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We evaluate a number of simple, one-point phenomenological models for the decay of 
energy-containing eddies in magnetohydrodynamic (MHD) and hydrodynamic turbulence. The 
MHD models include. effects of cross helicity and Alfvdnic couplings associated with a constant 
mean magnetic field, based on physical effects well-described in the literature. The analytic structure 
of three separate MHD models is discussed. The single hydrodynamic model and several MHD 
models are compared against results from spectral-method simulations. The hydrodynamic model 
phenomenology has been previously verified against experiments in wind tunnels, and certain 
experimentally determined parameters in the model are satisfactorily reproduced by the present 
simulation. This agreement supports the suitability of our numerical calculations for examining 
MHD turbulence, where practical difficulties make it more difficult to study physical examples. 
When the triple-decorrelation time and effects of spectral anisotropy are properly taken into account, 
particular MHD models give decay rates that remain correct to within a factor of 2 for several 
energy-halving times. A simple model of this type is likely to be useful in a number of applications 
in space physics, astrophysics, and laboratory plasma physics where the approximate effects of 
turbulence need to be included. 0 1995 American Institute of Physics. 

I. INTRODUCTION 

Turbulence theory is far from a completed subject in 
hydrodynamics and is both more complex and less weIl un- 
derstood in magnetohydrodynamics (MHD). Turbulence is 
studied as a fundamental physical process, but there is also a 
need to understand how turbulence affects natural and man- 
made complex systems. Driven by these applications, the 
subject of turbulence modeling (see, e.g., Ref. 1) has evolved 
in parallel to mathematical turbulence theory. There have 
been at least several recent efforts to develop MHD turbu- 
lence models.“m5 At present, MHD turbulence is clearly rec- 
ognized as being of central importance to numerous subjects 
of ongoing research, e.g., the sun, the heliosphere, space 
plasmas, and cosmic ray acceleration and propagation. While 
these applications may eventually require precise accounts of 
the dynamical evolution of turbulence, the immediate need is 
to include reasonable quantitative estimates of MHD turbu- 
lence in dynamical models appropriate to the specific appli- 
cation. 

In the present paper we describe and evaluate several 
simple models of MHD turbulence, touching upon hydrody- 
namic models as well. The models include only a minimum 
number of energy variables and length scales, and are based 
upon ideas already found in the literature, and we evaluate 
their performance relative to a set of accurate spectral 
method simulations. This permits an assessment of the level 
of accuracy that might be expected when such models are 
built into applications in forms that may resemble hydrody- 
namic K-E models.’ Our main conclusion is that turbulent 

decay rates can be reliably estimated to within a factor of 
two for a duration of at least several energy-halving times. 

II. BACKGROUND AND APPROACH 

Our principal goal is to discuss and evaluate several phe- 
nomenological models for the decay of energy and related 
quantities in homogeneous incompressible MHD turbulence. 
Our treatment will extend only to simple “one-point mod- 
els” that involve no specific information about the wavenum- 
ber spectra of excitations. Even within this class of models 
our treatment will be incomplete, since a large number of 
models of this type are possible. Most of the physical prin- 
ciples for constructing models of MHD turbulence are famil- 
iar in the literature,“-‘2 and we will draw freely from these 
sources. 

The incompressible MHD equations involve the solenoi- 
da1 fluid velocity u and the magnetic field B. The magnetic 
field B is written as the sum of a locally uniform mean value, 
B,, and a Huctuating part b. The equations are cast in Alfven 
speed units,13 in which the magnetic field is measured in 
terms of its associated Alfvdn speed (B+(47q~)-“‘B, uni- 
form mass density p), and the characteristic speed is chosen 
to be that associated with the fluctuations. The dynamical 
equations are conveniently written using Elsasser variables,14 

z,=ur+_b, 0) 

2iS 
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TABLE I. Simulation parameters for 64’ spectral simulations: mean magnetic field strength Ha, viscosity V, resistivity p, time step dt, halving time for total 
energy t(Eo/2), time of maximum enstrophy ft.&,,), initial normalized cross helicity CT~=ZHJE=~.Z~ -Z?)/(Z:+Zt), and the initial Alfvdn ratio 
r,=E,/E, (all times given in units of characteristic time ?). 

3D MHD Simulation Parameters 

Run Initial 
number Bo 1’ IJ- dt t!E,/2) m,aJ UC YA k-range Knee 

07 0 l/200 l/200 l/400 0.67 0.3 0 1 l-15 4 
08 1 l/200 l/200 l/400 0.75 0.3 0 1 1-15 4 
09 0 l/200 II200 l/400 2.5 1.6 0 1 l-3 4 
10 0.1 l/200 l/200 l/400 2.55 1.6 0 1 l-3 4 
11 1 I/200 l/200 u400 3.02 1.8 0 1 1-3 4 
12 3 l/200 l/200 l/l250 4.45 2.2 0 1 1-3 4 
15 0 l/200 l/200 l/400 0.77 0.0 0.43 3 3-15 2 
16 0 11200 l/200 l/400 0.81 0.3 0.43 1 3-15 2 
17 0 l/200 11200 l/400 0.85 0.4 0.43 l/3 3-1s 2 
18 0 l/200 11200 l/400 0.68 0.0 0 3 3-15 2 
19 0 l/200 11200 l/400 0.77 0.4 0 l/3 3-15 2 
20 8 II200 l/200 l/3200 4.67 2.4 0 1 1-3 4 
22 0 l/200 NS l/400 0.81 0.3 NS NS l-15 4 
23 3 l/200 l/200 l/1250 1.25 0.0 0.55 1 l-15 4 
24 0 l/200 11200 l/400 1.1 0.0 0.8 1 l-15 4 
25 0 l/300 NS l/400 0.75 0.2 NS NS 1-25 4 
26 8 l/200 l/200 113200 1.4 0.0 0.55 1 I-15 4 
27 1 l/2.50 11250 11400 1.54 0.8 0 1 l-8 3 
28 1 l/200 l/200 l/400 0.95 0.3 0.55 1 1-15 4 
29 0 l/200 l/200 l/400 0.84 0.3 0.55 1 1 15 4 

Dissipation due to a small viscosity u and resistivity j.~, 
which act mainly at the small scales, are represented by S+ . 
Note that in this system of units the Alfvdn speed associated 
with the mean magnetic field is VA= Bc . 

length scale. A second length scale can easily be included, as 
can dependence upon D, at least in principle. 

For homogeneous MHD turbulence we are particularly 
interested in the dynamical behavior of the fluctuation energy 
per unit mass, E=(~u~‘+~b~2)/2=(~z+]2+[z-~2)/4, and the 
Auctuation cross helicity density, H, = (u. b). These quanti- 
ties are rugged invariants of the ideal MHD equations and 
particularly relevant to the theory of turbulent spectral 
transfer. 15-r8 The so-called Elsasser energies Z’, = (Iz+ I”) 
and Z?=(1~-1~) are equivalent ideal invariants. However, 
no combination of these invariants distinguish whether en- 
ergy resides in the magnetic or velocity field. That property 
is measured by the ‘residual energy’ or ‘energy difference’ 
D=(~u~2-~b~2)=(z+ . z-). which, unlike the energy and 
cross helicity, is not an ideally conserved quantity. This fact 
makes a significant difference to the development of phe- 
nomenological models. The amount of E or H, present is not 
modified by the nonlinear terms that mediate spectral trans- 
fer from the large energetic eddies through the inertial range 
(if one is present). In the idealized high Reynolds number 
limit, these quantities can change only when excitations 
reach the dissipative scales. In contrast, the dynamical cou- 
plings can change the value of the energy difference D. In 
particular, both nonlinear and wave-like couplings can repar- 
tition kinetic and magnetic fluctuation energies. 

To provide a data base for comparison with the models, 
we assembled a set of three-dimensional MHD numerical 
simulations, employing a Fourier spectral (Galerkin)‘g~20 
method in periodic geometry. The runs that enter into the 
discussion in this paper use a code with spatial resolution 
643, a full dealiasing algorithm, and viscosity equal to resis- 
tivity, usually with dimensionless value l/200. Dealiasing is 
achieved’by extending arrays to 312 their original sizes by 
padding zeroes. The properties of the various runs are re- 
corded in Table I for reference in the later discussion. We 
have also tabulated, for each run, the energy halving times, 
t(Eo/2), and the time t(!J,,J, when the enstrophy is the 
maximum. As we can see, the energy halving times range 
from 0.67 to 4.67: varying by almost an order of magnitude. 
For the runs with initial broad spectrum the enstrophy maxi- 
mum occurs at or near t=O. The time at which ,j2 is maxi- 
mum in its evolution is within 10% of t(a,,.J. 

