑ = −ẑ∇2

⊥a(x, y, z) where ∇⊥ = (∂x, ∂y, 0).
In a recent paper (Rappazzo et al. 2012), we employed

RMHD simulations to examine the driven turbulent evolution
of a coronal loop in order to demonstrate that changes in
connectivity of the magnetic field occur due to component
interchange reconnection even in the statistically steady state. In
that case, we examined the outcome of these reconnections but
did not quantify in any detail the properties of the current sheets
and reconnection events that underlie the interchange process.
Here we will provide a statistical study of these elementary
MHD properties and reconnection events that occur in a simple
coronal loop geometry.

2. NUMERICAL SIMULATIONS AND METHOD

We numerically solve the reduced magnetohydrodynamic
equations

∂t u⊥ + u⊥ · ∇⊥u⊥ = − ∇⊥P + b⊥ · ∇⊥b⊥
+ cA∂zb⊥ + ν∇2

⊥u⊥, (1)

∂t b⊥ + u⊥ · ∇⊥b⊥ = b⊥ · ∇⊥u⊥
+ cA∂zu⊥ + η∇2

⊥b⊥, (2)

∇⊥ · u⊥ = 0, (3)

∇⊥ · b⊥ = 0, (4)
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Table 1
Parameters for the Reduced MHD Simulation

Grid Box Sizes ν, η �η �T L⊥
40962 × 1024 12 × 10 1/1600 6.4 × 10−4 0.036 0.13

Note. L⊥ is the integral (correlation) length scale in the perpendicular plane,
�T is the Taylor microscale, and �η is the Kolmogorov dissipation scale based
on magnetic field. For definitions of length scales, see the Appendix. The mean
magnetic field is very strong with cA = 1000 and brms = 23.77.

where u⊥ and b⊥ are the velocity and magnetic field components
orthogonal to the axial field B0, assumed to lie in the Cartesian
z-direction. The total (plasma plus magnetic) pressure is P. The
gradient and Laplacian operators have only transverse (x, y)
components, as do the velocity and magnetic field vectors,
i.e., uz = bz = 0. This reflects the well-known tendency of
MHD to acquire a high degree of spectral anisotropy, with
gradients almost perpendicular to the applied magnetic field
(Shebalin et al. 1983), and also the tendency for the fluctuation
polarizations to lie in the transverse plane. The latter effect is
seen in nearly incompressible MHD theory (Zank & Matthaeus
1992) and in compressible MHD simulations (Matthaeus et al.
1996). Polarization anisotropy is also assumed in some theories
of MHD spectral evolution (Goldreich & Sridhar 1995) where it
may be called the Alfvén mode, or simply Alfvénic turbulence.
Here, since we adopt an RMHD description, we are in effect
restricting ourselves to low-frequency motions (Montgomery
1982; Zank & Matthaeus 1993), which is appropriate for solar
flux tubes that are driven by low-frequency photospheric stirring
of the magnetic footpoints (Parker 1972; Einaudi et al. 1996).
Note that in the above equations cA = B0/

√
4πρ0 is the Alfvén

velocity of the axial field, with the plasma assumed to have
uniform density ρ0. The essence of the RMHD approximation
may be expressed by allowing the (unscaled) mean magnetic
field to become very strong, for example by letting cA →
cA/ε for a small parameter ε, while the gradients along B0
become weak, so that ∂z → ε∂z. The contribution to the
time derivatives due to the influence of the wave propagation,
(cA/ε)(ε∂z), then remains of the same order as the nonlinear
turbulence effects, u⊥ · ∇⊥ in the limit of arbitrarily strong
magnetic field ε → 0; see Montgomery (1982) and Oughton
et al. (2004).

In the RMHD simulations, the lengths are expressed in units
of the perpendicular length of the computational box, which has
an aspect ratio of 10 and spans

0 � x, y � 1, 0 � z � 10. (5)

The simulation is performed on a 4096 × 4096 × 1024 grid,
using a pseudospectral method in the transverse planes, and a
second-order finite difference scheme in the parallel direction.
Some parameters for the simulation are given in Table 1. To
avoid boundary effects, we do not consider regions too close to
the bounding z-planes, z = 0 and z = 10. Statistics are obtained
using data from the region with 3 < z < 7. Additional analysis
(not shown), including a visualization of the 3D structure across
the entire domain, indicates that in this region the current
sheet properties are rather homogeneous and that rms values
of physical quantities are approximately constant there. (See
also Figure 5 of Rappazzo et al. 2008). Only outside of the
region 3 < z < 7 are the fields influenced strongly by the
boundaries.

