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A theoretical model of spectral transfer for anisotropic magnetohydrodynamic �MHD� turbulence is intro-
duced, approximating energy transport in wave vector �k� space as a nonlinear diffusion process, extending
previous isotropic k-space diffusion theories for hydrodynamics and MHD. This formal closure at the spectral
equation level may be useful in space and astrophysical applications.
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Turbulence applications often require time evolution of
the energy spectrum and therefore confront the classical clo-
sure problem. Standard closures �1–5� provide substantial in-
sight, but become rather intricate for anisotropic turbulence
unless one builds in phenomenological constraints �6–8�.
Lacking a more general theory, one-dimensional or isotropic
�9� models are often used, e.g., in astrophysical stochastic
particle acceleration by wave particle interactions �10,11�,
pickup ion theories �12�, or reacceleration in galaxy clusters
�13�. The need for more realistic spectral models has also
been emphasized in coronal �14� and solar wind �15� con-
texts. Here we extend the diffusive spectral transport closure
to magnetohydrodynamics �MHD� in which anisotropy is in-
duced by a large-scale magnetic field.

Leith �16� introduced a k-space diffusion model for evo-
lution of the energy spectrum in isotropic three-dimensional
incompressible hydrodynamic turbulence—namely, �E�k�

�t
= 1

k2
�
�k �k2Diso�k� �E�k�

�k �—ignoring forcing and dissipative ef-
fects. On physical grounds the diffusion coefficient Diso

should depend on the spectral transfer time scale �sp�k�, and
dimensional analysis gives Diso�k�= k2

�sp�k� . In the isotropic
case the only time scale available is the nonlinear time
�nl�k�=1 / �kuk���sp�k�, where uk=�kE�k� is the characteris-
tic speed at wave number k and E�k� is the omnidirectional
spectrum. �The total energy per mass is �E�k�dk=�E�k�d3k.�
Requiring that the energy flux F=−k̂k2Diso�E�k� /�k be inde-
pendent of k yields the Kolmogorov spectral form E�k�
=CKol�

2/3k−5/3, with CKol�0.42. The experimental value is
�1.6 �17�; this discrepancy is fixed by introducing a constant
in the definition of Diso. An extension of Leith’s model to
isotropic MHD �9� adheres to the approximation that spectral
transfer is local in wave number k �18,19�. Models including
parametrized mixtures of diffusion and advection in k space
have been proposed for MHD �14,20�.

In MHD, a large-scale magnetic field B0 induces a dis-
tinctive anisotropy, in which spectral transfer in the B0 direc-
tion is suppressed �21–26� due to interference between coun-
terpropagating Alfvén fluctuations �27,28�. This anisotropy
occurs relative to both global �dc� �21–26� and local
�3,29,30� magnetic field directions.

Here we describe spectral anisotropy, relative to B0, in a
diffusion approximation. We postulate that the diffusion of
the modal �kinetic plus magnetic� energy spectrum occurs
according to

�E�k�
�t

=
�

�ki
	Dij�k�

�

�kj
E�k�
 , �1�

where Dij is the diffusion tensor, which can depend on B0
and �in principle nonlocally� the energy spectrum at all wave
vectors. Summation on repeated indices is implied.

Anisotropy immediately engenders complications with re-
gard to standard ideas of wave number locality �typically
defined as the three wave vectors in a triad having relative
magnitudes within a factor of 2�. The Alfvén wave propaga-
tion effect itself is nonlocal, involving the magnetic field at
the longest wavelengths �k→0�. Within a single k shell, the
relative influence of propagation varies from modes with
very low frequencies �i.e., k ·B0�0�, where nonlinear effects
are dominant �21,31–33�, to high-frequency modes �k ·B0
�kB0�, for which the dynamics may be mainly wave like.
Thus the strength of diffusion should vary around a k shell.
On the other hand, a model cannot be completely local in
vector k, because it would then lack resonant transfer
�22–25�. Here we construct a model that maintains locality in
the following sense: for diffusion at wave vector k we con-
sider triads k=p+r such that �p��k �usually k /2� �p��2k is
considered local�. Thus, two of the three wave vectors lie
near the k shell of interest. We call this modified locality.