In the following section we will review and evaluate a 
familiar one-point energy decay model for homogeneous hy- 
drodynamic turbulence. This will involve one energy and a 
single length scale. In contrast MHD phenomenology has a 
greater complexity. To treat cross helicity effects, the theory 
needs to include both 2: and Zs , as well as at least one 

To illustrate the variety of behavior seen in these simu- 
lations, we refer first to Fig. 1, showing the time history of E 
for five simulations, designated as Runs 07, 15, 18, 20, and 
25. Four of the runs exhibit somewhat similar energy decay 
and are grouped together. Run 18, which decays most 
quickly, has nearly zero cross helicity H, and non-zero en- 
ergy difference D. Run 20, which decays most slowly, is the 
only one of these five runs with a large-scale mean magnetic 
field; here Bo-8. Run 25 is a purely Navier-Stokes (NS) 
hydrodynamic run. The other two runs are distinguished by 
values of H, and D which are both non-zero (Run 15) and 
both -0 iRun 07). The four panels of Fig. 2 illustrate the 
behavior of the Elsasser energies Z: for Runs 7, 15, 18, and 
20. Runs 15 and 20 (panels 2b and 2d) show that initially 
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FIG. 1. Time history of total energy for five different runs showing a wide 
range of decay rates. 

unbalanced Z”, and 25 remain so, causing the phenomenon 
of dynamic alignment,21-239”s in which the value of normal- 
ized cross helicity u,=2H,lE=(Z~-Z?)/(Zt+Z?) 
grows in time. The magnetofluid become progressively more 
“Alfv&ic” as the turbulence is increasingly dominated by 
fluctuations of one sense. In Runs 7 and 18 (panels 2a and 
2cj there is only a small difference between the two Elsasser 
fields, although there is a slight growth in Run 07. 

Figure 3 shows the progression of the wavenumber spec- 
trum in time for Run 07, which, in a sense to be defined 
below (section VII B), is most like Navier-Stokes flow, even 
though magnetic and kinetic energies are nearly equal. The 
spatial resolution and Reynolds numbers of our simulations 
(v-‘~~200) are necessarily lower than would be optimal for 
exploring high Reynolds number turbulent decay. Neverthe- 
less, the spectra indicate a reasonably good resolution of dy- 
namically important spatial scales, a hint of a near-power law 
inertial range (over less than a decade in wavenumber), and a 
rollover at an energy-containing scale near dimensionless 
wavenumber 5 or thereabouts (Fig. 3). 

These simulations illustrate the phenomena that we seek 
to describe with approximate models for the decay of global 
energy variables in MHD. The MHD results have a greater 
variety of behavior than the Navier-Stokes result (Run 25), 
which has Z”,-=Z!. =D. Therefore, before describing and 
evaluating the MHD phenomenology, we review and analyze 
the simpler and better known phenomenology for the decay 
of energy-containing eddies in hydrodynamics. 

Ill. DECAY OF ENERGY-CONTAINING EDDIES IN 
HYDRODYNAMIC TURBULENCE 

A simple and reasonably accurate phenomenological 
model exists for turbulent hydrodynamic energy decay at 
high Reynolds number, such as that plotted in Fig. 1 for Run 
25. This model has a rich history that provides important 

background and motivation for development of MHD turbu- 
lence models. Historically, Taylor,24 l&man and Howarth,25 
and others investigated the decay of (twice) the total energy 
per unit mass, ZL*, in homogeneous isotropic turbulence. Tay- 
lor’s theory obtained a t-* time dependence when the corre- 
lation (outer) scale /’ was assumed constant. Karman pro- 
posed a self preservation hypothesis that the correlation 
functions preserve their shape according to a similarity law 
during the decay. 

For homogeneous turbulence, the self preservation hy- 
pothesis was supposed to apply to all spatial scales that are 
large compared to the viscous or dissipation scale v. As 
described by Batchelor,26 various experimental observations, 
particularly in wind tunnels,“‘28 suggest that approximately 
zL*, t-l, with the length scale / TX &. Such dynamic evolu- 
tion is fully consistent with the self-preservation assumption. 
Since most of the fluctuation energy is found at scales 
h% 7, this behavior is identified as the decay law for the 
total energy, i.e., the decay law for the energy-containing 
eddies. The only scales not included are those near the dis- 
sipation scale or smaller, and structures at such large scales 
that the homogeneity assumption breaks down. 

‘The approach of Karman and Ho~arth,~~ 
Kolrnogoroff,29-31 Batchelor,% and others motivates a family 
of decay laws by associating the decay time or spectral trans- 
fer time, rs, with the characteristic nonlinear time, 
rnl = X/u, obtained by dimensional analysis aIone. Here, A is 
a length-scale characterizing the energy-containing eddies. 
Usually it will be the correlation scale or integral scale.a6 The 
nonlinear time also equals the characteristic eddy lifetime 
and is assumed to be the only time scale relevant to the 
problem. One can immediately write an energy equation 

du” z12 l.2 -=- 
‘dt 

(Y-=--a-. 
rni A (3) 

Similarly by dimensional analysis a X equation is written to 
supplement (3): 

dX 
z=p -$pu. 

Here, CY and /? are positive constants of order unity that are 
formally undetermined by dimensional analysis. 

Equations (3)-(4) define a complete phenomenological 
model for the evolution of the energy-containing eddies. The 
system of equations can be solved readily upon observing 
that u2Xa’P= const, which yields 

u(t)=u(to)[1+A(t-t,)]-m’YI(m+2@), (5) 

A(t) = h(to)[ 1 +A(t-t0)]2@‘(n+2% (6? 

The characteristic time for development of self-similar decay 
is A = ue(o~+ 2/3)/(2X0), where the zero subscript signifies 
evaluation at to. At large times X/u m t becomes independent 
of the parameters a and p. 

For the choice of constants a= 1 and p= l/2 in (3) and 
(4), the solutions (5)-(6) behave at large time as 

U2qt-t&1, (7) 

A--(t-tOj1’2, (8) 
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FIG. 2. Time history of Z”, for four typical runs. (a) Run 07: pseudo NS, (b) R un 15: non-zero cross helicity and D, (c) Run 18: zero cross helicity but 
D =O, and (d) Run 20: Large mean field, zero cross helicity, zero D. 

which is precisely the behavior associated with self- 
preservation of the shape of the correlation function (in fact, 
any ff=2p gives the same result). The simple pair of 
coupled differential equations du’ldt = - u3/F and 
dt’ldt= u/2 that predict this decay law are described, though 
not emphasized as such, in the same paper by Karman and 
H~warth.~ Note that 8 is a large-scale characteristic dy- 
namical length scale in the Karman and Howarth theory and 
can depend upon the various length scales that enter into the 
description of the large-scale turbulence. Here, it is associ- 
ated simply with the correlation scale X. Various corrections 
to the t- ’ law303”23” emerge by departing from either strict 
homogeneity or strict dynamical self-preservation at the very 
largest scales. These refinements improve the theoretical un- 
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derpinnings as well as agreement with experiments, but they 
do not significantly alter the exponents for energy decay and 
growth of the correlation scale. 

In contrast to these theories, assuming a stronger condi- 
tion of similarity, that is, scale-free self-preservation (or self- 
similarityj, leads to inertial range theory.” This additional 
property implies a power-law dependence of the energy 
spectrum across a subrange of wavenumbers and is appropri- 
ate only for fluctuations with characteristic lengths, 1’. sat- 
isfying c’*k’ 9 17. Thus, the range of wavenumbers associ- 
ated with the inertial range is a subset of those to which the 
energy-decay theories of Taylor and Karman may apply. 

Kolmogoroff’s version of the energy-decay theory34 was 
perhaps the first to write clearly a pair of coupled differential 
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FIG. 3. Snap shots of omni-directional energy spectra for MHD Run 07 
(pseudo Navier-Stokes run) for different times from t=O to t=4. 

equations that determined the approximate decay of energy. 
Kolmogoroff used a b-o model, representing b-u’/3 and 
o-Flu. The version of Kolmogoroff’s two-equation model 
discussed by Spalding34 includes inhomogeneous effects as 
well and can be considered the antecedent of both hydrody- 
namic and MHD turbulence modeling. Both 
Kolmogoroff ‘s30*34 and Saffman’s33 models can be obtained 
by appropriate choices of the parameters (Y and p in Eqs. (3) 
and (4). 