3. STATISTICS OF ELECTRIC CURRENT
DENSITY AND DISSIPATION

To set the context, in Figure 1 we illustrate the 3D structure
of the strength of the electric current density |j (x, y, z)| in 1/16
of the simulation domain (0.25 × 0.25 × 10) at t ∼ 30τA.
The numerical simulation is started with a uniform axial field,
line-tied at the top and bottom plates (z = 0 and 10), where a
velocity field mimicking photospheric motions shuffles the field-
line footpoints. The physical properties of the velocity field are
as close as possible to those of solar convective motions, with
rms velocity ∼1 km s−1, correlation scale of the same order of
the typical convective granulation scale ∼1000 km, and it is kept
constant in time to mimic the low frequency of photospheric
motions, with lifetimes of ∼8 minutes, with respect to the
fast Alfvén crossing time along a coronal loop τA ∼ 20 s
(τ = Lz/vA with vA ∼ 2000 km s−1 and Lz ∼ 40 × 103 km
in typical coronal loops). The boundary motions increasingly
intertwine the field lines until at time t ∼ 30τA the system
transitions to a fully turbulent state, where total dissipation
and the energy injected by photospheric motions balance each
other on average. Lower resolution simulations with similar
parameters show that once the transition to fully developed
turbulence occurs a statistically steady state develops where
magnetic and kinetic energies fluctuate around their average
values, and with total dissipation and Poynting flux balancing
each other on average and fluctuating around a common average
value (e.g., see Rappazzo et al. 2008, Figures 3 and 4). Therefore
dissipation exhibits many maxima and minima in time. Given the
demands of the high resolution used here, the present simulation
has been carried out until the first maximum of dissipation is
reached at t ∼ 30τA.

In Figure 2 we plot the PDF of the out-of-plane current density
j, normalized by its rms value jrms. In this run, jrms = 1572.
Recall that in RMHD the electric current density has only a
z-component. Note the strongly non-Gaussian tails.

Conditional statistics are useful to describe the extent to which
the strong currents and regions of strong dissipation are space-
filling. Thus let us define a cumulative density function (CDF)
for the physical variable f (x, y, z) on a discrete sampling of
real space points (x, y, z) as F (f |j̃ ) = ∑′

f/
∑

f , where∑′ includes only points where the current density is larger
than a threshold value j̃ . Figure 3 displays the cumulative
density function for the volume V and the (resistive) dissipation
ε = ηj 2. The meaning of the former quantity, F (V |j̃ ), is the
fraction of the volume for which the absolute value of j is larger
than the chosen j̃ . The latter quantity F (ε|j̃ ) is equivalent
(for scalar resistivity, as employed here) to the percentage
of total resistive dissipation occurring in regions with current
density greater than the specified threshold j̃ . For example,
one can infer from Figure 3 that regions with |j | > 6jrms
occupy only about 0.4% of the total volume but contribute
more than 50% to the total resistive dissipation. To illustrate
this in a complementary way, we show in the bottom panel
of the same figure the percentage of total resistive dissipation
due to regions where the current exceeds j̃ as a function of
the percentage of the volume occupied by the regions where
the current exceeds the same threshold j̃ . One can observe
that the strongest currents occupying only 0.1% of the volume
contribute over 30% to the total resistive dissipation. Similarly,
the top currents occupying 1% of the volume contribute about
65% to the total resistive dissipation. The dissipation in this
snapshot of RMHD turbulence is therefore highly intermittent.
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Figure 1. Two renderings of the 3D electric current density at t ∼ 30τA, when the simulation has attained a statistically steady state. Left: 3D translucent shading of
the current density. Right: iso-surfaces of electric current density at a near-peak value. In both plots color contours of the current density are shown in selected cross
sectional 2D planes. The legend indicates corresponding numerical values. Only 1/16 of the simulation box (0.25 × 0.25 × 10) is shown.

(A color version of this figure is available in the online journal.)

Furthermore, from Figure 1 there is the suggestion that this
dissipation is occurring in sheet-like structures that are extended
in the direction parallel to the imposed mean magnetic field.

