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Two-dimensional Navier-Stokes turbulent decay has been followed numerically for very long times. The code is spectral,
satisfies periodic boundary conditions, and does not make use of hyperviscosity or any small-scale smoothing. The resolution
is (512)2, the initial Reynolds number based on the box dimension is about 14000, and the run continues for over 290 initial
eddy turnover times. Isolated vortices form, and the turbulence has become highly intermittent in the manner seen by
McWilliams and Brachet et al., for times greater than about 30. However, it is not the case that merger of like-signed
vortices stops; it only slows down. By t = 210, the final merger is complete, and the vorticity distribution is dominated by one
large vortex of either sign. The negative (positive) vortices each occupy about two percent of the box area, and together
account for over 98 percent of the total enstrophy. Their alignment suggests the formation of an Ewald lattice with a basic
cell containing two point vortices. The ratio of enstrophy to energy continues to decrease monotonically, and the picture is
consistent with a "selective decay" process, as described some time ago. A not-entirely-understood phenomenon is the
concentration of the vorticity into two cores, suggestive of a negative-temperature state of the discrete line vortex model.

1. Introduction one of like-sign vortex capture, which manifests
itself visually on stream function and vorticity
contour plots by showing increasingly larger and
smoother structures as time progresses. The pro-
cess is subtle because the smallest spatial scales
are involved in the capture process, even though
its net effect is the dominance of the energy
spectrum by the largest scales.

In what were perhaps the most highly resolved
two-dimensional (20) Navier-Stokes computa-
tions at that time, McWilliams [2] carried out a
detailed investigation of an evolving high-
Reynolds number flow and noted a progressive
decrease in the rate at which the vortex merger
occurred. He hypothesized that it was possible
that the merger process stopped or slowed down
to a negligible rate, after which point isolated and
non-interacting vortices drift about at large sepa-
rations, with a cessation of spectral transfer.

In order to test this conjecture, we have re-
peated McWilliams' computation from initial
conditions as close to his as possible. There are
two principal differences between his computa-
tional situation and the one reported here: (1) we

The temporal decay of an initially turbulent
two-dimensional Navier-Stokes flow has often
been studied numerically, with a spatial resolu-
tion that has gradually increased with increasing
computational capability {e.g. refs. [I-3D. It is
known that the ratio of mean square vorticity
("enstrophy") to kinetic energy is a non-increas-
ing function of time, and that the velocity field
becomes increasingly dominated by the larger
spatial scales as time progresses, since this ratio is
essentially the square of the mean wavenumber
that characterizes the spectrum. For high enough
Reynolds numbers, the enstrophy can decay sig-
nificantly while the energy is decaying by a negli-
gible amount. About these assertions there has
been no recent disagreement. This "selective de-
cay" process [1, 4-12] and its generalizations have

--

been proposed as explanations for relaxation
phenomena in plasmas and in magnetofluids, for
the case of decaying turbulence.

The dominant process by which the larger spa-
tial scales assert themselves is the rather subtle
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employ no hyperviscosity or small-scale smooth-
ing of any kind; and (2) the temporal duration of
the run is considerably longer (about 290 large-
scale initial eddy turnover times). The spatial
resolution is also slightly higher, here.

Over the time intervals computed by
McWilliams, we find no disagreement with any of
his conclusions. We find that over the longer
time, however, all possible like-sign vortex cap-
tures occur, leaving us only with one vortex of
either sign. The capture process has not ceased,
but has only slowed down. The final-state stream
function contours bear a striking resemblance to
those for a basic cell of an Ewald lattice, a state
to be expected from the Lin-Onsager discrete
line-vortex model in the "negative temperature"
regime [13-18].

An outline of this paper is as follows. In sec-
tion 2, the essentials of the computation are
outlined. In section 3, the computational results
are summarized. Some discussion of the results
follows in section 4.

The vorticity W is expressed as the Fourier series
w = L" w(k, t)exp(ik .x), where the components

of the k's are integers. The spatial resolution is
(512)2 with a maximum wavenumber of about
241, and a minimum of 1. All other fields are
expressed as such Fourier series.

The modal energy is initialized according
to the prescription E(k) = i/v(k)/2 = C[l +
(ik)4]-1 for 1 ~ k ~ 120, and zero otherwise.
We use a Gaussian random number generator,
and choose random phases. This spectrum
corresponds to an omni-directional energy spec-
trum that falls off as k-3 for large k. The positive
constant C is chosen to give the initial kinetic
energy per unit mass (defined as E = L" E(k) =
tL" k-2Iw(k)12) the numerical value i. The en-
strophy .a = <tw2) = tL" /w(k)12 has an initial
value of about 67. (The brackets < ) mean spa-
tial averages.) The initial "palinstrophy" P =
iL" k2/w(k)12, which governs the enstrophy dis-
sipation rate, is 1.61 X 105. This spectrum closely
imitates the one used by McWilliams [2].