A. Numerical demonstration 

For our numerical comparisons we use data from three- 
dimensional simulations of incompressible fluid (and mag- 
netotluid) turbulence based on a Fourier spectral method’9V2o 
in a periodic box of size (2 rr)‘. Details of the initial condi- 
tions are given in Appendix A, and a summary of the simu- 
lations discussed here appears as Table I. Run 25 in the table 
is relevant to the hydrodynamics case. 

To apply the phenomenological model (3)-(4), we must 
first calculate the length scale X for the energy-containing 
eddies, Our definition is based upon the longitudinal integral 
scale used in isotropic turbulence theory,a6 

A= 
rrJdki(k)lk 

J-dk,?$k) ’ 
(9) 

where l?(k) is the omni-directional energy spectrum, and the 
denominator is equal to the total energy per unit mass E. For 
the discrete wave-vector space of the simulation it is more 
convenient to use the modal energy spectrum E(k), so that 

(10) 

The total energy is E = &E(k). In our simulations, the evo- 
lution of A is limited by the fact that there is a largest al- 
lowed wavelength, i.e., the scale of the spatial periodicity. 
The phenomenology has been developed for turbulence in an 
infinite domain, so we introduce a finite box size correction 
to the behavior of X: 

$3u l-k, [ 1 mm (11) 

where X,, is a scale associated with the box size. We have 
usually taken X,,= rrJ2. 

To assess the accuracy of the model represented by (3) 
and (11), we accumulate simulation data and subject it to 
several tests, the results of which are illustrated in Fig. 4. 
First, the numerical value of the decay rate (du”ldt),i, is 
calculated at regular intervals, using finite differences. An 
effective LY at each time is obtained by dividing the magni- 
tude of (dU’/dt)si, by the value of u3/X computed using the 
simulation data for the same instant. Panel 4a plots the pu- 
tative values of cr obtained in this way. Clearly, a! is not 
strictly constant as assumed in the model. Part of this is 
caused by a start-up transient in the dynamics, and we do not 
expect Eq. (3) to apply during the first characteristic time 
(about 1 time unit on the abscissa). In contrast, during the 
remainder of the simulation, (Y remains fairly steady, and the 
model estimates the instantaneous decay rate of total energy 
to within a factor of 1.5 to 2. A similar test of Eq. (11) is 
shown in Fig. 4b, where the numerically determined time 
rate of change of X is compared with the right hand side of 
(11) to extract an effective p at each time. The values of p 
are of order unity, and between t=2 and 3 there is a plateau 
near p-0.5. During this same period, we see from Panel 4a 
that (Y=+ 0.9. 

Figures 4a and 4b indicate that the simple family of 
Navier-Stokes phenomenologies (3) and (11) work reason- 
ably well in predicting the instantaneous decay rate, using 
phenomenological constants a-0.9 to 0.95 and p-O.4 to 
0.5 that are not far from the values associated with the self- 
preservation hypothesis. A more difficult challenge for the 
model is to explain the time history of the decaying energy, 
since in this case the errors in estimating the decay rate are 
cumulative. Figure 4c shows a comparison of E(t) for Run 
25 with the integrated solution of Eqs. (5) and (ll), starting 
with initial data from simulation time t= 1 to avoid start-up 
transients. The constants used in the comparison were 
a=0.95 and p=O.45. Similarly, the results for the time his- 
tory of h are shown in Fig. 4d, again comparing the simula- 
tion results in Run 25 with the solution of (ll), integrating 
once again from t= 1 to 4. The theory and simulations are in 
reasonable agreement, particularly when we recall the rela- 
tively low Reynolds number of the simulation. 

Evidently, the simple phenomenological model can de- 
scribe homogeneous hydrodynamic turbulence in a finite box 
satisfactorily, once the finite size effect is taken into account. 
Finite box size is a severe limitation on. the growth of h. In 
the above comparisons, the length scale A does not change 
significantly over the entire period of evolution. As a result, 
the comparison may test mainly the structure of the energy 
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FIG. 4. Computed (a) cr and (b) p using the data from the simulation [cf. Eqs. (3) and (1 l)] for the NS Run 25 at various times. Evolution of (c) energy and 
(d) A obtained by integrating model equations (3) and (11) using a pair of best fit (Y and p starting at t= 1. Superimposed discrete points are data from the 
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decay equation. As in the comparison of instantaneous decay 
rates, we see that order unity constants work well. 

Note that if A is strictly held constant then p=O identi- 
cally. Then Eq. (5) implies u--t-‘. A recent experiment35 
with length scale of the energy containing eddies approxi- 
mately constant did tind u-t- ’ consistent with Taylor’s 
theory.‘4 

At associated with Z:, or possibly a single length scale that 
is a composite of these two. The length scales A2 , are de- 
fined as 

IV. PHENOMENOLOGICAL MODELS OF MHD DECAY 

We now consider several one-point models for decaying 
MHD turbulence. They involve the evolution of the mean- 
square Elshser variables 2: = (1 z+ 1 a). The complete model 
will also include an evolution equation for the length scales 

where Zi=Zk[z+-(k)j2. For models with just one spatial 
scale, it is convenient to introduce a weighted combination 
of the separate + scales, of the form 
A = (Z:A+ +Z?A-)/(Z’, +ZL) as suggested by Matthaeus 
et al.36 Note that when A, =A _ , we use the notation 
AeAt. 
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Another quantity that can enter the models is the mean 
correlation of the two Elsasser fields D =(z+ . z-), which is 
also proportional to the difference between the kinetic and 
magnetic energies, ( u2- b’). We have investigated several 
versions of the models in which the decay of Zl depends 
upon D. However, because D generally decays very rapidly 
to values near zero, it has little influence on the model com- 
parisons. Therefore, to keep the models simple, we only 
present results from models in which D does not influence 
the decay of Zi. We will briefly discuss a model equation 
for the decay of D itself in a later section. 

tion effects associated with the fluctuating magnetic field.7 
Under the isotropy assumption, the wave period at wave- 
number k is of order (kVA) - I (the Alfvdn speed in our units 
is VA= Bc). These ideas can be directly carried over to the 
energy-containing range by using X t in place of k- ’ . This 
leads to a characteristic Alfvdn time 

Kraichnar? and Dobrowolny et &.21,22 applied the ap- 
proach of Karman and Kolmogoroff for hydrodynamic mod- 
els to the turbulent decay of the Elsasser energies 24 in 
MHD. For the present purposes, the first step is to write the 
decay of Zi in terms of spectral transfer times r,” , 

dZ: Z”, 
-$--$. (13) 

The triple correlation also decays due to the nonlinear 
process characterized by T,~, but the Kraichnan 
phenomenology6 neglects this effect, because of the assumed 
strength of the mean magnetic field. For cases where both 
effects are important, one possible way to write the total rate 
of triple decorrelation is as a sum of the hydrodynamic and 
the mean field rates’“: 

(16) 
This equation defines r,: , but by considering the structure of 
the dynamical equations (2), these spectral transfer times can 
be estimated in terms of several characteristic time scales. 
The first is rir, the characteristic nonlinear time, generalized 
for MHD in Elsasser representation,“’ 

We can combine the triple decorrelation time scales and the 
hydrodynamic nonlinear times scales to form the spectral 
time scale”: 

This time scale represents the approximate rate at which an 
energy-containing eddy decays due to the nonlinear term in 
(2), which arises from correlations with turbulent structures 
of the other sense. Consequently, the typical lifetime of these 
triple correlations, Q-Z, is also important. In addition, energy 
decay has been argued to depend upon wave-propagation 
effects that are present, represented by a characteristic 
Alfvenic time scale ri . The superscript I!I on each of these 
variables admits the possibility that they are generally differ- 
ent for the two Elsasser fields. Each of these quantities has 
been discussed previously,“~7,10-‘2 but mainly in the context 
of inertial range phenomenology, and then in essentially an 
isotropic turbulence approximation. Therefore, one reason 
for investigating several phenomenological models for MHD 
energy decay is that it is unclear how these earlier inertial 
range arguments are properly applied in the energy- 
containing range. Taking into account possible ambiguities 
concerning the definitions of the time scales themselves, we 
expect that the spectral transfer times will depend on the 
various characteristic scales so that 
.?~=r,t(r,:,r,,,r~,r,,r.:,r,). 

Estimates of this type for the spectral transfer time in the 
inertial range, parametrized by wavenumber and dependent 
upon the cross helicity, have been used by Dobrowolny 
et al.‘” and by Grappin et al.lOvl’ What we shall refer to as 
“Model A” consists of using (17) to estimate the spectral 
transfer time in (13). 