4. CURRENT SHEETS AND DISSIPATION

How do we define current sheets? This seemingly simple
question involves several practical and subtle issues that may
vary in different applications. For example, in observations
from interplanetary spacecraft, current sheets are associated
with tangential discontinuities, and one may wish to distinguish
these from other idealized classifications of classical disconti-
nuities. Various techniques have been employed for this purpose
(Burlaga & Ness 1968; Tsurutani & Smith 1979; Neugebauer
2006). The related issue of non-Gaussian fluctuations in in-
termittent turbulence has motivated development of methods
such as PVI (Veltri 1999; Bruno et al. 2001; Greco et al. 2008,
2009), which has a different emphasis, although it still captures
both rotational and tangential discontinuities (Wang et al. 2013).
More elaborate methods have also been devised to identify the
hierarchy of weaker discontinuities and current structures that
are expected in turbulence (Vasquez et al. 2007). For yet other
methods, the angular jump of the magnetic field (rotation an-
gle) across the current sheet is the focus (Li et al. 2011), and
this approach is particularly valuable in related techniques for
the identification of reconnection sites (Gosling et al. 2005).
In simulations one has the advantage that the turbulent fields
are known everywhere on the grid, so one can use more direct
methods while also comparing the events identified with those
emerging from use of the other more observationally oriented
approaches (Servidio et al. 2010, 2011). Here we will adopt
a simple approach in which a threshold in current density is
used to find strong currents in the simulation domain. For the
weakly 3D RMHD case at hand, as well as 2D cases, this ap-

proach, as we see here, identifies mainly sheet-like structures.
However, in fully 3D turbulence, and especially less anisotropic
3D turbulence (Clyne et al. 2007), current structures may be
more convoluted and spatially complex. In such cases a thresh-
old based method may select a much broader class of strong
current structures.

Here the specific threshold algorithm we apply for identifying
structures in a high-resolution RMHD simulation will focus
on finding structures in planes orthogonal to the mean field.
Referring to Figure 1 one readily sees that the structures
we select are predominantly cross sections of sheet-like or
filamentary structures.

The algorithm begins with an interpolation of the data onto
a higher resolution grid using a zero-padding technique in
Fourier space which does not introduce any artificial correlation
(interpolation error). (For details of the technique, see Servidio
et al. 2010). Specifically, for the simulation reported on herein,
each 2D plane is interpolated from its 4096 × 4096 simulation
grid to an 8192 × 8192 analysis grid. This step is important for
attaining the desired accuracy of our results, such as identifying
the correct number of X-points and their accurate locations, as
well as the statistics of current sheets including their volume,
length, and width.

To locate the current sheets in a given 2D snapshot, we first
scan through the data to locate all points with current density |j |
above a specified threshold Jthr. In our calculation we employ
Jthr ≈ 6jrms since it is empirically found to identify all the strong
sheet-like current structures. We can then find both the location
and the value of the maximum of |j | in each identified current
sheet. A sheet is then defined as a contiguous set of points above
the threshold.

Figure 4 provides an example, displaying contours of j for
the midplane in the z-direction, and, in the lower panel, the
identified strong current sheets. As noted above, although these
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Figure 2. PDF of the current density j, normalized by its rms value
(jrms = 1572).

(A color version of this figure is available in the online journal.)
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Figure 3. Top: cumulative density functions (CDF) of the volume V and the
resistive dissipation ε = ηj2, conditioned on exceeding the normalized current
density threshold |j |/jrms. Bottom: the percentage of total resistive energy
dissipation in regions exceeding a current density threshold, as a function of
the fractional volume (in percent) occupied by regions exceeding that current
density threshold.

(A color version of this figure is available in the online journal.)

strong current sheets only occupy about 0.4% of the total area,
their contribution to the energy dissipation exceeds 50%.

5. STATISTICS OF CURRENT SHEETS

We now wish to study statistical properties of the current
sheets identified in the 2D (relative to B0) cross-sections of the
simulation, focusing on in-plane length scales and the associated
resistive dissipation rates. Recall that for RMHD models the
electric current density is strictly in the parallel direction, and
therefore the dissipation—controlled by ∇2

⊥—depends only
on the two perpendicular (i.e., in-plane) coordinates. For this
reason we describe here the statistical distributions of energy
dissipation εcs, length �, and width δ, where εcs is the average
magnetic energy dissipated by individual current sheets per unit
time, and current sheet length � and width δ are measured

Figure 4. Top: color contour of current density field; bottom: identified strong
current sheets, where |j | > 6jrms.

