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Abstract

We present a time-dependent, three-dimensional single-fluid model for the transport of magnetohydrodynamic
(MHD) turbulence that is self-consistently evolving with a dynamic large-scale solar wind in the outer heliosphere.
The emphasis is on the region beyond the termination shock, where the solar wind expands subsonically, as well as
sub-Alfvénically and nonradially. In extension of earlier work, we refine the treatment of turbulence by
considering, in addition to the Elsdsser energies, a nonconstant energy difference (or residual energy) and by
allowing each of these quantities its own characteristic correlation length scale. While the nonlinear effects in the
equations for the Elsédsser energies and their length scales are implemented using familiar von Kdrman—Howarth
style modeling of homogeneous MHD turbulence, the energy difference, which is not conserved in the absence of
dissipation, and its length scale are modeled using distinct approaches. We also clarify the impact of the choice of
measurement direction for correlation functions associated with two-dimensional fluctuations in transport models.
Finally, we illustrate and study the solutions of the resulting six-equation model in detail.

Unified Astronomy Thesaurus concepts: Heliosheath (710); Interplanetary turbulence (830); Solar wind

termination (1535)

1. Introduction

The study of turbulence in the solar wind (SW) is a topical
field of contemporary heliophysical research. The ultimate goal
is to establish a complete model of the heliosphere that is built
on a consistent treatment of the turbulent thermal SW plasma.
Important features to account for include the near-Sun
acceleration of the SW, the interaction of the SW with the
interstellar medium (ISM), and the transport of energetic
particles within this system.

The state of the art regarding these issues has been presented
in various reviews. Oughton & Engelbrecht (2021) have
reviewed observations and the derived characteristics of
magnetohydrodynamical (MHD) turbulence and their signifi-
cance for the acceleration and transport of energetic particles.
The knowledge about the intermittency of the turbulence on
such fluid scales, and also on kinetic scales, has been
summarized by Bruno (2019). Corresponding overviews for
the turbulence properties in the heliosheath and in the local
ISM can be found in Fraternale et al. (2019, 2022) and
Fraternale & Pogorelov (2021). Verscharen et al. (2019) and
Petrukovich et al. (2020) discussed the multiscale nature of the
SW based on both in situ spacecraft measurements and theory.
Concentrating on stream interactions at fluid scales, Richardson
(2018) reviewed the interactions of fast and slow SW. Finally,
Pogorelov et al. (2017) and Fraternale et al. (2022) surveyed
the physical processes occurring in the outer heliosphere,
especially at its boundary—the heliopause (HP)—which
separates the inner and outer heliosheath (the IHS and OHS,
respectively).
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For several reasons these outer regions of the heliosphere are
of high interest. First, they represent the boundary zone for the
transition from SW to interstellar plasma. Second, their large-
scale as well as small-scale structure determines the shielding
of the heliosphere from Galactic cosmic rays and from the
(neutral) ISM (see, e.g., the review by Scherer et al. 2006). The
renewed interest regarding this region was triggered by the
in situ exploration of the IHS (i.e., between the SW termination
shock and the HP) by the Voyager 1 and 2 spacecraft, which
crossed the HP and entered the local ISM in 2012 and 2018,
respectively.

One of the main results derived from the Voyager
measurements is that in the IHS the small scales display a
considerable variability and have a significant, although not
usually dominant, compressible component (e.g., Burlaga et al.
2006; Richardson & Burlaga 2013, and references therein). An
understanding of the above-mentioned shielding properties of
this boundary layer requires a modeling of these compressible
fluctuations. We have recently begun such modeling for the
whole (upwind) ITHS (Fichtner et al. 2020 wherein we also
reviewed previous work applied to more local regions). That
work presented a transport modeling of turbulence by quasi-
linearly computing the local generation of compressible
fluctuations arising from the mirror instability in the IHS.
The base state for the quasi-linear calculations was obtained
with an MHD simulation of the large-scale interaction of the
SW with the local ISM that self-consistently took into account
the small-scale incompressible MHD turbulence. The study
resulted in a quantification of sources of compressible
turbulence in the IHS that can be included into future
simulations of the turbulence transport in this region. Other
models that support a systematic and quantitative simulation of
the turbulence transport in the whole heliosphere, including the
IHS, have also been presented. For example, Usmanov et al.


https://orcid.org/0000-0001-6122-9376
https://orcid.org/0000-0001-6122-9376
https://orcid.org/0000-0001-6122-9376
https://orcid.org/0000-0002-2814-7288
https://orcid.org/0000-0002-2814-7288
https://orcid.org/0000-0002-2814-7288
https://orcid.org/0000-0002-9151-5127
https://orcid.org/0000-0002-9151-5127
https://orcid.org/0000-0002-9151-5127
https://orcid.org/0000-0002-9530-1396
https://orcid.org/0000-0002-9530-1396
https://orcid.org/0000-0002-9530-1396
mailto:jk@tp4.rub.de
http://astrothesaurus.org/uat/710
http://astrothesaurus.org/uat/830
http://astrothesaurus.org/uat/1535
http://astrothesaurus.org/uat/1535
https://doi.org/10.3847/1538-4357/acd84e
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/acd84e&domain=pdf&date_stamp=2023-08-10
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/acd84e&domain=pdf&date_stamp=2023-08-10
http://creativecommons.org/licenses/by/4.0/

THE ASTROPHYSICAL JOURNAL, 953:133 (16pp), 2023 August 20

(2016) used a multifluid approach, but in terms of the
fluctuations this too was limited to incompressible, one-
component turbulence.

Extension of the self-consistent turbulence modeling to
include the transport of compressible fluctuations from the
upstream region of the termination shock (TS) into and
throughout the IHS requires one more preparatory step, which
we execute with the present work. This step consists in
improving the modeling such that it fulfills three requirements.
First, a “realistic” transport of turbulence from the supersonic
to the subsonic side of the SW requires a three-dimensional
(3D) model that takes the large-scale asymmetry of the IHS
into account. Second, the small-scale fluid turbulence and the
large-scale SW should evolve together self-consistently. Third,
the turbulence model should be sophisticated enough to support
necessary variation in the followed turbulence quantities. We
have in mind, for example, that approximations that are well-
motivated in much of the supersonic SW (upstream of the TS)
may not be appropriate in the subsonic IHS, e.g., o = constant
(see next paragraph).

While the first two requirements were fulfilled in Usmanov
et al. (2016) and Fichtner et al. (2020), both studies used
simplified turbulence transport equations. In particular, they
neglected the transport of compressible fluctuations® and
required that the incompressible fluctuations are everywhere
characterized by a constant normalized energy difference (op)
between velocity and magnetic field fluctuations, an often-
made assumption (e.g., Breech et al. 2008; Usmanov et al.
2011, 2016; Engelbrecht & Burger 2013; Wiengarten et al.
2015). However, Adhikari et al. (2015, 2017) demonstrated
that op changes considerably with heliocentric distance, using
observational data and a steady-state one-dimensional (1D)
radial model based on a theory developed by Zank et al.
(2012a). Moreover, using a similar modeling approach Shiota
et al. (2017) found that latitudinal variations of op also occur.
So at present there exists no model that simultaneously fulfills
all three requirements. This is the motivation for the present
work. In the ensuing sections we will formulate a set of six
time-dependent 3D model equations for the incompressible
turbulence and solve them self-consistently with standard large-
scale single-fluid MHD equations for a dynamic 3D SW.