Several runs were carried out, and we shall
report on the one with the highest Reynolds
number and longest temporal duration: R =
/I-I = 14286, extending to a time t = tmax = 292.
The time step is dt = (2048)-1. The initial large
scale Reynolds number is much larger than an
initial microscale Reynolds number based on an
assumed enstrophy cascade: R, = .a3/2 /2/1P ~
24.5. The other, shorter runs exhibited behavior
very similar to that which we report here.

2. Numerical procedures

We work in dimensionless units, inside a square
box in the x,y plane, with edge length 21T;
periodic boundary conditions are assumed. The
fluid velocity v = V1[I' X ez' where the stream
function 1[1' = 1[r(x, y, t) is independent of z, as
are all other field variables. The vorticity c.J = V X
v =lI)ez' where lI)= -V21[1'. We work in the vor-
ticity representation, in which we take the curl of
the Navier-Stokes equation and solve 3. Computational results

aw
at

The computed ratio of enstrophy to energy,
{lIE, decays monotonically throughout the com-
putation, as theory says that it must [11]. This is
illustrated in fig. 1, in which we plot the mean
square wave number {ii7E versus time. The
ratio reaches the final value 2.42 by t = 292, and
is bounded from below by unity (when the only
excited wavelength is the longest one allowed by
the boundary conditions). {l drops from about 67

+ v .Vw = vV2W (1)

The kinematic viscosity v can, in the dimen-
sionless units, be interpreted as the reciprocal of
a Reynolds number based on unit length and a
unit initial rms velocity.

We use a fully dealiased Fourier Galerkin
method of the Orszag-Patterson type [19-21].
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Fig. 1. Time history of the mean wavenumbers Ji17E and
{P7ii. Vortex captures at late times correspond to the sharp
peaks in {P7ii; an arrow indicates the position of such a
spike corresponding to a capture event discussed later in the
text.

both at 1 = 1.0, exhibited in figs. 3a and 3b. As

time progresses the figures evolve greatly as shown
in figs. 4a and 4b, which are contours of 1jr and
w, but now at 1 = 292.

A series of 3D perspective plots of surfaces of
constant w(x, Y) versus x and y at six successive
times constitutes figs. 5a-f. The gradual simplifi-
cation of the topography occurs as a consequence
of the recurrent like-signed vortex capture events,
which are rather abrupt. For example, one occurs
between figs. 5d and 5e. During this rather short
time interval the smaller vortex indicated by the
arrow is cannibalized by its near neighbor. Such
captures followed closely have a rather detailed
structure, not inconsistent in any way with the
scenario proposed by Brachet et al. [3] for a very
high-resolution study of vortex evolution. On a
plot of {filii (fig. 1), where P is the palinstro-
phy governing the enstrophy dissipation rate, the
capture events of the kind that occur between
figs. 5d and 5e have a gross manifestation of
sharp spikes. These sudden enstrophy dissipation
peaks on the {filii curves can be correlated in a
one-to-one fashion with the capture events of the
kind that occur between figs. 5d and 5e.

The final state (1 = 292) shows a concentration
of about three fourths of the remaining single-sign
vorticity and 98 percent of the ens trophy in two
remaining maxima (minima). The separation and

to about 1.0, while E is decaying only from 0.50
to about 0.41. Thus what is represented in fig. 1 is
almost entirely the decay of enstrophy and it can
only mean an increasing dominance of the spec-
trum by the longest wavelengths. Fig. 2 consists of
three log-log plots of the angle-averaged modal
spectra E(k) and n(k) at early, intermediate and
late times.

The dynamics are initially rather featureless
and disordered as indicated by streamline plots
(contours of constant 1/') and vorticity contours

Fig. 2. Modal (direction averaged) spectra E(k) and fJ(k) at (a) an early time (t = O. (b) an intermediate time (t = 72) and (c) a
late time (t = 236) in the run.
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Fig. 3. (a) Stream function 1/' contours at t = 1, early in the run. (b) Vorticity Cd contours at t = 1

illustrates the closeness of the late time simula-
tion streamlines (t = 292, fig. 6a) to the stream-
lines associated with a two line vortex Ewald
equilibrium (fig. 6b).

orientation of the peaks strongly suggest the loca-
tions of two oppositely signed vortices in their
configuration of minimum interaction energy in
the periodic box (maximum total energy, if the
self-energy is included). This orientation is ex-
pected for the very high energy states of the ideal
Lin-Onsager line-vortex system, which of course
our continuous Navier-Stokes flow, with its non-
singular vorticity and enstrophy, is not. There is a
not-altogether-understood emergence, at late
times, of a particle-like character to the vorticity,
and the states are similar to the "most probable
states" predicted by the "sinh-Poisson" equation
[15, 17, 18, 22] for line vortex systems. Fig. 6