(A color version of this figure is available in the online journal.)

perpendicular to the mean field. See Zhdankin et al. (2013) for
discussion of the distribution of the parallel extent of the current
sheets (which by definition is much larger than the perpendicular
scales for RMHD). Most of our discussion will concern resistive
dissipation in current sheets, although in a later section we will
also remark on the statistical association of viscous and resistive
contributions to dissipation.

The aspect ratio of the current sheets is of special importance
in MHD models due to its connection to the theory of quasi-
steady magnetic reconnection (Parker 1957). It has also been
noted that current sheets and reconnection play an important
role in turbulence (Matthaeus & Montgomery 1980; Matthaeus
& Velli 2011); therefore, the size and aspect ratio of the current
sheets that are produced by turbulence represent a key dynamical
feature that controls nonlinear evolution, as has been shown
recently in some detail for 2D MHD turbulence (Servidio et al.
2009, 2010). The present results are of relevance to the problem
of dissipation and reconnection in the weakly 3D RMHD case.

To begin our analysis, we identified current sheets in 21
selected planes of the simulation, employing a threshold method
as described above. Having selected all points within a given
current sheet, the length � is defined as the greatest distance
between any two points in that sheet. The width δ is then the area
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Figure 5. Scatter plot of the length vs. width of the strong current sheets.
A reference line with slope 1/2 indicates scaling suggested by Zhdankin
et al. (2013).

(A color version of this figure is available in the online journal.)
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Figure 6. PDFs of the length � (green dash-dotted line) and width δ (red solid
line) of the identified current sheets. Also shown are the Kolmogorov dissipation
scale, �η (red dashed vertical line at left), Taylor micro-scale, �T (green dashed
vertical line at center) and correlation scale, L⊥ (black dashed vertical line at
right). The widths are distributed about the Kolmogorov scale, while the lengths
are broadly distributed about the Taylor scale, ranging from correlation scale to
much smaller scales.

(A color version of this figure is available in the online journal.)

of the current sheet divided by the length. (This is essentially
identical to one of the two methods described by Zhdankin
et al. 2013.)

Figure 5 illustrates a result from this method of analysis, in
the form of a scatter plot of log(�) versus log(δ) of the identified
current sheets. For comparison, we also plot a dashed line with
a slope of 0.5. Zhdankin et al. (2013) found this to be the best
fit to a linear regression for these quantities.

An interesting finding due to Servidio et al. (2010) is that
in 2D turbulence, the distribution of in-plane lengths and
widths of current sheets is related to the fundamental length
scales associated with the turbulence cascade. A similar finding
emerges here for RMHD: Figure 6 shows the PDFs of the
computed lengths � (in green, right side) and widths δ (in red,
left side) of the identified current sheets. Also shown are the
Kolmogorov dissipation scale (red dashed line, left), Taylor
micro-scale (green dashed line), and correlation scale (black
dashed line, right). It is readily seen that the current sheets have
broadly distributed lengths �, typically of the order of the Taylor
microscale, but extending from the correlation scale to much
smaller scales. The widths are more tightly distributed and are
of the order of the Kolmogorov scale. Note that this distribution
differs in a subtle way from that seen in 2D by Servidio et al.
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Figure 7. Scatter plot of the average dissipation of the current sheets εcs vs. the
cross-sectional area of the current sheets. The global average dissipation of the
whole field, 〈ε〉, is shown as the black dashed line. A level line is also shown
corresponding well to the behavior of the average dissipation for small area
current sheets. The blue solid line indicates a power law index of 0.1, as found
by Zhdankin et al. (2013) using a somewhat different method of current sheet
identification.

(A color version of this figure is available in the online journal.)

(2010). However, this may be expected in an RMHD model of
coronal flux tubes (Dmitruk et al. 2003; Rappazzo et al. 2007)
in which the Alfvén crossing time and line-tying are influential
factors. Recently, decaying turbulence simulations of a similar
setup have shown that at the peak of dissipation, the Taylor
microscale is larger and total dissipation smaller for the line-
tied case, when compared to the periodic case (see Figure 3
of Rappazzo & Parker 2013). Moreover, these two differences
become increasingly pronounced for larger values of B0/b. Note
that when there is line-tying, larger B0/b leads to stronger axial
field-line tension. Indeed, for sufficiently strong values of the
guide field, dissipation can be inhibited entirely. Given the strong
influence of the line-tying boundary conditions on dissipation, it
is therefore crucial to study the characteristics of the dissipative
structures in the boundary-forced case and compare to the 2D
case as done here. We note that for the relatively steep inertial
range energy spectra associated with this variety of turbulence,
the Taylor scale is much closer to the correlation scale (or
energy-containing scale) than it is for shallower spectra. We
review the relevant physics in the Appendix.