It should be noted that, of course, further improvements
could be made. First of all, the compressive fluctuations have to
be added, for example, as in Zank et al. (2012b). While this is
not expected to cause major technical difficulties, the exact
form of a transport equation for these—valid in both the
supersonic SW and the IHS—and the subtleties of the related
phenomenology need thorough study, so that we reserve this
extension for future investigation. Another improvement would
be the consideration of a two-component model of the MHD
fluctuations, with the components being turbulence and waves,
roughly speaking. There are distinct types of such models
(Oughton et al. 2006, 2011; Zank et al. 2017), and they have
been employed as part of large-scale models of the heliosphere
(Wiengarten et al. 2016; Adhikari et al. 2017). As the explicit
addition of a second, wavelike component appears to be
straightforward, this is, for simplicity, not yet included here.
Another enhancement would concern a multifluid approach as
in Usmanov et al. (2016), which could support additional
physics such as the charge-exchange-induced deceleration of

5 Fichtner et al. (2020) considered the local generation of compressible
fluctuations but not their transport.
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the solar wind. Such multifluid modeling would, of course,
complicate the simulations but is, fortunately, also not essential
for our purpose of studying turbulence transport in the outer
heliosphere. As we show below with a validating comparison
between the Usmanov et al. (2016) results and those obtained
with a one-fluid model, even with the latter a rather reasonable
large-scale structure of the heliosphere can be computed.

The paper is organized as follows. After a justification of the
one-fluid modeling and a general description of our computa-
tional approach in Section 2, we will describe our turbulence
model in Section 3, and then present and discuss simulation
results in Section 4. The paper concludes with a summarizing
Section 5 and two somewhat technical appendices.

2. Validation of One-fluid Modeling

For the study of compressible fluctuations in the IHS one
needs to have a “realistic” large-scale structure of the
heliosphere. This can be achieved, in principle, with multifluid
modeling as demonstrated by Alexashov & Izmodenov (2005).
Such models, already intricate, become even more cumbersome
when adding equations describing the small-scale MHD
turbulence (Usmanov et al. 2016). In order to demonstrate that
a one-fluid model can describe the large-scale structure with
sufficient accuracy, we keep the model at this stage as simple as
possible but as complex as needed and base it on the one-fluid
description used earlier (Usmanov et al. 2011; Wiengarten et al.
2015; see also Breech et al. (2008) and Zank et al. (2012a)).

2.1. Large-scale Equations for the Solar Wind

Our applied methodology is based on the frequently used
concept of Reynolds decomposition, wherein the MHD fields
are written as the sum of background (large-scale) fields and
zero-mean fluctuation (primarily small-scale) fields, with the
former obtained by applying a suitable averaging operator to
the relevant total fields (e.g., Usmanov et al. 2011). This way,
for example, we distinguish the large-scale velocity U and the
fluctuation velocity v.

With this approach two coupled sets of evolution equations
are obtained, one for the large-scale fields and another for the
fluctuation fields. The former are quite similar to the original
MHD equations for the total fields, but contain additional
“source” terms dependent on the fluctuations. Using a mostly
familiar notation the equations for the large-scale quantities
read (e.g., Usmanov et al. 2011; Wiengarten et al. 2015):

dp+ V- (pU) =0, ey
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0B+ V - (UB — BU) =0, “4)

with
P = (op + 1)pZ%/4, ©)
n=1+0pZ%/ @2V}, (6)

and 1 is the unit tensor. The large-scale quantities are the mass
density p, fluid velocity U, thermal pressure p, magnetic field
B, total energy density

U2 BZ

e —_—
2 8T Yad — 1

(N

(with an adiabatic index ~,q = 5/3), gravitational acceleration
due to the Sun g, and Alfvén velocity V4 = B / Jamp.

In general the large-scale fields are functions of the time ¢
and heliocentric position vector r. All computations will use the
inertial frame, eliminating the need for fictitious source terms.

Equations (1)-(7) are not closed, with pg,. and 7 functions
of the fluctuating velocity v and fluctuating magnetic field b.
Herein we do not attempt to solve for the fluctuation fields,
working instead with (some of) their moments. In particular, the
fluctuations are characterized using (twice) their energy density
Z? = (v? + b?), the cross helicity H, = 2(v - b), the energy
difference (aka residual energy) D = (v — b?), and a
turbulence length scale A. Here b is in Alfvén units (i.e.,
normalized by \/4mp) and (---) indicates averaging over a local
region around a large-scale position r. Several associated
quantities are also of relevance: ch:HC/Z2 the normalized
cross helicity, op =D/ 7 the normalized energy difference, the
Elsésser energies VA L= 72+ H.=(1+ UC)ZZ, and

J1-a

2
fH@) = e T+ o + T —al

727+ 77,
273 '
In the SW-ISM interaction region in particular, extracting
plasma pressure from the energy density (Equation (7)) typically
involves the subtraction of two large numbers to obtain a
comparatively small one, which, due to the approximative nature
of the numerical procedure, may easily lead to pressure becoming
negative, at which point the simulation would have to abort.
Therefore, we follow the procedure recommended by Balsara &
Spicer (1999) and alternatively compute the pressure by
integrating the entropy density s = p/p%a~! via

Os +V-(U) =0, 9)

as a fallback option whenever pressure/temperature could
otherwise become negative. Note that this procedure is not
employed near shocks as entropy tends to increase across them.
In practice we find that the regions of (potentially) negative
pressure are almost exclusively encountered during the
convergence phase, with very few such regions present in the
final equilibrium state.

Additionally, a passive scalar tracer W, initialized as W = — 1
in the SW region and ¥ = + 1 in the ISM region, is integrated
via

(®)

o(p¥) + V- (p¥ U) = 0. (10)

This allows us to unambiguously map any fluid element to its
origin, and in particular to identify the HP as the surface where

Kleimann et al.

¥ = 0 without having to rely on isocontours of other quantities
such as temperature.

2.2. Transport Equations for the Turbulence Quantities

The evolution of the small-scale MHD turbulence is obtained
using an energy-containing range model (Matthaeus et al.
1994; Zank et al. 2012a). In this case, three quantities
characterizing the turbulence—energy (Z%), cross helicity
(H.), and a correlation length (\)—are followed (Matthaeus
et al. 2004; Breech et al. 2008; Usmanov et al. 2011), and we
use a form that retains O(V,) terms (see Zank et al. 2012a;
Usmanov et al. 2014; Wiengarten et al. 2015):

0,Z* + V - (UZ? + VAH,)
=2V U+ 2V, VH. — zzaD[¥ - F(U)]
QZ3f+ (0. .
— 22O 4 B, (1)

OH. + V - (UH, + VAZ?)

:%v U + 2V, - VZ?% + 220D|:V - Va + L(®B) ]

Jamp

3
_azZf (Uc), (12)
A
OAN+U-VA—0.Va- VA =Aop[V - U - 25(U) — I'(U)]
cross helicity mixing
= ﬁzf+(0c) - %Epuia
(13)
where

TX)=é-@ VX, YX):=h- (G V)X, (14)

and é:=B/B =B and # are the unit vectors parallel and
perpendicular to the magnetic field, respectively.®

The fluctuations have been assumed to be two-dimensional
(2D) relative to B, and isotropic in the 2D planes. This imposes
a specific tensor structure for the correlation tensors and leads
to the particular forms of the “mixing” terms (those involving
op) in Equations (11)—(13). Further details are available
elsewhere along with consideration of a three-equation model
suitable for fluctuations which are isotropic in 3D (Matthaeus
et al. 1994; Breech et al. 2008); see also Section 3.

Note that the underbracketed terms in Equation (13) are
absent in some earlier works. However, in principle they
should be present if O(V/U) effects are retained (first term)
and the symmetries associated with 2D turbulence are
accounted for (second term). See Appendix B for discussion
on this.