The evolution of the length scales A+. are given by: 

$=/3&e,)‘/3 [ 1 I- + . nlax (18) 

Here, ei, =2:/r: . The last term is the finite box size cor- 
rection, with A,,= rr/2 assumed here. Model A is a plau- 
sible and straightforward extrapolation of existing inertial 
range phenomenological theory to the global decay problem. 
It will be compared to numerical simulations in section V. 
For strong mean magnetic field, Model A is essentially an 
extension of Kraichnan’s model6 for inertial range spectral 
transfer into the energy-containing range. When Z,aBa, 
the energy decay equation becomes 

(19) 
A. Model A 

In connection with the inertial range Kraichnan’ argued In a symmetric model for which CY+ = cy- and X+ = X- , the 
that the steady energy-transfer rate of 2 fields must be di- decay rates of Z”, and 2: are equal, so their difference re- 
rectly proportional to the lifetime of the triple correlations mains constant. This difference is proportional to the cross 
7s. He then pointed out that the triple lifetime should be helicity. Therefore, while the total energy decreases, the nor- 
comparable to the period of the relevant Alfvin waves due to malized cross helicity a,=2H,lE=(Z: -Z?)/(Z: +Z!.) 
the mean magnetic field, when propagation is sufficiently increases. This is the argument originally given by Dobro- ’ 
strong that rA<r,,l. The suggestion has been made that the wolny et a1.22 for dynamic alignment in the limit that the 
inertial range triple correlation also decays due to propaga- triple decay rate is controlled by the Alfven time. 
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B. Wlodel Bl 

There are several ways in which models distinct from 
Model A but equally plausible can be constructed. One way 
is to adopt a symmetrized pair of equations for the evolution 
of the length scales, for example, 

This choice permits a convenient special case to be consid- 
ered, in which h+ and X-. are assumed to have the same 
initial value. Because their equations of motion are the same, 
this allows us to define a single scale h=h+ = X + . 

As a separate assumption, the spectral transfer time for 
Model B is taken to be simply the nonlinear time, i.e., 
r5= T,,~ (weak Bo). Thus the model dynamical equations are 

dZ2, Zz,Z- 

dt=-a + A ’ 

and 

dZ?. Z?Z+ 
--------- 

dt A . 

m 

(22) 

Equations (20). (21), and (22) define Model Bl (with finite 
box-size correction). Numerical tests of Model Bl are given 
in the next section. A variant of Model Bl may also be 
implemented with the At. retaining their separate identities 
(see Model B2 below). 

To examine some analytical consequences of Model B 1, 
for the moment we remove the finite box size correction by 
formally letting X,,4m. The length scale equation be- 
comes 

In this form the model affords simple analytical solutions. 
The system of equations (21), (22), and (23) possesses a 
conservation property: 

&Y-Z+-a+z-)=O, 
i.e., (a-Z+-a+Z-)=(n-Ztt--cr+Z!), where the super- 
script 0 designates the initial value of the field. Thus, we can 
eliminate one of the Z,‘s. Let us define a new variable, Z, 
such that 

Z=a-Z+-a=a+Z-+a, 05) 

where a=(cr-Z:- cr+Z!)/2. 
Now we have two simultaneous equations to solve: 

dZ p-a” 
-=-- 
dt 2x s 

(27) 

These two equations can be solved by dividing (26) by (27) 
and using the conservation property (24). Details of the gen- 
eral solution are relegated to Appendix B. Here, we discuss 

the special case when Zt =Z! , i.e., a =O. Thus, 
Z+ = Z-. = Z. Then, the solution to Model B 1 becomes, 

Z(t)=Z’[l +A(t-to)]-‘=+2P’ (28) 

where CUE a+(~- and 

A= 
ZO( 1+2p/&j 

2h0 . (29) 

For the case of a+ = cr- this solution reduces to the Navier- 
Stokes case described in section III. We return to this ques- 
tion of the Navier-Stokes limit of MHD in section VII B. 

C. Model B2 

As a third possibility, we form a model closely related to 
Model Bl but with different dynamical equations for the 
length scales. We group this along with Model Bl under the 
label “Model B” but designate it specifically as Model B2. It 
is formed by writing dhc ldt--h, /T:~, or, using Eq. (14), 

dX, 
-y =p-Fz?. (30) 

No correction for finite box size is included explicitly in 
(30), although in the comparisons with simulations we incor- 
porate a factor [ 1 -At/X,,,] as was done in Eq. (20). Note 
that when one of the fields Z, vanishes, the length scale of 
the nonvanishing field ceases to evolve. This is consistent 
with the fact that the spectral transfer ceases when one of the 
fields is zero. The length scale of the vanishing field formally 
grows according to (30), but this does not violate any prin- 
ciple because no excitation is present. 

Model B2 makes use of the nonlinear times in Eq. (30), 
with distinct length scales, so that the appropriate dynamical 
equations for the energy decay are [see (13)] 

dZ2+ z:z- 
-- 

dt --a+ 1,. ’ 

and 

dZf z1z+ 

-=-?c-* dt (32) 

ln section V, Model B2 will be evaluated using the simula- 
tion data base, along with Models A and B 1. 

Model B2 possesses a class of conservation laws. For 
arbitrary $ c # 1, we find that 

where the exponents q+ satisfy 

(34) 

and we designate the constant values C+= = X,Zz’. These 
conservation laws permit us to easily obtain analytic solu- 
tions. They can be cast into a more revealing constraint be- 
tween Z, and Z- : 
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y+-q+(Q -y+-9+ it0) (a+c-j( i-4+) 
-r- 

-(t)-Z!-(t") ia-C+)il-q-1' 
(35) 

Z- 

which is constant. This allows the solution to be reduced to 
an integral for Z* . Nice solutions are found for integer val- 
ues of 4+ and $- . 

For (a k = 1, the special case where 2/?, = (Y* , the above 
conservation laws take the form: 

which can be integrated to give 

(37) 

where C=a+C-/(a-C+). This connection between Z+ 
and Z- can be used to eliminate one of the Z, yielding the 
closed form solutions, 

Z+(t)=Z+(to) 1+ I (C’+l)ct!+Z-(t&t-to) -‘KC’+*) 

I 2C+Z:=‘+‘(to) ’ 
(38) 

and 

z-(t)=Z-(to) 
I 

cc’+ ija+z-(t,)(t-to) -c’~(c’+l! 
1+ - 

2c+z2+G”+yt)) 1 3 
i39) 

where C’ = l/C. 
The conservation laws (36) bear a strong resemblance to 

the Navier-Stokes case (3) and (4) which, when 2P=a, 
admits the conservation property 

If the Z, and Z- are equal then the MHD Model B2 reduces 
to two independent models (one for the + variables, one for 
the - ones), each like the Navier-Stokes model. Moreover, 
if there is only one length scale A = h + = X- then Models B 1 
and B2 are identical to one another. 

V. NUMERICAL EVALUATION OF THE MODELS 

A. Model A 

To evaluate the accuracy of Model A we begin by testing 
whether Eq. (13) represents a reasonable estimate of the in- 
stantaneous decay rates of 2; obtained from the numerical 
simulations. For the decay of Zt , Model A uses (14)-(17) to 
compute the right hand side of (13). This value is compared 
to the value of dZ:ldt determined directly from the simula- 
tions by taking finite differences. The ratio of the model 
value for dZ$ldt to the value determined from the simula- 
tion can be thought of as a time-dependent value of LY+ , 
which is supposed constant in the model. Figure 5 depicts the 
time-dependent values of a+ from the eighteen MHD simu- 
lations in Table I. One sees immediately that the general 
trend in time is for cr+ to increase. For a few runs this in- 
crease is by more than a factor of ten, and for some param- 
eters the increase is by a factor of 25 by t= 8. In this and 

-0 2 4 
TiGme 8 

IO 12 

FIG. 5. Computed c+ from simulation data using Model A for all MHD 
rtms. A good model would show all curves saturated at an order unity con- 
stant. Large and non-constant LY+ indicate poor agreement with the model. 
The cz- display similar disagreement (not shownj. 

other similar figures we do not label individual runs since we 
are interested to study the general behavior of the decay 
rates. We do not attempt to fit our models to individual runs. 
The behavior of (Y- is no better than those shown in Fig. 5 
for ff+. We regard this level of variation as unacceptably 
large in contrast to the variation in the other two models (cf. 
Fig. 6a). Model A with constant LL+ leads to large errors in 
estimates of instantaneous decay rates, and integrating (13) 
to find the time dependence of Z”, would produce even 
worse errors. Consequently, we discard Model A as a viable 
option. While there are many weaknesses in any such simple 
turbulence model, the main difficulty here seems to be the 
strong influence of the Alfven time dependence in Eqs. (17) 
and (16). This will enter the discussion later in the paper. 