The average dissipation rate εcs computed within a current
sheet (cross-section) as a function of the area of the current
sheet is shown in Figure 7. (Note that as defined, εcs × area =
the total Ohmic dissipation in the current sheet cross-section.)
Also shown is the average Ohmic dissipation rate computed
over the entire simulation domain. It is clear that current sheets
in general have an average dissipation rate much higher than the
global average dissipation rate, as expected. It is also readily
seen that the current sheets that are of smaller area have an
average dissipation rate that is roughly independent of size. The
larger current sheets however have larger average dissipation
rates. This appears to be compatible with the finding of Servidio
et al. (2010) that the fastest reconnection rates are found among
the population of 2D current sheets that have the largest lengths
�. A reasonable interpretation is that the formation of the most
intense current sheets occurs as a consequence of the collision
between larger magnetic islands (or flux tubes) which produces
a larger region of interaction. Sweet (1958) described this
phenomenon as “analogous to the flattening of a motor tyre
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Figure 8. Scatter plot of strong current sheets (in red) and vortices (in green),
demonstrating that these regions are often nearly co-located. The inset shows a
magnification of one such region, showing the signed vorticity. It is clear that
this vorticity enhancement, like most of the others, has a quadrupolar character.

(A color version of this figure is available in the online journal.)

when loaded.” This also causes closer encounters and therefore
smaller thickness δ and larger current density.

Another result is shown in Figure 8, which displays the
locations of strong current sheets and strong vortices. It is
apparent that enhancements of both vorticity and current are
roughly sheet-like, and that they are also nearly co-located.
This is consistent with the known association of quadrupolar
vorticity distributions with active, reconnecting current sheets
in 2D MHD (Matthaeus 1982). Note that in this perspective the
vorticity is generated by the circulation of the Lorentz force near
the current sheet. Vorticity generated in this way is expected
to be located very near current sheets—more precisely, near
positions in which the local magnetic field overlaps regions of
strong gradients of the current density. A close-up illustration
of the region near one selected current sheet is shown as an
inset within Figure 8. The signed vorticity is plotted, confirming
that the distribution is indeed quadrupolar, centered around
the current sheet. The preference for this spatial relationship
between current and vorticity is revealed quantitatively by
analysis of the two-point correlation function of the out-of-plane
components of vorticity and current density. The interpretation
of these correlations provides a consistent picture. Shown in
Figure 9 is the “Type I” correlation 〈ω(x + r)j (x)〉 of the signed
vorticity and current density, and the “Type II” correlation
〈|ω(x + r)||j (x)|〉 − 〈|ω|〉〈|j |〉 for the absolute values of the
same quantities. Both correlations are normalized by the product
of the respective rms values of the fields used in the correlations.

From Figure 9 it is readily seen that the signed correlation
hovers near zero, indicating that whatever correlation exists is
nearly the same for positive and negative vorticity. Meanwhile
the absolute value correlation remains nonzero out to a distance
of the order of r = 0.01 to 0.02.

6. RECONNECTION AND CRITICAL
POINTS IN REDUCED MHD

The highly localized sheet-like current structures described
above are immediate causes of intermittency and enhanced
dissipation in driven RMHD, consistent with analogous effects
in two dimensions. Indeed these properties are central in
the turbulence interpretation of the statistics of nanoflares
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Figure 9. Correlation of the out-of-plane components of vorticity and current
density. Type I: 〈ω(x + r)j (x)〉 for the signed vorticity and current density;
Type II: 〈|ω(x + r)||j (x)|〉 for absolute values of the same quantities. Both
quantities are normalized by the rms values of vorticity and current density.

(A color version of this figure is available in the online journal.)

Figure 10. Color contour of current density with in-plane magnetic field lines.
Identified magnetic X-points, which are potential reconnection sites, are shown
with symbol “X.” It is evident that many X-points are not located at strong
current sheets, as noted by Zhdankin et al. (2013).

(A color version of this figure is available in the online journal.)