A time scale relevant to fluctuations near wave vector k is
the nonlinear time scale �k

nl=1 / �kZk�, where the characteris-
tic speed for modes with �k��k is Zk=�kEMHD�k�. Also dy-
namically relevant is the Alfvén time �A�k�=1 / �k ·B0�
�1 / �kB0�, with k =k cos �. Alfvén speed units b→b /�4��
are employed. Sometimes, a direction-averaged Alfvén time
is used, �k

A=1 / �kB0� �4,28,34�; however, this is an oversim-
plification. Fluctuations near k are wave like if �A�k���k

nl.
Conversely, when �A�k���k

nl, nonlinear effects will domi-
nate over wave effects.

Another time scale related to energy transfer is the spec-
tral transfer time for the k shell: �k

sp. For isotropic turbulence
this is related to the rate of energy transfer, �k=Zk

2 /�k
sp, from

modes �k to modes �k. When both nonlinear and wave
propagation effects are important, �k

sp can be estimated using
the “golden rule” �k

sp�k
�3�= ��k

nl�2 �3,4�. The additional time
scale �k

�3� is the lifetime, or decorrelation time scale, of the
triple correlations that are responsible for driving turbulence.
For isotropic hydrodynamics, �k

�3�=�nl. In MHD the triple
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time may be estimated �3,34� by summing wave and nonlin-
ear rates: 1 /�k

�3�=1 /�k
nl+1 /�k

A �cf. �3,4,28,35��. Combining
this with the golden rule yields

1

�k
sp =

kZk

1 + �B0�/Zk
. �2�

For anisotropic situations, we modify the above ideas to
accommodate nonuniform distribution of energy on k shells.
For example, as k varies over a shell, so too does the Alfvén
time. Since energy density varies on a shell, we introduce a
modal nonlinear time scale �nl�k�. Let us define Z2�k�
=k3E�k� and, accordingly, the nonlinear rate per unit solid
angle on the spherical shell, 1 /�nl�k�=kZ2�k� /Zk. This
weights contributions to the transfer rate from various parts
of a k shell in a way that is additive in the same sense as the
energy. Consequently, for any symmetry of turbulence, inte-
gration of this rate over angles gives the standard nonlinear
rate for the shell, kZk.

To compose the spectral transfer rate associated with k,
we employ the golden rule in the form �sp��3�=�k

nl�nl�k�, with
1 /��3��k�=1 /�k

nl+1 /�A�k�, obtaining

1

�sp�k�
=

kZ2�k�/Zk

1 + �B0 cos ��/Zk
. �3�

From this, one can form a diffusion coefficient as D	�k ,p�
= k2

�sp�p� , interpreted as the diffusion per solid angle about k
due to excitations at p. This scalar diffusion coefficient is
anisotropic on a k shell, but cannot on its own account for
preferential directions of spectral transfer; in particular, it
lacks suppression of transfer parallel to B0 �22–26,36–39�.

To allow for anisotropic spectral transfer, we consider the
tensor character of the diffusion. All spectral transfer in in-
compressible MHD is such that two modes interact to drive a
third mode only if their wave vectors satisfy the triad condi-
tion p+r=k. For a given k we consider the effect of two
classes of triad interactions, with p restricted to lie on the
same wave vector shell as k—i.e., k= p �Fig. 1�. Except for
equilateral triads, r will lie either inside the shell or outside
it. Thus, p and k are local in magnitude, but some r are not.

First �class I�, suppose energy is transferred between
modes k and r under influence of mode p. We term p the
spectator mode. Evidently the sense of transfer at wave vec-
tor k is in the direction of p. For a fixed k, summing over all

p on its k shell accounts for transfer of energy between k and
the modes r whose wave vector tips lie on the sphere of
radius k with center at k.

Second �class II�, consider triads in which energy is trans-
ferred between modes k and p under the influence of a spec-
tator mode r. For these interactions, the direction of transfer
is clearly that of r.

These two classes are a physically reasonable extension of
the classical turbulence theoretic notion of local triad inter-
actions to the case of anisotropy. Both classes fit neatly into
our notion of modified locality. For the total diffusion tensor,
we have Dij�k�=Dij

I +Dij
II.

The class-I contribution to the diffusion tensor is

Dij
I ��k�� =� d	pp̂ip̂jD	�k,p� = k2� d	p

p̂ip̂j

�sp�p�
, �4�

where d	p is the differential solid angle with respect to p, p̂i
is the ith Cartesian component of p / p, and r=k+p is under-
stood �40�. Note that DI is independent of the direction of k.
We employ the nonlinear rate of the spectator mode p, asso-
ciated with terms like v�p� ·�v�k�—i.e., kZ2�p� /Zp.