In Section 2.4 we will validate the single-fluid model of the
present section against published results from a four-fluid
model (Usmanov et al. 2016) that also employs
Equations (11)—(13), except without the two underbracketed
terms in Equation (13). Hence for the comparison we will also
drop those terms from the ) equation.

The order unity von Karman—Howarth constants, o and (3,
help determine the strength of the nonlinear modeling and, in a
homogeneous system with U= B =0, determine a family of
conservation laws: 7>/ ®)\ = constant (Hossain et al. 1995;

S Herein we use % :=x /x| to denote (either) a unit vector parallel to x, or the
unit vector pointing along a coordinate x.
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Matthaeus et al. 1996; Linkmann et al. 2017; Bandyopadhyay
et al. 2018, 2019).

No dynamical equation for the energy difference D is present
as, for this category of models, op is usually approximated as a
constant, in part on the basis of SW observations (Roberts et al.

1987; Perri & Balogh 2010). In particular op = — 1/3 has
often been used (e.g., Zank et al. 1996; Breech et al. 2008;
Yokoi et al. 2008), corresponding to (b?) = 2(v?).

Scattering of pickup ions and the associated generation of
waves leads to an energy injection rate, modeled as (e.g.,
Williams & Zank 1994; Zank et al. 1996; Matthaeus et al.
1999; Smith et al. 2001; Isenberg et al. 2003; Usmanov et al.
2016)

Epui = Cex Va IU - l]ismlz GXP(—ﬁi)a (15)

r sin©®

with an ionization cavity radius of L., =5.6au and © the
angle between the position vector r and the incident ISM flow
Uism- The fact that only the flow velocity relative to the ISM
flow enters this expression ensures that no pickup ion sources
exist in the pristine ISM. Here Ce:=fpony where
0=2x 107" cm? is the mean charge-exchange cross section
of a hydrogen atom, ny=0.1 cm > is the neutral hydrogen
number density in the ISM, and fp < 1 is a modeling parameter.
An Epui term also appears in the length scale Equation (13). For
a homogeneous system this would ensure compliance with a
conservation law for the quantity Z* /). Fuller discussion is
available elsewhere (Hossain et al. 1995; Matthaeus et al. 1996;
Breech et al. 2008).

Typically, support for driving by velocity shear is also
included in transport models of this kind (e.g., Zank et al.
1996; Matthaeus et al. 1999; Smith et al. 2001; Breech et al.
2008; Wiengarten et al. 2015). Here, however, we neglect it
in order to facilitate comparison of this one-fluid model
with a four-fluid one, which also lacks shear driving
(Usmanov et al. 2016).

We have written the three-equation model with evolution
equations for Z* and H.. The well-known connection of the
energy and cross helicity with the Elsdsser energies,
Z? = 7%+ H,, means it is also straightforward to express it
in terms of equations for the evolution of Z7 (and \).

2.3. Numerical Setup

We obtain numerical solutions using the CRONOS finite-
volume MHD code (Kissmann et al. 2018), employing a
spherical polar coordinate [r, ¥, ¢] grid with full 47 angular
coverage and a radial extent r € [0.3, 900] au. As the numerical
time step is limited by the Courant-Friedrichs—Lewy condition
of the smallest cell, using a single grid for the entire volume
would lead to unreasonably large computation times. For this
reason, we first run a simulation on the inner region (typically
covering [7in, fmax] = [0.3, 80] au in radius), which converges
quickly (on the fluid crossing timescale, U/Fhyx ~ 0.8 yr)
because the region is located entirely within the upstream
region of the TS. Data from the final time frame is then used to
interpolate all variables to the inner boundary of the second
(outer) grid, which extends to the outer boundary at 900 au. In
the radial directions the grid is stretched exponentially, such
that the center r; of cell i, 0<i<N, is at radius
ro + (ry, — ro) f [ + 1/2)/N,], with a custom nonlinear scal-
ing function f(&)=(u*—1)/(u— 1), and p a constant. This
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Table 1
Parameters of the Inner and Outer Subgrids for the 3D Simulations Using the
Three-equation Model (Labeled “[3]” in Column 1; see Section 2.4) and the
Full Six-equation Model (“[6]”; see Section 4)

N, Ny N¢ Fmin Fmax H Ar Span
Inner [3] 300 180 1 0.3 100 20 0.05-1.09
Inner [6] 200 60 6 0.3 80 20 0.06-1.24
Outer [3] 180 60 90 80.0 1000 20 0.82-15.9
Outer [6] 200 60 90 80.0 900 20 0.66-12.8

Note. Dimensional parameters 7yin, "max, and Ar are in units of au.

causes the cell size to grow exponentially outward, supporting
maximum resolution at small radii. In the limit N, — oo, the
ratio of largest to smallest cell size approaches
f(D)/f"(0) = p, while for p— 1, the linear case f(§) =¢ is
recovered. Grid spacing in the ¥ and ¢ directions is uniform.
Table 1 summarizes the specific grid parameters used for the
simulations presented in this work.

At time t=0, all (large-scale and turbulence) quantities
{g:(r)} are initialized across the grid using an interpolation
between their respective SW boundary values (g;)sw and ISM
region values (g,)ism according to

q;(r) = [1 = w](g)sw + W) (gism- (16)

The weighting function w(r) is zero for r < 100 au, unity for
r>200 au, and allows for a smooth transition in the
intermediate region. The only exception is the magnetic field,
which is constructed via

B(r) =V x ([1 = w(n)]Asw + w(r)Aism) a7

to impose magnetic solenoidality, with

Ql Yl r—Reit & 1-—1 Jl A
Asw:Bl[ co R F ol ¢], (18)

2Aim = By x r = (zBoy — yB,,) *

+ (-XBOZ - ZBO.’C)j’\ + (yBox - -XBO)')E (19)

the respective vector potentials of a dipolar Parker spiral field

Bys(¥) [f ~ Qsiny
U

2

By =V X Agy = (r — Reiit) ‘;\D] (20)
for the case of constant radial flux on each hemisphere and a
homogeneous ISM field B, with Cartesian coordinates (By,,
By,, By). The function

s(¥) = (cos?)/|cosd| € {£1} 21

provides the polarity of each hemisphere, 2 =2.6 uHz is an
average value for the angular frequency of solar rotation
(thereby ignoring differential rotation), and B is the magnitude
of By, at 1 au. These formulae are valid beyond the “critical”
(Alfvén) radius R, within which the field lines are purely
radial. We take R.jy=10R., (Marsch & Richter 1984),
although the departure of results from the R.; =0 case is
negligible for the present application. Note that the Parker
spiral potential in Equation (18) is of considerably shorter form
than the one proposed by Bieber et al. (1987) because the value
of V- A, is immaterial for the present purpose.
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Table 2
Boundary Conditions at 0.3 au Used for the Validation Run Described in
Section 2.4

Quantity SW (Equator) SW (Poles) ISM
n [em™3 210 (19.0) 30 2.7) 0.1
U, [kms™'] 320 740 26.0
|B,| [nT] 35 (3.15) 35 (3.15) 0.2
T [10°K] 200 1100 6.135
Z* [(km s )?] 500 11000 0.01
|oe 0.0 0.8 0.0
A [au] 0.013 0.030 1.0

Notes. For quantities scaling as 1/ 7%, the corresponding values at 1 au have
been included in brackets to ease comparison. For U,, an additional high-
latitude gradient of 0.5 kms~' per degree is applied, and o, changes sign
across the equator such that o.B, < 0 always. Furthermore, o = 0.128 and
B =a/2=0.064.