(Einaudi & Velli 1999; Rappazzo et al. 2013). The status
of reconnection association with these current sheets is less
certain. Indeed, although RMHD has some 3D effects (and
eliminates the extra constraints present in the strictly 2D case),
it is nonetheless possible to have strong current sheets that
have weak reconnection rates. This is a direct consequence
of the fact that in the RMHD model the magnetic potential
does not in general define magnetic surfaces (Servidio et al.
2014). One implication is that (component) magnetic X-points
have a far weaker association with current sheets (Zhdankin
et al. 2013) than is found in the standard 2D paradigms of
reconnection (Sweet 1958; Parker 1957; Petschek 1964). To
quantify the features of reconnection in the present RMHD
model, we proceed to directly analyze the properties of the
computed critical points.

Using the method developed in Servidio et al. (2009, 2010,
2011), we can identify potential reconnection sites in the RMHD
simulation, which are the X-points of the in-plane magnetic
field, i.e., saddle points of the magnetic potential in the selected
x–y plane. Current sheets may or may not coincide with magnetic
X-points (Rappazzo & Velli 2011; Zhdankin et al. 2013). An
example from the simulation is shown in Figure 10, which
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Figure 11. PDFs of three different samples of the electric field. Solid red
line: PDF of the reconnection rate at X-points, |EX| in Alfvén units. Note
that the reconnection rate EX = −ηJX , where JX is the current density at the
X-points. Also shown are the PDFs of |v × b| and η|j |, from all grid points with
3 < z < 7. The large values of electric fields at X-points that produce large
reconnection rates are more probable than the same values in the Ohmic electric
field accumulated from the entire simulation. However, similarly large values
of ambient induced electric field are more probable.

(A color version of this figure is available in the online journal.)

displays in-plane magnetic field lines along with contours of
j. Identified reconnection sites (X-points) are shown with the
symbol “X.”

Having obtained the positions of the X-points, we may then
compute the reconnection rates as (minus) the electric field at
the X-point, or equivalently the rate of change of the magnetic
flux in the strong field regions adjoining the X-point:

∂a

∂t
= (ηj )X = −EX. (6)

Here EX is an abbreviation for the electric field measured at
the (X-point) saddle point. Clearly, the reconnection rate at the
X-point is EX = −ηJX, where JX is the current density at
the X-point. The PDF for |EX|, in Alfvén units, is shown in
Figure 11. This indicates that low reconnection rates are the
most likely. However, there are a substantial fraction of cases in
which |EX| > 0.1, which may nominally be viewed as a “fast”
rate of reconnection when referred to the global Alfvén speed.
The average value of reconnection rate in this distribution is
0.039 in the Alfvén units we employ.

To study the relation of current sheets and X-points, we ask
whether each X-point lies within an identified current sheet, and
then, how far are the outlying X-points from the nearest current
sheets. To answer these questions, we computed the shortest
distance between an X-point and any point in a nearby current
sheet. We show the PDF of this distance from X-points to the
closest current sheet, normalized by the Kolmogorov dissipation
scale �η, in the top panel of Figure 12. An X-point is considered
to lie inside a current sheet when the distance is smaller than
one grid length, Δx = 1/4096 ≈ 2.5×10−4, which is indicated
by the vertical dashed line in Figure 12. In this simulation,
we do find some X-points lying inside current sheets, although
the exact number depends on the particular threshold value Jthr
employed in defining the current sheets.

Having established that both the reconnection rates and the
distances of X-points from current sheets are widely distributed,
the next question of interest concerns the possible association
of the reconnection rates with the distance between X-points
and current sheets. In the lower panel of Figure 12 we plot the
conditional average of reconnection rates at the X-points EX ,
conditioned on the distance of the X-point to the closest current

r/lη
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102
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Figure 12. Top: PDF of the distance (r) from X-points to the closest current sheet
(region with |j | � 6jrms), normalized by the Kolmogorov dissipation scale �η .
Bottom: conditional average of electric field at the X-points, conditioned on
the distance from the X-point to the closest current sheet. Grid length, Δx, is
indicated in both panels by vertical dashed lines.

(A color version of this figure is available in the online journal.)

sheet. Again, EX is in Alfvén units. A remarkable feature of
these distributions is that they are very broad, with distances
between X-points and the nearest current sheet ranging from
less than a Kolmogorov scale (meaning the X-point is effec-
tively within the current sheet), to more than 100 Kolmogorov
scales. It is interesting, and physically appealing, to recognize
that the reconnection rates are on average much higher when the
X-points and current sheets have greater propinquity, while
distant X-points have systematically weaker reconnection ac-
tivity. In fact beyond two or three Kolmogorov scales the
reconnection rates are already very weak, and fall off only
very slowly for greater distances. For 3D reconnection this
effect may help explain why reconnection in solar contexts
is not always very fast, so that energy may be built up and
stored for a significant period of time, prior to release by rapid
reconnection.