B. Decay rates in Models Bl and B2 

When examining decay rates as we did in the previous 
section, the dynamical equations for the length scales do not 
enter the procedure, since A+ , X - , and, if needed X, are 
directly evaluated from simulation data. Similarly, when 
separate values of the two length scales are used in Models 
Bl and B2, there is no distinction between the two models if 
only the Z: decay rates are computed. Following the ap- 
proach described above, we evaluate the accuracy and time 
stability of a+ and QL by calculating the right hand sides of 
(31) and (32) from simulation data and comparing these 
Model B estimates of dZ$ldt with finite difference values of 
the same quantities from the simulation records of Zt (t) . 

First we consider results from simulations having no 
mean magnetic field, i.e., B,=O (Table I). For these runs, 
Fig. 6 illustrates the values of cr+_ computed in the way de- 
scribed above. The time history of LY+ in Fig. 6a reveals the 
accuracy of Model decay rates for Z: (called the majority 
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FIG. 6. Computed (a) LY+ and (b) LY- versus time and (c) a+ and (d) (Y- versus energy from simulation data using Model B2 for all MI-ID nms with no mean 
magnetic fields. In contrast to Fig. 5 for Model A these figures show much better agreement between the simulation and Model B, In particular, (c) and (d) 
show a range of energies for which the model produces adequate agreement. Relatively poor fit curves correspond to high cross helicity runs, 

species because initial values have Z”, SZ<). For the full hind the actual decay rate as time progresses, i.e., larger val- 
range of parameters in these simulations, cr, varies by no ues of (Y are indicated at later times. This may in part be 
more than about a factor of two, the central value lying be- caused by the limitations on our simulations for sustaining 
tween 0.5 and 1 in the later times of Fig. 6a. Unlike the truly turbulent behavior for many characteristic times. At late 
results of Model A (note the scale change in ordinate),,all times the fields are small and then the nonlinear terms in the 
values in Model B are less than about 2.0 for t<8. The dynamical equations are negligible compared to the linear 
calculated values of a- shown in Figure 6b for the same dissipative decay term. The latter implies exponential decay 
runs are even more tightly clustered, with 0.4< LY- C 1.0 dur- in time. The late time trend in Figs. 6a and 6b may also in 
ing 2<t<7 for almost all runs. It is therefore possible to part be related to the fact that these phenomenological mod- 
choose values of both (Y? in the range of about 0.5 to 1 .O and els possesses conservation properties discussed in sections 
get reasonably good decay rates from the Model B formulae IV B and C. The conservation property would force a slow 
for runs with Bo=O. We note a systematic trend in Figs. 6a down of the Z+ field if Z- is small. This built-in conserva- 
and 6b that the Model B decay rate systematically falls be- tion property emulates a property of the pointwise full MHD 
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equations. If one of the Elsasser variables is zero then the 
spectral transfer ceases completely. But this conservation 
property may not be an exact property of MHD. In addition, 
there is a rapid increase in a, very early in the runs, sug- 
gesting a transient startup period during which the correla- 
tions associated with turbulent spectral transfer are being es- 
tablished. To partially account for these effects, we present 
the same data again in Fig. 6c and Fig. 6d, now plotted 
against total energy remaining in the turbulence rather than 
against time. These figures exhibit an extended interval, the 
energy range of about 0.9>E>0.2, during which the curves 
of cr, are relatively flat or stable. 

We turn now to the performance of Model B in runs 
having non-zero values of Bo. Figure 7 shows values of 
CY~ determined as described above and plotted vs. energy. 
Once again we see that Model B estimates decay rates of 
Zi in reasonable agreement with those directly computed. 
The ratios of estimated to computed decay rates again cluster 
about a central value of order unity, though perhaps at a 
slightly lower value than for the Bo=O runs. In fact, the 
clustering is possibly better for runs with non-zero Bo. A 
general estimate ~~~-0.4 seems appropriate for runs with 
non-zero mean magnetic field. 

C. Time evolution in Models Bl and B2 

Model B predicts instantaneous decay rates well enough 
that we will examine its predictions in greater detail. In the 
previous subsection, the differences between Model Bl and 
Model B2 were minimal since the evolution equations for the 
length scales were not used. A stronger challenge for the 
models is to compare the computed time history from the 
model with that from the simulations. Also, models Bl and 
82 now differ, B2 having two length-scales governed by 
(30), while Bl has a single length-scale satisfying (23). To 
eliminate the influence of initial transients, we use data from 
f= 1 as the initial parameters in the models, and compare 
their predictions with the simulations after that time. Some 
of our parameter fits are designated as optimized, by which 
we mean a rough trial and error procedure. 

In Fig. 8 we illustrate such a comparison for Run 07, 
which begins with zero cross helicity, unit Alfvdn ratio, and 
Ba=O. This run is in some ways quite similar to a Navier- 
Stokes run (see section VII B). Figure 8a shows the time 
history of Zt and 25 from the simulation between t = 0 and 
4. The integrated model solutions shown on the same panel 
use (Y+ = a- =0.8, /3+ =0.45, and p-=0.60. For the same 
simulation, Fig. 8b shows the evolution of the two length 
scales A+ defined in Eq. (12) and compared to the model 
predictions in the same way. The behavior of the model is 
reasonable but far from exact. However, comparing these 
results for Run 07, a “pseudo-Navier-Stokes” run, with 
Figs. 4c and 4d, we see that the Model B2 predictions are of 
the ‘same level of accuracy as the simple hydrodynamic 
model in accounting for the energy decay in the hydrody- 
namic simulation. 

-1 .a .6 .4 .2 0 
P-3 Energy 

FIG. 7. (a) Q+ and [b) a- versus energy from simulation data using Model 
B2 for a11 MHD runs with non-zero mean magnetic fields. A relatively good 
agreement (except lower values of (Y’S) indicates weak dependence of decay 
rates on the mean magnetic fields. 

eled evolution commences at simulation time t = 1. Note that 
Fig. 9 displays two model solutions. In one, the model solu- 
tions use parameters optimized for that simulation 
(a+ = 1.3, a-=0.8, /3+=0.5, p-=0.3). In the other case, 
typical parameters found from the average behavior of the 
full set of simulations are used ( CX? = 1.0, ,Gt = 0.5). We can 
see that with the optimized constants, the model is again 
accurate at a reasonable level, but for the non-optimized 
typical constants, the results are much less satisfactory. 

In Fig. 9, Model B2 is compared with Run 15, a simu- As a third and final example of Model B’s ability to 
lation with relatively high cross helicity, a high Alfvin ratio predict global energy decay, we examine Run 20, which has 
(kinetic/magnetic energy = 3), and Bo=O. Again the mod- a strong mean magnetic field B. = 8. Here the initial values 

1 .8 .6 .4 .2 0 
(4 Energy 
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FIG. 8. Evolution of (a) 2: and (b) X, obtained by integrating Model B2 
for Run 07 using best fit vaIues of a+ and p+ starting form t= 1. The 
discrete points are from the simulation. 

used in the model are taken from t = 4 because the transients 
persist much longer. The results are shown in Fig. 10, for 
both optimized model parameters (QI? =0.3, pt = 0.4), and 
for the typical values of model constants used above in the 
Run 15 comparison. Once again we see a reasonably good 
level of prediction of energy decay for the optimized con- 
stants but less satisfactory performance for the typical con- 
stants. 

VI. REFINEMENTS 

A. Spectral anisotropy 

The above discussion indicates that lower values of the 
energy decay constants are needed in Model B with finite 

0 Z, : Simulation 

X Z- : Simulation 

Solid: Model, Optimized 

Dotted: Model, a= 

2 4 6 8 
Time 

FIG. 9. Evolution of Zt obtained by integrating Model B2 for Run 15 using 
the best tit values of LY+ and p? (solid lines) and using af = 1 (dotted 
lines). 