Similarly, for class-II interactions we have

Dij
II�k� = k2� d	p

r̂ir̂ j

�sp�r�
. �5�

As p=k−r, it follows that DII will depend on the direction of
k, as well as its magnitude. In general, r does not lie on the
k shell, and we consider separately the local and nonlocal
contributions: Class IIa comprises triads with k /2
 �r�
2k,
corresponding to values of p on the k shell and lying outside
the cone �=�0 centered on k ��0�1 /2 rad�. In �sp�r� we
employ B0 /Zr�B0 /Zk, giving, for k in the inertial range,

Dij
IIa�k� = k2�

0

2�

d��
−1

7/8

d�
r̂ir̂ jrZ2�r�/Zr

1 +
B0

Zk
�r̂ · B̂0�

, �6�

where k=kê3 defines the polar axis for � and �=cos �. Note
that the integration is over the angles for p.

Class IIb considers the �nonlocal� wave vectors r such
that �r��k /2, so that p lies within the cone �
�0 centered
on k. These couplings act mainly to isotropize the energy
distribution on the k shell and contribute little to transfer in

the k̂ direction. Here we emphasize local couplings and ne-
glect the DIIb contributions, although they can be important
for strongly anisotropic spectra. This completes our develop-
ment of the model.

We now present several illustrative examples. We begin
with the isotropic case—i.e., B0=0, and Z2�p�
=Zk

2 /4�—independent of the angles �� ,�� on the sphere.
Using rZ2�r� /Zr�kZk /4� in �6� gives

Dij
I =

k3Zk

3
ij, Dij

IIa = 0.22k3Zk	ij +
19

15
k̂ik̂ j
 . �7�

Recall that the ith component of the diffusive flux is Fi
=−�Dij

I +Dij
II��E�k� /�kj. For isotropy, �E�k� /�k is in the k

direction, and the flux can be rewritten in terms of a scalar

k

r

p

FIG. 1. Wave vector triads k=p+r. Here k and p are restricted
to lie on the same spherical shell.
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diffusion coefficient D��5 /6�k3Zk, corresponding to a CKol
�0.48, in near agreement with Leith �16�.

However, isotropy cannot persist when B0 is nonzero, but
nonetheless, as an initial condition, it provides useful in-
sights. Equations �4� and �6� can be evaluated exactly for this
case, after approximating rZ2�r� /Zr as kZk /4�. The expres-
sions are cumbersome; however, the leading-order terms as
a=B0 /Zk→� are approximately

Dij
I

k3Zk
�

0.5

a
	ij

� ln�a

2
� + B̂iB̂j
 ,

Dij
IIa

k3Zk
�

0.4

a �	ij
� +

14

9
B̂iB̂j
 , k  B0,

	�ij
� +

6

5
k̂ik̂ j�ln

a

2
+ B̂iB̂j
 , k � B0,�

�8�

where ij
�=ij − B̂iB̂j and B̂=B0 /B0.

Finally, for the case of moderate anisotropy, we evaluate
the same exact expressions �not shown� with a=B0 /Zk=1:

Dij
I

k3Zk
=

1

4
�ij

� + 0.77B̂iB̂j� ,

Dij
IIa

k3Zk
=�0.14�ij

� + 2B̂iB̂j� , k  B0,

0.17��ij
� + 1.2k̂ik̂ j� + 0.82B̂iB̂j� , k � B0.

�
�9�

Although this instantaneously isotropic case is somewhat ar-
tificial, the results �8� and �9� reveal important features of the
k-space diffusion model. Comparing the large-a results �8�
with the B0=0 ones �7� shows that asymptotically the diffu-
sion coefficients are all reduced by a factor �Zk /B0. More-
over, the tensor structure has altered, with the piece parallel

to the magnetic field �indicated by B̂B̂� falling off faster with
Zk /B0 than the perpendicular pieces do. Clearly, all transfer
is greatly weakened when B0 is strong—parallel transfer
most of all—even if the spectrum is isotropic. The a=1 case,
Eqs. �9�, has a tensor structure similar to the large-a case and
already shows suppression of parallel transfer.

A simple parametrization that captures the essential ele-
ments of both limits is, for the DI contributions,

Dij
I �

k3Zk

2a �
1

2
+ ln a 0 0

0
1

2
+ ln a 0

0 0 1 −
5

8a

� , �10�

which is approximately valid for a�1; here, B̂0= ê3.
For anisotropic MHD, it is sometimes useful to view the

spectrum as consisting of low- and high-frequency parts, the
distinction being which side of the “equal-time-scale”
boundary, �A�k���k

nl, the k mode lies on �6,21,32,41–45�.