2.4. Validation Against a Four-fluid Model

In order to verify that our one-fluid MHD model is able to
yield similar results for the present context, and is thus of
comparable usefulness to a more involved multifluid model, we
performed 3D simulations using the three-equation model, with
initial and boundary conditions approximating those used by
Usmanov et al. (2016; themselves based on Usmanov et al.
2014) and summarized in Table 2. Results from this run are
then compared to those presented by Usmanov et al. (2016),
which is still the only 3D model considering turbulence in the
entire heliosphere.

Figure 1 shows contour plots for selected large-scale (|B|,
U,, Uy) and all three small-scale quantities (Zz, 0., A) in the
meridional plane (¢ = 0) intersecting both the solar magnetic
axis and the ISM inflow direction, alongside corresponding
contours adapted from Figure 1 of Usmanov et al. (2016).
While it is certainly unsurprising that several deviations are
easily discernible (despite the boundary conditions being
chosen to be as similar as possible), notable qualitative, and
to some extent also quantitative, agreement is present. Shocks
(TS and bow shock) are of similar shape and position, with
“our” tailward TS being less round due to a more pronounced
Mach disk. The weaker magnetic field piling up in the nose
region could be related to stronger numerical diffusion due to
the coarser grid employed here. Regarding the turbulence
quantities, superior agreement is certainly found for Z*, and
also o, agrees well regarding its typical values in the
heliosheath and at the bow shock.

In summary, the identified degree of similarity between our
one-fluid model and the four-fluid one is clearly sufficient to
support the application of our model to the present topic of
modeling the turbulent structure of the IHS.

3. Six-equation Turbulence Model

The three-equation (transport of) turbulence model discussed
in Section 2.2 is based on some approximations that, although
well-motivated, nonetheless restrict its utility (for extensive
discussion see Breech et al. 2008; Zank et al. 2012a). Of
particular relevance are that it employs (i) a single characteristic
length scale for all turbulence quantities, and (ii) the
approximation op = constant, rather than solving a dynamic
equation for the energy difference D. Here we present an
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extended model for the evolution of the heliospheric fluctua-
tions, which addresses these shortcomings.

Six quantities are followed, the Elsisser energies Z2 and
energy difference of the fluctuations, and (effectively) a
characteristic length scale for each of them. Related “six-
equation” models have previously been considered, and we
refer readers to those works for many details regarding the
derivation of those and the present model (Matthaeus et al.
1994; Zank et al. 2012a; Adhikari et al. 2015). However, as our
modeling of the nonlinearities is distinct—particularly in
connection with D and its length scale—we will discuss this
aspect in some detail in Section 3.2.

3.1. Correlation Length Scales

In deriving the model we have assumed that the fluctuations
have 2D symmetry relative to B (and are isotropic in the planes
perpendicular to B), as was also done for the three-equation
model. The tensor structures for the two-point correlation
tensors and their integrals over lag—ofcor example,
Ry(GA) = (vi(x) v;(x + () and Ly(@) = [~ Ry(¢h) d(—
are then known (Batchelor 1970; Matthaecus et al. 1994,
Oughton et al. 1997) and have been used in the model’s
development.7 Here, the direction associated with the spatial
lag ¢ is denoted by the unit vector 72, and is chosen to satisfy
i - B = 0. Imposing this fixed symmetry of the fluctuations
has the advantage that no further approximations regarding the
fluctuation correlation tensors are needed. In particular, we
make no use of the structural similarity approximation
(Tennekes & Lumley 1972; Zank et al. 1996, 2012a; Breech
et al. 2008) that was employed in obtaining the three-equation
model of Section 2.2, for example. In general, the tensor
structures of the R;;(¢ = 0) and the L;; differ and this impacts the
final form of the mixing terms (see Appendix B).

There is also a somewhat technical feature of the model
concerning the equations determining the characteristic length
scales, \i, \p. Rather than using evolution equations for these,
it is convenient to instead evolve energy-weighted length
scales, e.g., L. = )\iZi

To obtain these equations, we recall that the fluctuation fields
can be described using two sets of spatial coordinates: the
large-scale heliocentric position vector r plus a small-scale
offset from that, denoted x (Marsch & Tu 1989; Zhou &
Matthaeus 1990). For example, v =v(r, x, f). Here we are
considering models for characteristic (aka energy-containing
scale) quantities, meaning that at each r the dependence on the
local small-scale coordinates is eliminated by averaging over
them. Thus, as in earlier works (Matthaeus et al. 1994; Zank
et al. 1996, 2012a; Breech et al. 2008), we derive equations for
the evolution of

Li(r;f) = fooc (zE@r, x) - 25(r, x + )y dC, (22)

and an analogously defined Lp. These are the integrals of the
(traced) correlation functions of the Elsdsser variables over the
(small-scale) lags, ¢, for some chosen direction i (e.g.,
Matthaeus et al. 1994, 1996). The actual characteristic length
scales are defined as Ay = L/ Ziz.

7 Recall that for a given turbulence symmetry the tensor structures of R;;(0),

R;j(¢i), and L;;() are in general different. In particular only R;(0) is likely to
have the same symmetry as the fluctuations themselves. See, e.g., Batchelor
(1970) and Appendix B.
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Figure 1. Meridional cuts (at ¢ = 0) for selected large-scale and turbulent quantities obtained using the three-equation model (rows 1 and 3), contrasted with
corresponding plots adapted from Usmanov et al. (2016; rows 2 and 4). All distances are in units of au, and color tables have been adjusted to ease a qualitative

comparison. Images in rows 2 and 4 courtesy of A. Usmanov.

Derivation of the transport equations themselves is straight- how modeling of the nonlinear terms should occur (e.g.,
forward. Somewhat different models are obtained depending Matthaeus et al. 1994, 1996; Breech et al. 2008; Zank et al.
upon assumptions made about the turbulence properties and 2012a; Adhikari et al. 2015). In the present case, with 2D



THE ASTROPHYSICAL JOURNAL, 953:133 (16pp), 2023 August 20

symmetry for the fluctuations, the model equations are

8(; + U F Vy) -VZ2+ 2722V - (% + VA)
—0|v-(Y5v) -ty 5 E

2 Jamp
- qj: + Epui’ (23)

OL: | (UFVy) VLo + L,V - (% + VA)

ot
U 3(B)
V. l==xVa|-2|20) £+
(2 A) (() 1/47'1',0]}

+ (B ®WZIZ+ + Epids, (24)

=Lp

88—D+U VD + (D + ZH)V - (12])

=Z2T(U) — H,|V - Vs + LB
Jémp
R (25)
™D 2

Lo gty v (2)
ot 2

:ﬁ[v . (%) — QE(U)]

2
Lt lolgy, 2B D (26)
2 Jamp ™
with Lp:=ApD encoding the third length scale® \p, and
VAV zlz
4. = a2t oF = aﬁ’ (27)
At Ly
2
(Lt L)/CZ) _ Ao e

WV2+@-Dy2 V&Y

Here 7p is an Alfvénic timescale based on a length scale for the
energy Z2 = (Z2 +Z 2)/ 2, rather than the energy difference D
(see Section 3.2 for discussion on this point). The dissipation of
fluctuation energy (per volume) is p(q, + g_)/4 and replaces
the final term in the energy Equation (3), its three-equation
analog. The Z and L. equations include V5 - V terms on their
respective LHS. As we regard the fluctuations as being quasi
(rather than strictly) 2D this is clearly appropriate. Here quasi-
2D means the fluctuations can vary weakly along the parallel
(By) direction (Matthaeus et al. 1990). We note, however, that
in some Nearly Incompressible turbulence transport models
(e.g., Zank et al. 2017) it is argued that, for the strictly 2D
fluctuations, the V, - V terms do not feature.