B0 compared to cases when Bn= 0. This follows because the 
effective values of a in runs with mean magnetic fields were 
lower than in the Ba= 0 runs. The same conclusion was ap- 
parent from Fig. 10 when two solutions of Model B with 
optimized and typical a’s were tested against the time his- 
tory of Run 20, which has a strong mean magnetic field. 
Model B does not include any effects of Alfvdnic decorrela- 
tion in the sense of (16) and (17). In contrast, such effects 
were intended to be present in Model A, through dependence 

2.5 
r 

0 Z, : Simulation 

x Z- : Simulation 
1 

solid: Model, Optimized 4 

Dotted: Model, a=1 

-0 2 4 6 8 10 12 
Time 

FIG. 10. Evolution of 2: obtained by integrating Model B2 for Run 20 
using the best tit values of a, and pk (solid lines) and using LY+ = 1 (dotted 
lines). 
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FIG. 11. Contours of modal magnetic energy spectrum at the end of the run 
for (a) Run 07 and (b) Run 20 in kll-k, space. Clearly Run 20 with high 
external magnetic field shows a high degree of anisotropy. (a) for Run 07 
with no mean magnetic field shows relatively isotropic spectrum. 

of r-: upon rA and thus upon both Ba and the rms fluctuation 
h. However, the calculated decay “constants” for Model A 
varied by an unacceptably large amount, especially for runs 
with a large mean magnetic field and/or large cross helicity. 

Both of these observations can be understood by appeai- 
ing to the effects of spectral anisotropy. Numerical simula- 
tions of both freely decaying37-39 and driven4’ turbulence 
have shown that wavenumber spectra in dissipative MHD 
turbulence become distinctly anisotropic in the presence of a 
uniform mean magnetic field of sufficient strength. This an- 
isotropy is consistent with relatively rapid spectral transfer in 
wave-vector directions that are nearly perpendicular to the 
mean field and accordingly slower spectral transfer parallel 
to the mean field. This phenomenon has been described in 
terms of a resonance argument.37 

Spectral anisotropy is clearly seen in the present simula- 
tion data base even though the initially loaded fluctuation 
spectra are all isotropic. Figure 11 shows the energy spec- 

trum at the end of the simulation for two runs as a function 
of X-,= ] k-k@[ and kll= k. g, where the mean field is 
Bs = BOG. Panel 1 la shows that the spectrum for Run 07 with 
Bo= 0 remains almost completely isotropic. However, the 
spectrum in Run 20 becomes highly anisotropic as is illus- 
trated in Panel 11 b. As the above spectral transfer arguments 
predict, the contours are extended further in the perpendicu- 
lar direction, indicating preferential spectral transfer towards 
smaller scales with variations transverse to the mean held. 

The main distinction between Models A and B is in the 
way that Alfvinic decor-relation effects are handled. In 
Model A, all wave-vectors experience the full decorrelation 
effect of the mean field Bu, as though they were all aligned 
with the mean field. Model B on the other hand represents 
the opposite extreme: there is no Alfvenic decorrelation ef- 
fect, as if all wave-vectors were perpendicular to B. . Run 20 
indicates a situation intermediate to these two extremes. The 
increased anisotropy due to enhanced perpendicular transfer 
evidently tends to suppress Alfvdnic decorrelation effects. In 
the inertial range this effect modifies the effective Alfven 
time from rA(k) = (kBo) - ‘, a value appropriate for slab tur- 
bulence, to 1 k. B,]-‘, so that the angle of k relative to the 
mean field B. enters explicitly. An anisotropic version of 
rs is also appropriate for the energy-containing range, where 
the spectral transfer rate [cf. (17)] for anisotropic turbulence 
should be modified to read 

1 2; 1 
-3-=- x* (Z~+B&OSe~)’ (41) 
7s 

where cos& measures the degree of anisotropy37*38 of the 
zL spectrum in the energy-containing range. 

We attempt to account for anisotropy by using the spec- 
tral transfer rate (41) to modify the decay equations (13), 
producing a model that is a hybrid of Model A and B. How- 
ever, no dependence of rA upon b is retained (see discus- 
sions in the summary sectionj. Figure 12 shows the results of 
the anisotropy-modified model for Run 20 with B. = 8. The 
values of the anisotropy angles used are cos8+=0.3 and 
cos@-=0.2, while (Y+ = a- = 1. Again applying the model 
solutions only after t = 4, we see that the anisotropic model is 
reasonably accurate for both Z:(t) and Z!(t) and works 
about as well as Model Bl with optimized constants C-X* . 

The anisotropic model for simulations with Bs# 0 ad- 
mits a plausible physical interpretation. However, one needs 
to know how 19 scales with B. and other factors such as 
Reynolds number. In principle, 6 can also depend upon time 
or energy. Some similar simulations3” suggest that anisotropy 
increases with time, Reynolds number, and/or Bo. One pos- 
sibility, suggested by the clustering of decay rate ratios in 
Fig. 7 for several different values of B,, is that Bt satisfies 
2, + BOcos~+~2Z~ . This has the effect of halving the decay 
rate relative m the B. = 0 value, roughly consistent with the 
numerical results. This approximation has the simple inter- 
pretation that cos8=b/Bo, which also emerges from aniso- 
tropic theories of reduced MHD.“’ To illustrate this scaling 
we plot in Fig. 13 the quantity BacosB- /Z+ synthesized from 
the decay rates for Z- in simulation runs with non-zero B. in 
the same spirit used in CY? computations of sections V A and 
V B. Here we have used (41) for 7,; . Figure 13 shows that 

2898 Phys. Fluids, Vol. 7, No. 11, November 1995 Hossain et a/. 

Downloaded 22 Jun 2001 to 128.175.14.91. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



0 
2.5 

Z+ : Simulation 

X Z- : Simulation 

Solid: Model, Anisotropic - 

2 

0 2 4 
TiGme 

a 10 12 

FIG. 12. Evolution of 2: obtained by integrating Model B2 with an aniso- 
tropic correction for Run 20. 

all curves have the tendencies to saturate in the neighbor- 
hood of unity. The spread of the curves surely decreases as a 
function of time. If all curves approach unity then the above 
discussion about halving of the decay rates for non-zero B, 
runs relative to the Bo=O runs would exactly hold true. 
Similar behavior is seen in synthesized Bncos~+/Z- (not 
shown here). 

While further study of the anisotropy effect is warranted, 
at present we note that one implication of the above hypoth- 
esis is that decay rates become independent of B. once the 
mean field is strong enough to produce significant anisot- 
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FIG. 13. Computed BccosB- /Z+ from simulation data using Model A for 
all MHD runs with non-zero B,. 
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FIG. 14. Time evolution of total energy for three runs with Bo=O, 3 and 8. 
Note the large changes in the decay rates as B0 increase from 0 to 3, and the 
lack of change for further increases in B, . 

ropy. We can see some evidence in support of this by com- 
paring the time histories of three runs that are identical ex- 
cept for their values of Bo. This is illustrated in Fig. 14, for 
runs having Bo=O, 3, and 8. A large difference is seen be- 
tween cases with zero mean field and B,, = 3, but very little 
additional difference is seen when B. is raised to 8. 

B. Behavior of the energy difference 

The models discussed so far have not dealt explicitly 
with the energy difference D. The main reason is that we 
have applied the models after the startup transient period that 
lasts about a nonlinear time, and during that phase most of 
the initial D (if any) decays to zero. After that D maintains a 
small negative value (if B,= 0) or is very small. When the 
mean field is strong enough, D oscillates about zero. In ad- 
dition, the dynamical equations for the fields Zk and 1% that 
we adopted in the models do not involve D. However we 
might inquire as to how accurate a very simple time- 
dependent model for D might be. 

Estimating the turbulent decay rate of D is not as 
straightforward as for Z$, because it is not conserved by 
nonlinear interactions in either the energy-containing or the 
inertial range. However, from closure equations7 and pertur- 
bative arguments”2 (similar to weak turbulence theory), one 
can argue that D tends to relax toward zero. This conjectured 
tendency toward equipartition of MHD energy between mag- 
netic and kinetic ingredients is known as the Alfv&n 
effect.6’7’42 However, equipartition must be adopted with cau- 
tion. There are a number of indications that magnetic energy 
in the inertial range may be somewhat larger than the kinetic 
energy, from closures,721* solar wind observations,“3-45 and 
MHD simulations.46-48 At the larger scales that tend to domi- 
nate the energy budget, there are additional effects, such as 
inverse cascades’8’13 and dynamo action that might cause 
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excess total magnetic energy. Mechanisms for generating tur- 
bulence might give rise to excess kinetic energy, e.g., due to 
large-scale shear flows. These and other factors may compli- 
cate the development of a very accurate model for D(t) . 

Here we adopt a simplified approach, based upon the 
discussions presented by Pouquet et al.,7*” and Mangeney 
et al.,49 and presented previously in Matthaeus et al.36 The 
model is 

dD D u2 -=-- -- 
dt TA T*’ i42) 

where r* is defined as the time scale for decay of the total 
energy, r*= -(Zt+Z?)/(Z:-l-Zt). Here rA=X/BO is the 
Alfvenic time associated with the single length scale A, de- 
fined just below Eq. (12). 