4. Discussion

In the evolution described in section 3, there
are implications for some of the most central
ideas in the theory of homogeneous turbulence:
Kolmogorov similarity variables and their atten-
dant power-law wavenumber spectra [23]. Under-
lying the dimensional analysis that leads to
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Fig. 5. 3D ~erspective plots of surfaces of constant w(X, y) shown over the simulation domains at (a) t = 1, (b) t = 28, (c) t = 58,
(d) t = 94, (e) t = 118 and (0 t = 292. In (d) arrows indicate positions of a smaller vortex and a larger one that undergo merger prior
to t = 118. The position of the merged vortex is indicated by an arrow in (e).
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Fig. 6. (a) Streamlines from the decay run at a late time, t = 292. (b) Streamlines associated with a periodic equilibrium
configuration of two equal strength oppositely signed line vortices.
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inertial-range power law spectra is the idea that
the energy spectrum contains the most important
information, the phases are random, and differ-
ent Fourier modes are uncorrelated. In any state
such as the one illustrated in figs. 6a, 6b, phase
relations among differing Fourier coefficients are
clearly essential, and some of the most notewor-
thy features of the flow are not implied at all by
the energy spectrum. Figs. 3a, 3b might comfort-
ably fit in a Kolmogorov picture, but not figs. 4a,
4b or 6a. As also remarked recently by
McWilliams, Kolmogorov-style cascade theories
need to be reconsidered for flows dominated by
coherent structures [24].

One useful lesson may be that the case of
decaying "initial-value" turbulence is not the
place to look for confirmation of power-law
behavior and cascade spectra. The original
Kolmogorov-Obukhov analysis [23] as well as the
Kraichnan-Batchelor-Leith [25-27] generaliza-
tion of it to two dimensions, assume a statistically
steady injection rate for the cascaded quantities.
It has sometimes been argued, at least for direct
cascades to short wavelengths, that the steady
injection-rate situation could be replaced by the
effects of long-lived large eddies; confirmation or
disproof of similarity-variable spectra have been
sought within the framework of the pure initial-
value problem.

The foregoing results cast doubt on the cor-
rectness of this procedure, suggesting that, the
later the stages of 2D Navier-Stokes turbulent
decay, the more likely the coherent vortices are
to dominate the flow and interfere with the sup-
posedly random and homogeneous cascade
process. The development of coherent struc-
tures is by no means limited to the case of 2D
Navier-Stokes flow, but also occurs in 2D and
3D magnetohydrodynamics, and possibly in 3D
Navier-Stokes flow, though the detailed nature
of the structures is different from case to case.
The sometimes frustrating results of searches for
"universal" power-law spectra (such as has been
carried out, for example, in the solar wind) may
seem a little less puzzling in this light. It may be
that the departures from the predicted inertial-
range power laws measure, among other things,
how far advanced the evolution of a coherent-
structure-dominated flow has become, and
less-than-previously-expected degrees of "univer-
sality" may come to seem unsurprising.

As an example of the differences to be ex-
pected between the initial-value problem and the
case of steady random injection, we close by
displaying two previously unpublished figures
for the driven case from the Ph.D. dissertation of
Hossain [28]. (Several features of this computa-
tion, which dealt with the results from the driven
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Fig. 7. (a) Streamlines late in a randomly driven run. (b) Vorticity contours from the same run at the same time. Taken from the

Ph.D. thesis of Hossain [27, 28].
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case at very long times, have already been pub-
lished elsewhere [29].) In figs. 7a, 7b we show two
contour plots showing curves of constant 1/1' and
(J) for the randomly injected flow at late times
(t = 273 characteristic times [29]). The stream-

lines (fig. 7a) from the driven run are quite simi-
lar to the streamlines in the present decay run at
long times (e.g. fig. 6a). However the vorticity
plots in the driven run (fig. 7b) and the decay run
(fig. 6b) clearly have differences that apparently
persist for arbitrarily long times. In particular,
although the vorticity in the driven run is roughly
segregated into clumps of positive and negative
signed vorticity, there is no indication of the kind
of sharply defined coherent vortex structure seen
in the decay run.

As a final observation, which we do not wish to
discuss here, we note that the evolution that has
occurred in this computation has come close to a
state of minimum energy dissipation rate, subject
to the constraint implied by the remaining value
of the total energy [12].

Note added in proof

A plot (not shown) of the integrated correla-
tion coefficient of lI) and sinh(/3I/1) continues to
increase as a function of time, and eventually
reaches the value 0.97 by t = 374 for /3 = -2.1.

(A correlation coefficient of unity would indicate
a perfect "sinh-Poisson" solution [15].) This value
is significantly larger than the correlation coeffi-
cient for 1/1 and lI) directly.
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