For B0 large, low-frequency turbulence concentrates in a nar-
row region near k =0, where �k

nl��A�k� is satisfied. In re-
duced MHD �RMHD� �41,42� and “critical balance” �44�
models, one assumes that the higher-frequency part of the
spectrum is not highly populated. RMHD should be a rea-
sonable approximation when 1 /a�B /B0�1, initial condi-
tions and driving are at low frequency, and the flow remains
nearly incompressible. As an example, we examine k diffu-
sion due to a low-frequency component, with an amplitude
Z2�k��B0Zk on a narrow part of each k shell, centered
around the k =0 plane. This scaling with B0 will support an
order-1 diffusive energy flux due to activity within a narrow
band. A second �weak� component is assumed to lie on the
other side of the equal-time-scale boundary, �A�k���k

nl.

Thus, with �k=cos �k= k̂ · B̂0, a model spectrum is
ZRMHD

2 �k�=�
B0Zk

8� , where �=1 for ��k�

1
a and �=e1−a��k�

when ��k��
1
a . This is consistent with RMHD models, criti-

cal balance spectra, and fits to simulation data �39,44�. Sub-
stituting into �4� and �6� leads to the following large-a re-
sults:

Dij
I � 0.17k3Zk	ij

� +
0.56

a2 B̂iB̂j
 , �11�

Dij
IIa

k3Zk
� 0.14	ij

� + 0.14k̂ik̂ j +
0.33

a2 B̂iB̂j
, k � B0.

�12�

Therefore we conclude that the asymptotic diffusion coeffi-
cient for a model RMHD �plus weak high-frequency waves�
spectrum is

Dij � 0.33k3Zk�0.94 0 0

0 1 0

0 0 0.43/a2� , �13�

where k̂= ê2 and B̂0= ê3. Note that the total perpendicular
flux ����d�F� through the k shell is order unity, since the
spectral density E�k�=O�B0� and the angular width on the
shell surface k /k=O�1 /B0�. The parallel flux near k�B0, on
the other hand, is smaller by a factor of O�a−2�. This is be-
cause nonlocal effects �DIIb� are needed to cause a thin shell
to spread in the parallel direction. For k and B0 approxi-
mately parallel and k deep in the “wave region,” Dij

IIa is
O(exp�−a /4� /a) and vanishes rapidly. Thus, Dij�k B0� is
well approximated by �11� and leading-order transfer is again
perpendicular, with parallel flux down by a factor a−2. This is
completely in accordance with ideas of dominant perpen-
dicular spectral transfer in MHD with a strong B0 �21–26�.
The simple form of the model exemplified by �13� suggests
possible utility in practical calculations.

In summary, we have developed a model of anisotropic
MHD spectral transfer based on k-space diffusion. It sup-
ports analytic investigation for special cases, returns to isot-
ropy when appropriate, and is numerically tractable in other
circumstances. Due to its numerical simplicity, this model
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may prove to be useful in space physics and astrophysics
studies where full simulation of MHD turbulence is not fea-
sible, but spectral information is needed.

Related models �14,20� treat spectral transfer as a mixture
of “advection” and diffusion in k space. The advective part,
introduced in �46�, is problematic as it produces pulses in
wave number �unpublished numerical tests�. Both models
diffuse in k and in the k� direction either advect �20� or
advect and diffuse �14�. The former case is specialized to
strong B0 and employs particular spectra such as those found
in RMHD �6,32,41–45�, although the relationship to weak
turbulence is also examined. Neither of the above models
examines how transport and diffusion behave as the mean
magnetic field B0 varies from strong �highly anisotropic� to
zero �isotropic�.

The purely diffusive phenomenology developed herein
accounts for anisotropy and also goes over smoothly to the
isotropic hydrodynamic case. �Note that substantial progress

has been made in understanding closure for the case of ex-
tremely large B0 and its effect on weakly nonlinear spectral
transfer �37,47�.� Naturally, numerical factors such as those
in �10� and �13� may require tuning by comparisons with
simulations and numerical studies of the model are planned.
It might also be advantageous to extend the model to include
the effects of cross helicity and to introduce polarization
�vector component� effects. It seems clear, for example, that
the diffusion coefficient for Z+ will depend upon Z− and vice
versa. Further study of nonlocal effects on k-space diffusion
may be important too, especially for highly anisotropic spec-
tra.
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