We will not dwell upon a justification for this model 
here, since it is considered as reasonable but somewhat ad 
hoc. We note simply that the right hand side incorporates two 
effects. Fist, the dynamical tendency for the energy differ- 
ence to decay toward zero due to the Alfvdn effect is mod- 
eled by a relaxation time rA= MB,, in accord with the sug- 
gestion of Pouquet et al7 Second, the net effect of transfer of 
D towards finer scales is estimated following the arguments 
of Grappin et al. ‘I for the inertial range. The essence of their 
reasoning is that D is driven at a rate equal to the net direct 
spectral transfer rate of the energy. We have given a variation 
of this argument36 in which just the kinetic energy u2 appears 
in the direct transfer term, and we adapt this approach to the 
energy-containing range, giving rise to the second term in 
Eq. (42). The sign of the direct transfer term is selected to 
agree with simulations and observations, in which an excess 
of magnetic energy is frequently seen. Note that when the 
total magnetic field vanishes, Eq. (42) reduces to the ordi- 
nary (a= 1) hydrodynamic decay model, Eq. (3). 

We employed Eq. (42) to approximate the time histories 
of D(t) from the simulation data base. Figure 15 depicts the 
time histories from Run 07, 15, and 18, all of which have a 
Bo= 0 (for BO= 0 runs, D--+0 rapidly with subsequent oscil- 
lations). Runs 15 and 18 initially had excess kinetic energy 
(Table I). In these two simulations, D decays rapidly towards 
zero, over roughly a nonlinear time, and remains there sub- 
sequently. This is also seen in the model results. For Run 18, 
which has more robust decay due to lower cross helicity, the 
model overshoots and gives a negative tail much larger than 
the simulation itself, near about t = 2. For the remaining case, 
Run 07, there is equipartition initially and zero cross helicity. 
Again there is qualitative agreement for the model, which 
predicts a negative bias initially, as seen in the simulation. 
However, it remains negative for too long a time. These re- 
sults for the time dependent D model are somewhat reason- 
able, but not extremely accurate. We defer investigation of 
further developments regarding D(t), recalling that the en- 
ergy decay models work best after the transient period, and 
that D has approached zero to a reasonable approximation by 
that time, in both the model and the simulations. 

)(----- 

Run 07 

Run 15 

Run 18 

0 2 
Tl4me 

6 a 

FIG. 15. Time evolution ofD from the model (dotted and dashed lines as in 
legend) and from the simulations (symbols). 

VII. FURTHER ANALYSIS OF THE MODELS 

A. Dynamic alignment 

It is widely recognized21’50*8 that the MHD equations ex- 
hibit tendencies of dynamic alignment, by which we mean 
that the magnitude of the normalized cross helicity (T, grows 
in time. Dynamic alignment is not proven to be a universal 
property of all MHD solutions, and indeed, there are situa- 
tions, such as the radially evolving solar wind,45 or homoge- 
neous turbulence with strong shears” in which alignment is 
known not to occur. However, it is generally thought that 
homogeneous MHD turbulence lacking a strong magnetic 
inverse cascade and lacking strong velocity shears, will usu- 
ally engage in dynamic alignment. Even these two excep- 
tional cases might well display dynamic alignment after an 
initial transient period. In many cases52’17 a certain amount of 
dynamic alignment, even if non-monotonic, accompanies 
other MHD relaxation processes. 

The question is, do the models for the decay of energy- 
containing eddies presented in section IV also show the ten- 
dencies of dynamic alignment in the mean? Here we take 
this to mean: does the normalized cross helicity 
(r,=2H,IE show monotonic growth towards cr,= ? l? 
(The sign is determined by the initial conditions.) 

Let us examine the time rate of change of uC , 

(43) 

For simplicity, we use the two later models (Bl and B2) in 
evaluating the right hand side of (43). We assume that the 
majority (minority) species is the larger (smaller) Elsasser 
field and that 2% >Z”_ . A straightforward substitution gives: 

due 2z:zt CY- 
-= 
dt E* [ 

x_Z+-FZ-. 
f 1 

(441 
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Here, E is the sum of the two fields 2: + 25 . Therefore, for 
~+X-Z-<~J-X+Z+ the sign of dmfdt is preserved. Im- 
plicit in this is that the Zr versus time curves never cross 
each other. If on the other hand a+X-Z->a-h+Z+, o= 
can evolve in the opposite direction to dynamic alignment. 
Often for simplicity we want to use symmetrical models hav- 
ing ~!+=a- . In those cases, the above condition implies 
dynamic alignment whenever the length scales A, and h- 
are not too dissimilar. By constructing a situation in which 
the minority species resides at very much longer wavelength 
than the majority species, departures from dynamic align- 
ment can be achieved. Clearly in a symmetric single length 
scale model, dynamic alignment always occurs. 

B. Navier-Stokes limit of MHD 

There are two separate limits which are related to 
Navier-Stokes turbulence. First, if Z, and Z- are equal, 
then both Model Bl and Model B2 have the same structure 
as the model for Navier-Stokes turbulence, Eqs. (3) and (4). 
In this limit b#O, but the velocity and magnetic fields have 
analogous roles. Second, in terms of the primitive variable 
equations, reduction to Navier-Stokes flow requires that 
z+ = z- pointwise (i.e., b-t 0). This state, with high electri- 
cal conductivity may be susceptible to instabilities that give 
rise to dynamo action, the permanent generation of an ener- 
getically significant magnetic field. In the models, the point- 
wise reduction to hydrodynamics implies that the normalized 
energy difference a, - (uL -~ h”>l(u’+h’) take on its maxi- 
mal value of 1. However, dynamo instability can lead to 
vo 4 0 later. 

In these models we have not considered including the 
evolution of D in the dynamical equations for the energies 
2:. Therefore, we cannot address the issue of whether maxi- 
mal D or vanishing D brings the decay rates of MHD most 
closely into accord with Navier-Stokes turbulence. However 
the simulations [along with the simple model for D(t j] 
shows that D vanishes very quickly during the transient 
phase. This may suggest that the only requirement for the 
hydrodynamic analogy within the context of the decay mod- 
els is the equality of Z, and Z- , i.e., zero cross helicity. In 
connection with this, it is notable that the typical values of 
CY .+ = a- = 0.8 and p+ = p- = 0.5 compare quite reasonably 
to typical values for the hydrodynamic model of a= 0.9 and 
/?=0.5. Thus, a run like Run 07 which has Z+ =Z- can be 
thought of as a pseudo Navier-Stokes run. 

C. Is vanishing cross helicity a maximal decay state? 

All three models for MHD energy decay described 
above yield stationary states when one of the fields Z* is 
zero. This property is built-m to emulate the property of the 
full set of MHD equations, that time evolution ceases if one 
of the Elsasser variables zt( x,t) vanishes. Thus we have no 
spectral transfer with maximal cross helicity, o,= + 1. To 
what extent is increasing cross helicity associated with de- 

: creasing energy decay rate? Dynamic alignment provides at 
least heuristic support for the assertion that cross helicity 
decreases decay rates, since it is associated with an ideal 
conservation law. To the extent that this constraint is more 

restrictive when 1 cr,] is large, one would expect smaller 
maximum possible decay rates of energy. In spite of intuition 
regarding this issue, like the dynamic alignment process it- 
self, the question of whether vanishing cross helicity is a 
maximal energy decay state remains unanswered for the 
MHD equations, as far as we are aware. How about the same 
issue in the models for decay‘? 

Let us take a simple model where h is constant and we 
consider only the evolution of Z: and Zt 

dZ2, 
-= 

dt 
- az:z- ) 

dZ: 
-= 

dt 
-z1z,. (46) 

We can use only one LY without loss of generality. The state- 
ment that LY= 1 in this special case corresponds to the sym- 
metric model with (Y+ = cr- in the notation of the rest of the 
paper. Let us define the energy E to be 2: f 25 . We re-write 
the evolution of total energy E in terms of one of the fields, 
say, Z?=y: 

y=-g=a(E-y)&+yJEq. (47) 

By inspection we see that the well known result that if cross 
helicity is maximal, i.e., y is zero or equal to E, then the 
decay rate vanishes. To find the maximum decay rate we 
differentiate (47) with respect to y: 

; y3” 
z.‘ 

+Y"2(E-y) . 1 (48) 

For LY= 1, the curve (47) has a maximum at y = E/2 [i.e., the 
r.h.s. of (,48) is zero] and is symmetric about this point. That 
is, for zero cross helicity, the energy decay rate is maximum. 
For the general case when a# 1, then the curve is not sym- 
metric about y = El2 and the maximum decay rate does not 
occur at y = E/2. Thus, there exists a non-zero cross helicity 
for which the decay rate of energy is maximal. The conclu- 
sion is that one must use symmetric models with a+ - (Y- to 
maintain the intuitive (but in general unproven) property that 
zero cross helicity should correspond to a state of maximal 
energy decay. 