This six-equation model differs from many three-equation
models in how the effects of pickup ion driving are included.
Here the latter are restricted to just input of energy, in
Equation (23), with no direct modification of the equations for

8 Clearly Lp = A, (v2) — X\, (b?) is a physwally well-defined quantity that is
not necessarily zero when D = (v?> — b?) = 0. However, the definition
Ap:=Lp/D has interpretation complications when D = 0.
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the length scales Ay = L./ Zﬁ. The physical motivation is that
the pickup ion energy is injected at parallel length scales of
order the proton gyroradius, and thus should not (directly)
affect the perpendicular length scales employed in this six-
equation model. So although Epui terms are present in the
L, = Z? )\, equations, their role there is to ensure that when
equations for A\, are extracted from Equation (24) no Epui terms
appear in the A, equations. As discussed in Section 2.1, three-
equation models have typically adopted a different approach,
by including a (decay) term proportional to Epu, in the equation
for A, such as Equation (13). The forcing is then consistent with
the local conservation law, Z>% “\ = constant. There are also
other approaches. For example, transport models which track a
parallel length scale, say ), can accommodate influence of
pickup ions on the evolution of A (e.g., Oughton et al. 2011).

Referring to Equation (14) for the definitions of I'(- ) and 3( - ),
we see that, because é||B and 72 | B, the two identities

T'(B)/JAtp = T(Va) —

3(B)/J4mp = X(Va). (30)

hold. These may be used to “hide” factors involving \/47mp.
The special case A, = A_ = A\p (=) is of interest as under
those conditions one would like the model to be consistent with
the three-equation one of Section 2.2. Indeed, the sum and
difference of Equation (23) are then formally equivalent to
Equations (11) and (12). Similarly, adding Equations (24) and
then extracting the equation for A recovers Equation (13). To
make the equivalence complete one discards the dynamical
Equation (25) for D (and that for LD) and uses instead the
closure relation of constant o, =D/ Z° (see also Appendix B.).

V-V, (29)

3.2. Modeling of Nonlinear Terms

In developing the six-equation model the nonlinear effects in
the Z7 and L, equations are implemented using familiar
von Kdarman—Howarth style modeling of homogeneous MHD
turbulence (Matthaeus et al. 1994, 1996; Hossain et al. 1995;
Zank et al. 1996, 2012a; Smith et al. 2001; Breech et al. 2008;
Wan et al. 2012). These are the terms with factors of a and/or
B, including Equation (27). Observational studies support such
modeling of SW fluctuations (e.g., Roy et al. 2022).

The energy difference D, however, is a different sort of
quantity. Unlike the Z7 it is not conserved in the absence of
dissipation. Hence, phenomenological modeling of the evol-
ution of D, and Lp, usually takes a different approach with ours
outlined below.

Earlier works have considered various models for the
nonlinear evolution of D, at either the energy-containing level
(Matthaeus et al. 1994; Yokoi 2006; Yokoi & Hamba 2007,
Yokoi et al. 2008; Zank et al. 2012a; Adhikari et al. 2015) or
the inertial range (spectral) level (Pouquet et al. 1976; Grappin
et al. 1983, 2016; Miiller & Grappin 2005). Closure-informed
arguments led to the suggestion that in the inertial range

oD (k) . _D(k) B E (k)
ot Tequi Txfer '

€1y

with conceptually distinct options explored for the timescales
associated with return to energy equipartition (7equ;) and energy
transfer (7xsr; Pouquet et al. 1976; Grappin et al. 1983, 2016).
Transcribing this to a (homogeneous) energy-containing range
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phenomenology gives (Matthaeus et al. 1994)

2
D _ 2z (32)
dt ™D Tz

with ap an O(1) constant. The first term causes |D| — 0, (i.e.,
equipartition of (v?) and (b?)) on the timescale 7, while the
(always negative) second term acts to make D smaller. The
final terms in Equations (25) and (32) are equivalent provided
one uses the definition

=2+ ZH/(q, + q), (33)

i.e., the timescale associated with the energy cascade rate.
Recall that Z? = (v2 + b%) = (Z] + Z2)/2.

An advantageous feature of this model is its prediction of a
negative op = D/Z2 = —1p/(apTy) at steady state (Grappin
et al. 1983; Mangeney et al. 1991). This accords with MHD
simulation results (e.g., Pouquet et al. 1976; Oughton et al.
1994, 2016; Bigot et al. 2008; Bigot & Galtier 2011) and
typical solar wind observations (e.g., Perri & Balogh 2010). As
the Alfvén effect (Kraichnan 1965; Pouquet et al. 1976), which
involves movement of D toward zero, is likely to be active we
model 7 as an Alfvén timescale’ as indicated in Equation (28).
There, \,=(L, +L_)/ (2Z7?) is a characteristic length scale for
the fluctuation energy Z? = (v? + b?) and V' is the Alfvén
speed arising from the combination of the mean magnetic field
and the rms fluctuation field strength. In place of A\, one might
have employed a length scale seemingly more directly
associated with D, such as Ap = Lp/D. However, working with
Ap can produce difficulties when D~ 0, so we make the
plausible assumption that D and Z* have similar characteristic
length scales.

Consider now nonlinear effects in the evolution of Lp.
Again, various models have been proposed (Matthaeus et al.
1994, 1996; Zank et al. 2012a; Dosch et al. 2013; Adhikari
et al. 2015). A “kinematic” requirement is that in order for A,
and \,—the correlation scales for the fluctuation velocity and
magnetic field—to be positive, Lp needs to satisfy the
realizability constraint |2Lp|/(L; + L_) < 1. If the six-equation
model is solved with the final term in Equation (26), namely,
Q1,:=—Lp/p, absent, this constraint is often violated with
negative values of A, occurring. This suggests that nonlinear
and/or wavelike activity reins in the magnitude of Lj, and thus
modeling of the associated process(es) should be included.
Moreover, results from homogeneous MHD turbulence simula-
tions (unpublished) suggest that |Lp|~ (L, + L_)/10 or even
smaller. Our form for Q; —that is, a phenomenologically
motivated damping which acts to reduce |Lp| on the same
Alfvénic timescale (7p) present in the D equation—is an
attempt to account for both of these behavioral aspects.
Although some dimensional analysis and modeling approaches
have suggested that a nonlinear timescale like 7, would be
appropriate to use here (Zank et al. 2012a; Grappin et al. 2016),
we have instead opted to employ an Alfvénic timescale on the
basis that the Alfvén effect should influence L, as well as D.

In developing the six-equation model it is desirable that the
modeled terms obey constraints associated with the true terms.
Such constraints include the realizability condition for Lp
discussed in the previous paragraph and similar conditions for
the positivity of the kinetic and magnetic energies

° Contrastingly, Grappin et al. (2016) suggest that (the spectral version of) 7

should be a nonlinear timescale rather than an Alfvénic one.
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lop| =|D|/Z* < 1, and the Elsisser energies |o| < 1. Regret-
tably, we lack analytic demonstrations that our modeled terms
will impose these restrictions. To alleviate the issue, we take a
pragmatic approach. For example, we test the local magnitude
of 0. at each time step and, if necessary, reduce it. In practice
such “clamping” is only required for a tiny fraction of the
computational cells (see Section 4).