Having identified all the X-points in 2D planes, it is useful to
illustrate the positions of the X-points in the 3D domain, which
then permits a visual interpretation of the extent of component
X-lines in the direction of the strong mean magnetic field. This
is shown in Figure 13. This rendering clearly suggests the extent
of X-lines in the 3D geometry, even though the tracing was not
carried out in three dimensions. Close inspection suggests that
some X-lines bifurcate, and in other instances, X-lines merge.
The color of the points represents the value of current density
at the X-points, which reveals that a given X-line may coincide
with a strong current sheet for only part of its parallel extent.
The red color represents X-points with current density larger
than Jthr = 9240, which indicates that those X-points are lying
inside what we have defined as a strong current sheet. It is clear
that some X-lines have a moderately strong (but subthreshold)
current density along their entire extent.
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Figure 13. 3D picture of X-lines in the simulation box. X-points are color-coded according to the value of |j | there. Red points represent X-points with current density
larger than Jthr = 9240 ≈ 6jrms, which indicates that those X-points are lying inside the current sheets.

(A color version of this figure is available in the online journal.)

Figure 14. Zoom-in of the simulation box, showing the iso-surfaces of the current density field and a line of identified X-points in black dots. Color bar is for the
current density.

(A color version of this figure is available in the online journal.)

Finally, as noted above, the magnetic potential does not
define field lines in RMHD, so it is not expected that the
apparent trajectories of the X-points (Figure 13) in 3D space
would coincide with field lines. In addition, the current is not
constant along field lines, so the spatial extension of the strong
current sheets is still another independent feature. Figure 14
demonstrates the independence of current sheets and X-lines
by illustrating one selected case from the simulation. The
independence of these features represents a complexity of the

3D problem that is evidently already appearing in the weakly
3D RMHD model.

7. DISCUSSION AND CONCLUSIONS

The present analysis of current sheets, vortex structures, and
reconnection rates in RMHD, along with the recent complemen-
tary study by Zhdankin et al. (2013), serves to extend analysis
of the statistics of 2D MHD reconnection (Servidio et al. 2009,
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2010) and current sheets (Greco et al. 2008, 2009; Li et al. 2011)
to the weakly 3D RMHD case. It is clear that there is much in
common between the weakly 3D case and the 2D case. Both
of these have been characterized here for the familiar special
case that includes only polarizations that are transverse to a
mean magnetic field. This case, known as the “Alfvén mode,”
involves only one potential function, the toroidal one (see, e.g.,
Oughton et al. 1997). The fully 3D case requires two scalar
potentials to describe a general solenoidal magnetic field, and
may be expected to admit more complex correlations (Oughton
et al. 1997), more complex topologies (e.g., Priest & Pontin
2009), and more complex coherent structures (e.g., Mininni
et al. 2008). Nevertheless the RMHD case remains of inter-
est, mainly because of its relevance to low plasma beta, nearly
incompressible, strong guide field applications such as coronal
loops and coronal hole flux tubes and some laboratory and astro-
physical plasmas (e.g., Strauss 1976; Zank & Matthaeus 1992,
1993; Einaudi et al. 1996; Hendrix & van Hoven 1996).

The present analyses have shown that in a model relevant
to coronal loops, many reconnection sites are established,
consistent with the nanoflare scenario (Parker 1972; Einaudi
& Velli 1999; Dmitruk et al. 1998; Rappazzo et al. 2013).
The sizes of the current sheets are widely distributed, with
the perpendicular lengths and widths related to the turbulence
characteristic scales, as they were found to be in the 2D case
(Servidio et al. 2010). The reconnection rates are also similarly
found in a broad distribution (for the 2D case, see Servidio et al.
2010) with some fast reconnection rates >1/10 (Alfvén units)
found. However the average reconnection rate is somewhat
reduced by the interesting finding (see Zhdankin et al. 2013) that
the component X-points (which form the center of reconnection
activity) and the current sheets are often displaced spatially
from one another. This is evidently a 3D effect. It can occur (in
a mathematical sense) in RMHD because the magnetic potential
is not constant along field lines or flux surfaces (Servidio et al.
2014), whereas it is constant in 2D. The physical effect that
drives the separation of X-points and current sheets in RMHD
is evidently the long wavelength wave propagation that occurs
here but not in 2D. Only when the current sheets and X-points do
coincide does one find the strongest resistive electric fields at X-
points and therefore the strongest reconnection rates. This effect
appears to be a fundamental feature that impacts the intermittent
nature of reconnection and heating in the turbulence picture of
nanoflares (Dmitruk et al. 1998; Einaudi et al. 1996).