D. Cross helicity and conservation laws 

Dynamic alignment appears to be associated with the 
constraint of inviscid conservation of cross helicity.zm7 This 
conservation property is a constraint on the nonlinear cou- 
plings in the incompressible MHD equations. When small 
but finite viscous or Ohmic dissipation coefficients are 
present, the conservation law is broken, and one would ex- 
pect in general that some cross helicity decay will accom- 
pany decay of the Elsasser energies. Approximate conserva- 
tion of cross helicity has formed the basis for a number of 
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theoretical treatments of dynamic alignment and other MHD 
relaxation processes5”*t7 and it is an exact property of the 
phenomenology.” 

Unfortunately, there is no indication in the present study 
(or in others as far as we are aware) that there is an exact 
conservation law related to the cross helicity at large but 
tinite Reynolds numbers. In all cases there is indication of 
cross helicity decay (temporal changes in Zt - Z?) , as well 
as decay of related quantities such as Z+ - Z- . However, we 
have not been able to examine all possibilities, such as 
Z,P - CZ.! for arbitrary p and C. It is noteworthy that each 
of the phenomenological models examined in the present 
study possesses conservation laws of these types. For ex- 
ample, see Eqs. (24) and (33). These conservation laws each 
produce distinctive behavior of the model solutions both at 
long times and at large values of cross helicity. (When dy- 
namic alignment is active, these two cases are connected.) 
Consequently, especially in large cr, runs, the decay phenom- 
enologies become less accurate. This is usually indicated by 
a late time change in the effective values of a!+ as we saw in 
Figs. 6 and 7. This problem appears to be intimately associ- 
ated with the fact that the conservation laws in the model do 
not accurately reflect conservation properties of the exact 
MHD equations. 

VIII. SUMMARY 

In this paper we have investigated several phenomeno- 
logical models for incompressible MHD turbulence. Energy 
decay in these simple one-point models involves only the 
two Elsasser energies and their associated length-scales. The 
huge-scale Alfven speed enters as a parameter, as does pos- 
sibly a measure of the spectral anisotropy. We also discussed 
a model for the energy difference that did not influence the 
energy decay itself. Based upon comparisons of simulation 
results and predictions of the models, we came to several 
main conclusions which we summarize here. 

The straightforward extension of Kraichnan’8 inertial 
range phenomenology to the energy-containing range does 
not work as well as a simple energy decay model of the 
Karman-Kolmogoroff type, in which there is no explicit de- 
pendence of the modeled spectral transfer and decay rates 
upon either the large-scale Alfvdn speed or that associated 
with the rms value of b. There is some influence of the 
Alfvdn speed upon the simulation results however. 

A better performing and more physically appealing 
model is produced by taking spectral anisotropy into ac- 
count. This produces a model that is conceptually related to 
both those discussed above [Models A and B]. This model 
has the energy decay equations: 

dZ: 1 z2,z+ -=--- 
dt A hr 

(49) 

where the parameter A FJ 1 when Bu= 0, and A = 2 when 
B+ 1. This parameter emulates the effects of spectral 
anisotropy.‘7-“9 Along with Eq. (49), we have suggested use 
of an equation for the correlation length scales h+ . The 
length scale equations have not been very well-tested in the 
present study, largely because finite box size constrains the 

evolution. with present computer capabilities, it appears to 
be very difficult to examine the unconstrained length scale 
evolution. Nevertheless the length scale models appear to 
behave qualitatively correctly relative to the simulation re- 
sults. In terms of physical motivation, we have somewhat of 
a preference, given its simplicity, for the length scale equa- 
tions in Model B2, namely, 

Finally, we adapted a model equation for the energy differ- 
ence D from earlier theoretical suggestions.7,“,36,49 The 
equation we examined is 

dD D u2 -=---- 
dt -rA T* ’ 

where r* is defined as the time scale for decay of the total 
energy, and rA= h/VA is the Alfvdn period of the energy- 
containing eddies. In many cases we found it convenient to 
deal with the single composite correlation scale 
h=(.Z2,A++Z?X-)/(Z:+Z:). 

We have found that the performance of all of the models 
examined, including the above best-effort model, becomes 
less acceptable at very large cross helicities and at late times. 
We have argued that this is due to the fact that all of these 
models have some conservation law associated with or re- 
lated to the cross helicity. Such a conservation law is respon- 
sible for the ability of the model to display dynamic align- 
ment in time, as is observed in the simulations. However, the 
models’ conservation laws are not exact properties of MHD, 
and cause errors in the limits in which they play the strongest 
role. This stands as a challenge to future theory: to find a 
simple but improved conservation law which permits im- 
proved model performance at high cross helicity. 

The energy difference model, like the length-scale dy- 
namical models, did not perform as accurately in the tests as 
did the decay rates of the energies. In this case, we identified 
a specific weakness. It appears that the direct transfer term in 
Eq. (51) is too strong, and is in need of further modifications. 

Several additional aspects of the phenomenological 
models were discussed in section VII, focusing on limiting 
behavior at small and large cross helicity, and the relation- 
ship of MHD models to hydrodynamic ones. 

It is completely clear that the level of analytical model- 
ing of MHD turbulence represented by the phenomenologi- 
cal models discussed here will in no way replace detailed 
examination of MHD theory itself. However, our main con- 
clusion is that relatively simple models of MHD global de- 
cay appear to work reasonably well in predicting energy and 
cross helicity decay rates, for a reasonable range of param- 
eters. The modest criterion used in this assessment is simply 
that the instantaneous decay rates are estimated correctly 
within a factor of two or so, for several large-scale nonlinear 
timescales. We expect that the models examined here will be 
useful as simple estimates of decay and heating due to MHD 
turbulence in a number of applications where, at least ini- 
tially, high accuracy is not crucial. 
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Thus, we obtain one equation in Z as a function of time: 

APPENDIX A: INITIAL CONDITIONS 

The initial modal spectrum for the velocity has the fol- 
lowing form: 

This spectrum is almost flat below k=lco (designated as 
“knee” in Table I) and has a power law form -k-q for 
wavenumbers larger than ko. Typically we have used 
qU= 1 II3 corresponding to E(k)-km5’“. The amplitude of 
the Fourier modes are set to zero outside of a wavenumber 
range k<k, and k>k,. For the excited range, the real part 
of the Fourier amplitude is determined in terms of potential 
functions by Re[u(k)l-(kX~~~-kX(kX~)R2)lu(k)l, 
where gl and g2 are unit variance Gaussian random num- 
bers. The imaginary part is selected in an equivalent manner. 
Specific values of kI- and kH for various runs are listed in 
Table I as “k-range.” 

The magnetic modal energy also has a similar form, 

Again the spectral shape and a set of random Gaussian num- 
bers are used to select appropriate potentials that enforce the 
solenoidal property. 

The normalizing constants are tidjusted after the fact to 
control the total energy. At this stage the constants A, to 
rl,, can be adjusted to yield a particular Alfv& ratio ?-A. For 
uncorrelated v(k) and b(k) the cross helicity is vanishingly 
small. To generate a non-vanishing cross helicity, a correla- 
tion is introduced between the random numbers selected for 
the velocity field and those selected for the magnetic field. 

APPENDIX B: GENERAL SOLUTION Or MODEL Bl 

Dividing (26) by (27) we get: 

dZ :z2-2 5 -=- 
dX A ap’ WI) 

This can be integrated to yield: 

VW 

where 

c=A&z()+ ,?p]Y, 033) 

and 

r=P 
G @4) 

dZ (Z2-a”)[Z+ $??]Y 

dt= 2c 

Let 

q=z+ &?=-2. 

In terms of $, (B5) becomes 

035) 

036) 

4 -=- 
dt &(4’-a2)qY. 

Closed form solutions can be found for integer values of 
y. For y= 1, (B7) has the solution, written in terms of the 
variable Z, 

[ 
&?--7 Z”S j/p 

In @=2 z+JF=2 = I - &woj, !B8) 

or more revealingly: 

where 

A=L+ J&. tB 10) 

At long times the right hand side of (B9) approaches unity, 
and thus Z approaches a. For small values of a we can 
expand (B9) and (B 10). For small a 

” 
(Bllj 

By keeping terms of up to order a2 on the r.h.s. of (B9) we 
can obtain 

@12) 

in agreement with (28) for y=2/!3/ G= 1. 
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