3.3. Selection of ii

Unlike €, which always points along B, the perpendicular
unit vector 7 allows for some residual freedom of free rotation
around B, and this impacts the determination of (- );see
Equation (14). Matthaeus et al. (1994) chose 7 to (also) be
perpendicular to 7, but their model is restricted to the
spherically symmetric SW flow upwind of the TS, where a
preference for the radial direction can be more easily
motivated. For small-scale turbulence beyond the TS, however,
there is nothing particularly distinct about the position of the
Sun, implying that 7 may be chosen based on the local
properties of the plasma flow. In this vein, let us introduce a
parameterization

i = X'cosy + y'sinvy (34)

with respect to a mean-field-aligned local Cartesian coordinate
system (x’, y', z’) with orthonormal basis vectors
DV UxB Bx@UxB
.y = | X B BB gl s
sin Y sin
with sint ensuring proper normalization of the unit vectors.'”
With respect to the above coordinates, we have

o 0X,
Ix)=z - @ -V X=—-, (36)
0z
X ox
E(X) = (cos?y) —= + (sin>y) ——
ox Oy
ox .  O0X
+(cosv)(sin7)( x4 ) (37)
ay ox

This also shows explicitly that, without loss of generality, for
symmetry reasons it will be sufficient to allow angle ~y to vary
only in the interval [0, 7].

So in general we will expect these dynamical turbulence
equations, and hence also the results which they produce, to
depend on 7 as it varies continuously between 0 and 7. In the
absence of any obvious preference for a specific value of v, we
first observe that the averaging Equation (37) over ~y gives

1(oxy  OXy
2(X)), = — : 38
9(0.9)8 2(8x’+8y’) (38)

Interestingly, the above expression 1is identical to
1/ [EX)y=p + E(X)|y=7/2], the arithmetic average of the
two cases fi=x' and 7 =y'. Moreover, combining

Equations (36) and (38) yields
23X)), +I'X) =V - X, (39)

19 We can consistently use v, the angle between B and the generally nonradial
U, both here and in Equation (40) where U is strictly radial.
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which, thanks to the covariant definitions of I'(-) and (- ) in
Equation (14), is valid in any coordinate system. In particular is
it independent of our specific choice of orthonormal basis
vectors (Equation (35)).

We will retain the dependence on - for the radial test case to
be presented in Section 3.5 but otherwise use Equation (39) to
replace both X(U) and ¥(B) by their y-averaged counterparts
(see Appendix A for a summary of the equations thus arrived
at). As (i) only 72 depends on ~, and (ii) all equations that
depend on X(X) do so in a linear way, this is equivalent to
averaging the entire set of equations with respect to 7. This
averaging affords some algebraic simplification.

3.4. Equations in Conservative Form

For reasons of numerical convenience (see Section 2.3) it is
advantageous to express the equations in conservative form.
The large-scale equations are already so-expressed (see
Section 2.1), and those forms for the turbulence quantities are
readily obtained from the equations given in Sections 2.2 and 3.
Appendix A lists the ~v-averaged six-equation model in
conservative form.

3.5. Validation Against a Steady-state Radial Version

As a simple test case to verify the correct implementation,
we consider the special case of a radial (9y=0=203,),
stationary (0;=0) setting with a purely radial SW flow
U = Ur of constant magnitude U, a monopolar Parker (1958)
spiral field

Rcrit 2 A A
B = By| — | [f — ¢ tan?/], 40)
r
with

Qsind

tan¢) = (r — Reri) 4D
(evaluated at ¥ =m/2) giving the winding angle ¢ at which
equatorial field lines meet with the radial direction. This
implies

ViU = (865 — RF)U/Jr, (42)
v ou=2Y and V~VA:VA". (43)
r r

The turbulence Equations (23)—(26) then simplify to the
following set of ordinary differential equations, after using
Equations (29) and (30)

dZ} (U £VanZi+UD

(U + VA,r) Qi
dr r
+ [PU) £ T(VAID + Epi, (44)
dL UL Va,)Ly —L
U T Vi) dri _ A, )r( + — Lp)

— 2Lp[S(U) £ (V)]
+ (B — WZIZ+ + Epii As. (45)

2
pd _ _UD+29) 5 T(U) — H.T(Vy)
dr r
a2 4t (46)
D 2
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v _ @, 4 L,)[2 — Z(U)] )
dr 2r r
—(Ls - L)[VA" —~ E(VA>] b
2r D

When dealing with the equations in nonconservative form, the
use of Zﬁ is preferred over {Z%, H.} because Equations (44)
involve only one derivative, whereas their sum and difference
each involve derivatives of both Z> and H. (see Equations (A1)
and (A2)).

With the basis vectors in Equation (35) taking the form

~

=19, (48)
V' = (siny))F + (cos)) @, (49)
B =% = (cos )i — (sine)) P, (50)
we obtain
L) = %sinzw, (51)
r(vy) = Yarreost - Re (52)

r r — Rt

Here, we refrain from using Equation (39) relating (3(-)), and
I'(-) as documented in Section 3.3, but rather retain the full
dependence on 7, so that

U
2WU) = - T, (33)
Y(Va) = & M’ (54)
r 7 — Rt
with
T (7): = cos? 1) + cos®~ sin® 1) (55)

and the angle v as a free parameter. These expressions are of
course consistent with Equation (39), and, as the form for 7(~)
indicates, in this special case v only needs to vary in the
interval [0, 7/2].

The steady 1D Equations (44)—(47) were solved for a range
of 7 orientations € [0°, 90°], subject to the r=0.3au
equatorial SW boundary conditions listed in Table 3, using a
standard fourth-order Runge—Kutta (RK) integrator. Addition-
ally, using the same spherically symmetric inner boundary
conditions, a steady solution of the full time-dependent 3D
model (with six turbulence equations) was obtained, using
CRONOS. The solution was however obtained on a narrow 3D
grid that only covered the beam with ¥ € [0.48, 0.49]7 and
@ €[0, 0.02]m, and all large-scale quantities artificially held
fixed. For this latter simulation run, the closure relation
(Equation (39)) was used to avoid having to specify ~.

Figure 2 displays the radial dependence of selected
turbulence quantities, as obtained from the RK and CRONOS
1D simulations described in the previous paragraph. Clearly,
the influence of 7i’s direction, encoded in the angle ~, is rather
small, except for \p, where it is quite substantial. As can be
seen for \p (and also verified for the other quantities), the
curves agree almost perfectly with the respective curves for
v =m/4, as should be the case as

T(r/4) = (1 + cos*9)/2 = (T (7)), (56)
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Table 3
Inner (0.3 au) and Outer (ISM) Boundary Conditions for Both the 1D
Comparison of Section 3.5 and the Fully 3D Simulations of Section 4

Quantity SW (Equator) SW (Poles) ISM
n [em™3 55.5 (5.0) 22.2 (2.0) 0.1
U [kms™'] 380 740 26.0
|B,| [nT] 44.4 (4.0) 44.4 (4.0) 0.2
T [10° K] 300 1400 6.135
72 [(kms™)?] 2200 11000 0.01
o] 0.4 0.8 0.0
op -0.3 —0.3 0.0
Ay [au] 0.012 0.002 2000
A_ [au] 0.009 0.006 2000
Note. Values are listed in analogy to Table 2. Lp is set to

Lp=—(Ly+ L_)/10 on the boundaries (and initially).

This agreement for this special case serves as a first test to
verify proper implementation of the 3D equations. Of course
the exact agreement is an artifact of the simple SW
background flow and field that led to the similarly simple
angular dependence of Equations (53)—(55), and cannot be
expected for other situations, in which the sum of mixed
derivatives in Equation (37) does not generally vanish. (We
note that for a similar comparison in which the Alfvénic
timescale 7p in Equation (26) was tentatively replaced by the
longer nonlinear timescale, Tzlz(Zf + Z,Z)/(qjL + q_), the
variation among curves for different v is much more
pronounced.)