The strong current sheets associated with reconnection are
also found here to be accompanied by strong enhancements
of vorticity. This is consistent with the quadrupolar picture of
vorticity generation near current sheets (Matthaeus 1982). These
vortices are the characteristic small-scale structures responsible
for intermittency in the velocity field, just as current sheets are
the coherent structures related to intermittency of the magnetic
field. This picture, familiar in 2D (Matthaeus & Montgomery
1980; Biskamp 1986; Carbone et al. 1990; Veltri 1999), is
evidently found also in the weakly 3D case. Again, as with
the current structures, the fully 3D case is expected to be more
complex (Mininni et al. 2008).

Both vorticity and current enhancements are sites of enhanced
dissipation in RMHD and are likely also sites of dissipation in
the kinetic plasma regime (not studied here). The results also
show that the current and vorticity enhancements are widely
distributed in size. However it is also found that the average
Ohmic heating rate in current sheets is relatively insensitive
to the size of the current structure for small structures. The

average heating rate increases with increasing size for the larger
current sheets. This appears to be associated with the driving
of current enhancements and reconnection due to collisions
between flux tubes, as it is in the 2D case. This feature stands
in contrast to the expectations of reconnection when viewed as
a spontaneous rather than a driven process. For example, in the
simplest interpretation of Sweet–Parker theory, the reconnection
rate goes as EX ∼ c2

A/R
1/2
m where Rm = cAL⊥/η, and longer

current sheets would have slower reconnection rates. However,
as we have seen, this is not the case in turbulence.
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APPENDIX

SPECTRUM SLOPE AND RMHD LENGTH
SCALES IN CORONAL LOOPS

When the omnidirectional energy spectrum E(k) is of the
Kolmogorov type—here meaning it has a power-law inertial
range—one expects that the correlation scale L⊥, Taylor scale
�T, and Kolmogorov dissipation scale �η are related as �T =
L⊥/R1/2 and �η = L⊥/R3/4, where R is the large-scale
Reynolds number R = ZL⊥/η with turbulence amplitude
Z and dissipation coefficient η. Here the correlation scale is
L⊥ = ∫ w

0 dx ′R(x ′, 0, 0)/R(0, 0, 0) with R the standard spatial
correlation function, and the upper limit w is taken to be halfway
across the simulation box. The Taylor scale is obtained from
�2

T = 〈|bx |2〉/〈|∂xbx |2〉 with the brackets denoting a volume
average. The Kolmogorov scale is estimated from the standard
formula �η = (ε/η3)1/4 with ε the rate of Ohmic dissipation.

In the strongly turbulent regime, the Taylor scale is much
closer to the Kolmogorov scale in that L⊥/�T � �T/�η when
R � 1. However this conclusion depends sensitively on
the energy spectrum E(k) ∼ k−α having a power-law index
α ≈ 5/3. In fact when the index is steeper than α = 2, the
Taylor scale becomes more sensitive to the correlation scale and
less sensitive to the Kolmogorov scale.

Coronal loop models have the interesting property that the
correlations that drive the energy cascade may be limited
by local nonlinear distortions (as in Kolmogorov theory) but
also other effects, such as wave propagation through the loop
(Dmitruk et al. 2003; Zhou et al. 2004; Rappazzo et al. 2007).
In a loop with a strong axial magnetic field, the lifetime of
the higher order correlations may depend essentially only on
the Alfvén speed and parallel wavenumber while the nonlinear
effects depend only on perpendicular wavenumber. In such cases
the energy spectra can behave as k−2 or even k−3. In that limit
the Taylor scale may be closer to the correlation scale, with
L⊥/�T < �T/�η. This at least partially explains the difference
in scaling of current sheet in-plane lengths and widths (� and δ)
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Figure 15. Spectrum of the in-plane magnetic field.

(A color version of this figure is available in the online journal.)

seen in Figure 6 above for the coronal loop RMHD case shown
in this paper and the analogous 2D results evident in Figure 19
of Servidio et al. (2010). This interpretation is supported by
the steepness of the energy spectrum in the present simulation,
illustrated in Figure 15. For this simulation the in-plane magnetic
spectrum is found to have a slope close to −8/3 in the inertial
range.
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