Although the focus of the present study is on the evolution of
turbulence beyond the TS, it is useful to compare the results
obtained for the supersonic solar wind (Figure 2) to available
data. Such comparisons have been presented in Adhikari et al.
(2015) and were later extended by Adhikari et al. (2017). These
authors also confronted results of a spherically symmetric
turbulence model with the observational data. We remark that
the data are quite scattered and do not suggest that a single
(steady-state) radial profile holds. While the radial profiles we
have computed herein differ from those presented in these
earlier studies, which is mainly a consequence of the
differences in the turbulence modeling, they still appear to be
compatible with the spacecraft data. There is a qualitative
agreement regarding the increase in the correlation lengths A,
and A_, with the former being slightly larger than the latter.
Furthermore, our results for the cross helicity 0. and the
residual energy op appear to be consistent with the SW data
shown in Figures 5 and 7 of Adhikari et al. (2015); see also
Figure 1 in Adhikari et al. (2017).

In addition to its importance for code verification, the
comparison shown in Figure 2 is also of direct scientific
interest. For instance, it confirms that the employed equations
are indeed suitable to keep both |o.| and |op| below unity for
any v, at least in the supersonic SW. Moreover, we see that A\p
can become negative for > 45° and that the ~y-averaging
approach avoids this “problem,” albeit barely so. The definition
of A\p = Lp/D indicates that it being negative is not formally an
issue, as both D and L, may be negative. However, if one
wished to keep Ap >0, then Figure 2 suggests that the lag
vector 7 should either be averaged over, or be selected to point
in the approximate direction of U x B.
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4. 3D Simulations Using the Full Six-equation Model

Simulations of the improved six-equation turbulence model
were carried out as described in Section 2.4 except that the
turbulence evolution is given by Equations (A1)-(A5) rather
than Equations (11)-(13). This also necessitates replacing the
final term in the energy Equation (3)—which represents the
dissipation of fluctuation energy—by the form associated with
the six-equation model: p(g, + g_)/4. Below we first describe
the boundary conditions and make some remarks on a
numerical issue. Simulation results are then discussed.

Figure 3 shows the variation of density, radial velocity, and
temperature at the inner boundary that have been implemented
to capture the slow/fast SW dichotomy and the corresponding
change seen in other quantities as a function of the
heliolatitude. Based on Ulysses observations (McComas et al.
2000) an additional gradient of 1kms ' per degree of
heliolatitude is included for the radial velocity (see Usmanov
et al. 2011). Density varies approximately according to
n() o [U,(¥)]"'4, again in accord with Ulysses data
(Pogorelov et al. 2013). This exponent represents a compro-
mise between constant mass flux (exponent —1) and constant
momentum density (exponent —2). All other quantities vary
with 9 according to the same functional form as temperature
but with their own equatorial and polar values as listed in
Table 3. Therein, those for Z2, 0., and most of the large-scale
MHD values have been adopted from Wiengarten et al. (2015),
Usmanov et al. (2016), and Larrodera & Cid (2020), while
those for the length scales are informed by observational
analyses (Tu et al. 1989; Adhikari et al. 2015; Burlaga et al.
2018). The chosen latitudinal dependence of Z* is consistent
with available observations (e.g., Bavassano et al. 2001; Breech
et al. 2008; Chen et al. 2020). Further parameters are fp = 0.25,
ap=0.5, «a=0.3, and 5= «/2=0.15.

A practical problem arises for the dimensionless quantities
o and op. On the one hand, their definitions mean that they are
physically restricted to the interval [—1, 1], while on the other
hand there is nothing in the equations governing their
evolution, Equations (Al) and (A2), to strictly enforce this
property. Hence the integrator procedure was set to clamp them
within the interval [—0.98, 0.98] at the beginning of each
integration step. Even with such clamping, the Epui driving in
the length scale Equations (A4) can be computationally
problematic as it grows very large for |o.| near unity. This is
seen to typically occur at or close to the bow shock, see the
corresponding panel in Figure 1. We have therefore disabled
the Epui terms beyond the HP by augmenting them with a step
function factor, H( — V), that is zero in the ISM, where the
scalar tracer ¥ > 0; see Equation (10). This can be justified by
noting that the focus of the present paper is on the inner
heliosheath, not the outer, and that these regions are separated
by the impenetrable HP, whose position (and shape) are not
noticeably influenced by small-scale quantities.

4.1. Simulation Results

Figure 4 shows cuts along the meridional (¢ =0) and
equatorial (9 =7/2) planes for the turbulence quantities 7,
A, Lp, 0., and op after convergence to a steady-state is
attained. Together with the analytical formulation of the six-
equation model itself, this figure represents the central result of
our study.
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Figure 2. Radial profiles of turbulence quantities Zi, D, A+, \p, 0., and op, as a function of the Sun-centered radial position in au. Dashed curves have been obtained
by solving the the 1D set of Equations (44)—(47) for values ranging from v = 0 (green) to v = 90° (red) in steps of 15°. The solid thick blue curve, which coincides
exactly with the v = 45° 1D radial model curve, shows the time-converged solution obtained from solving the 3D set of Equations (A1)-(A5), subject to boundary
conditions as listed in Table 3. As Ap can be negative, it is shown both with a linear and a logarithmic scaling.

The images for Z* reveal substantial magnitude variations
and structuring, although these features are much reduced
inside the HP. The low ISM levels increase significantly within
~10 au of the HP, and Z* tends to be largest near and
somewhat inside the HP and toward the TS and further inward.
Moreover, inside the HP (and for » < 150 au) the variations
with ¢ and 9 are relatively weak, except that there is an
extended equatorial zone where Z* is only a fraction of the
polar levels, reminiscent of the solar wind inside the TS. This

11

correlation between low /high Z> and (radial) wind speed is
present in the inner boundary conditions and is thus seen to
persist out to the HP. Overall this behavior is similar to that
obtained with both our three-equation model (Section 2.4) and
the Usmanov et al. (2016) model. However, there are certainly
differences, as one should expect in view of the refined
turbulence modeling, e.g., different length scales for the
different turbulence components, and the single-fluid versus
multifluid approaches.
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Figure 3. Profiles for number density n (left), radial velocity U, (middle), and temperature T (right) as a function of the colatitude 1) as used for the inner boundary

conditions at 0.3 au.

The simulated o, values found in the THS are rather small (in
fact often consistent with zero and so again consistent with
Usmanov et al. 2016), indicating roughly equal amounts of Ziz.
Between the HP and the bow shock much higher values of |o|
are seen, sometimes close to extremal, indicating near
dominance of one of Z7 or Z2. One should however keep in
mind that the overall turbulence level (Z%) is typically much
lower in these regions. As already noted, because the model
equations do not enforce |o.| <1, we artificially clamp o,
within [—0.98, 0.98] to ensure continued numerical comput-
ability. In particular, there are regions near the bow shock
where the lowest threshold of —0.98 is maintained only by this
clamping, even in the converged stationary state. This suggests
that future investigations similar to ours but targeting the OHS
will need to find ways to self-consistently ensure physically
reasonable bounds for o, are obeyed.

Regarding o, we see that inside the HP it is negative almost
everywhere. In the upwind IHS, o, exhibits relatively little
variation, typically maintaining values around —0.2 or even
closer to zero. Elsewhere, op can be close to its minimum of
—1, indicating dominance of magnetic fluctuation energy, as
seen on the flanks of the HP. This is further evidence that the
simplification o, = constant (e.g., —1/3)—as often used inside
the TS and, in particular, also in the only other model studying
the turbulence evolution in a “realistic” heliosheath (Usmanov
et al. 2016)—is probably inappropriate to use when larger
volumes of the heliosphere are considered. This was already
found in “inside the TS” studies (Adhikari et al. 2015, 2017,
Shiota et al. 2017), as well as for our six-equation model of the
inner heliosphere analyzed in Section 3.5.

Beyond the HP, especially in the upwind direction, there are
large regions where op >0, indicating “excess” fluctuation
kinetic energy. The spatial variation of op can be understood as
a consequence of the piled-up magnetic field, which, via the
Alfvénic speed, decreases the timescale 7p, thereby making
damping locally less efficient. However, as already noted in
connection with the o values, one should keep in mind that the
turbulence amplitude in these regions is very small and not of
any significance to the behavior inside the HP.

Another set of interesting and currently unexplained features
are the pronounced regions of low op emanating from both
ecliptic triple points and the meridional downwind part of the
Mach disk. We note, however, that these could also be an
artifact of the one-fluid approach, given that the Mach disk, and
hence also the triple point, tends to be more rudimentary or
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even completely absent in multifluid models of the global
heliosphere. (For a more general discussion of the Mach disk
and the associated triple points, see, e.g., Scherer et al. 2020).

Finally, the new six-equation model also allows the
consideration of Lp and the Elsdsser length scales, .,
separately and in detail for the entire heliosphere and the local
ISM. This extends other studies in which these three quantities
were also distinguished (Adhikari et al. 2015, 2017; Shiota
et al. 2017). In those earlier works, however, the computational
domain was restricted to lie well inside the TS and be either
spherically symmetric with only radial variations, or support
latitudinal variations but with the outer boundary at 6 au.

Roughly speaking, L, is tiny in the ISM ahead of the bow
shock, and larger, although still small compared to L., around
and inside the HP. Sunward of the bow shock, A\, tend to
increase with the heliocentric distance and to be the largest
(~10 au) between the bow shock and the HP. As it might have
been anticipated for regions with o.~0, inside the HP
A~ A_. For a given r inside the HP, the Elsdsser length
scales do not vary strongly with either ¢ or 9.

We have also performed simulations with substantially
different outer (ISM) boundary conditions. For example, using
A=1lavorZ>=1(kms "% respectively, 2000 times smaller
and 100 times larger than the values listed in Table 3. Such
changes make very little difference to the location of the HP
and indicate the weak impact of the ISM fluctuations on the
behavior inside the HP.

5. Summary

We have constructed a refined model describing the
evolution of (incompressible) turbulence in the entire 3D
heliosphere, including the region beyond the TS up to the HP,
i.e., in the IHS. The turbulence evolution is self-consistently
coupled to the large-scale solar wind and the ISM, with these
evolved using compressible one-fluid 3D MHD.

In this first generalization, with respect to the turbulence
description, of the approach employed by Usmanov et al.
(2016) several extensions have been implemented. In addition
to following the Elsidsser energies, we have (i) allowed the
residual energy to self-consistently evolve instead of keeping it
at the “traditional” value of —1/3 and (ii) allowed for distinct
length scales for each of these three quantities. While the
nonlinear effects in the equations for the Elsisser energies and
their length scales are implemented using well-known
von Kdrman—Howarth style modeling of homogeneous MHD
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Figure 4. Turbulence quantities 72, 0e, Opy Mg, and |Lp|. In each case, the top panel (rows 1 and 3) shows a meridional (¢ = 0) cut through the computational domain,
and the bottom panel the corresponding equatorial (¢ = 7/2) cut. White circles indicate the computational inner boundary (80 au), and the thick black lines mark the
HP. In the o, and op plots dashed lines indicate zero-level contours. The position of the TS is seen most clearly in the op and Lp panels. The bow shock lies outside
the shown regions; in the upwind direction it is at r =~ 400 au.

turbulence, the energy difference (not conserved in the absence we invoke damping toward zero on an Alfvénic timescale (due
of dissipation) and its length scale are modeled using distinct to the Alfvén effect) and for D employ an additional always
phenomenological approaches. In particular, for both D and Lp negative “source” term associated with the energy cascade rate.
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Another difference to earlier modeling approaches concerns
the local turbulence geometry. We clarified the impact of the
choice of measurement direction 7 for correlation functions
associated with 2D fluctuations in transport models and
introduced a coordinate-independent description via an aver-
aging procedure.

We have, first, related the quantitative findings obtained with
the resulting six-equation model to those of previous studies as
well as to observational data provided therein. While for the
supersonic solar wind region, to which those studies were
limited, we found some differences in radial profiles—mainly
as a consequence of the differences in the turbulence modeling
—our results appear to be compatible with the spacecraft data.

Second, after this validation, we illustrated and studied the
solutions of the resulting six-equation model for the three-
dimensionally structured outer heliosphere in detail. For the
Elsisser energies and their length scales we predict behavior
that is similar to that found by Usmanov et al. (2016) and for
the cross helicity we also obtain rather low values. For the
newly computed nonconstant residual energy we predict values
mostly below zero in the IHS. In the upwind IHS typical values
of op are around —0.15, while at the flanks of the HP they
decrease close to the minimum possible value of —1, indicating
a dominance of magnetic fluctuations there. These deviations
from the often used value of —1/3 make it obvious that the
latter approximation is difficult to justify for the IHS. Finally,

Kleimann et al.

in the THS the associated length scale (\p) remains significantly
shorter than those of the Elsésser energies.

We anticipate that the presented model and its predictions
may be of use in other space and astrophysics applications. For
example, it may serve as a basis for future analogously refined
modeling of the main transport parameters of cosmic rays in the
outer heliosphere. Their spatial diffusion and drift both depend
on the fluctuation levels of the various turbulence components
as is discussed and quantitatively illustrated in, e.g., Wiengar-
ten et al. (2016). In particular, the variation in the residual
energy D (or, equivalently, in the Alfvén ratio) can be expected
to have a significant impact. Future activities should also
comprise a self-consistent incorporation of compressible
fluctuations as well as an investigation of the effects of
disturbances propagating through the IHS.
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Appendix A
Conservative Form of the Six-equation Model

Here we list the y-averaged versions of the turbulence transport Equations (23)—(26) in conservative form, using 72 and H. instead
of ZZ2. This form has the advantage that the only gradients of turbulence variables that need to be evaluated are the divergences on the
left hand sides of each equation. Additionally, the identities expressed in Equations (29) and (30) have been used, enabling
elimination of all occurrences of (3(U)), and (3(B)), after use of Equation (39). In Equations (A1) and (A4), the final term involves

the Heaviside step function H( - ), which acts to restrict the pickup ion driving to the region inside the HP:

2 ) |
% V22U -HV) = 2P vy —omw vy T - B LB HCw), D
%‘FV-[HCU—ZZVA]: %(V.U)_ZZZ(V'VA)'FDF(VA)— %LZJ’ .
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Appendix B
Special Case: Reduction to a Single-length-scale Model

Under appropriate conditions the six-equation transport model reduces to the three-equation model of Section 2.2; see the
paragraph following Equation (30). The ensuing equation for the single length scale A (=A, = A_ = \p), Equation (13), is repeated
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here for convenient reference,

% +U-VA—0.Vao-VA =dop[V - U -250U) — T'(U)] = 6Zf (o) — %Epui. B
o

crosshelicity mixing

This is present implicitly in Matthaeus et al. (1994) and is essentially Equation (10) in Wiengarten et al. (2016), after setting their
wave-like component to zero for comparison with a single-component model (and with allowance for notation changes). See also
Matthaeus et al. (1996). However, in some works the full Equation (B1) has not been employed, with one or both of the
underbracketed terms missing. Here we discuss some reasons why these terms might be absent.

The first of these terms, —o.V - VA, arises in connection with linear transport effects. Its form is independent of any specific
modeling approach associated with imposed or approximated fluctuation symmetries (e.g., structural similarity, exact tensor
structure). Thus, we argue that it should in general be present when terms of O(V,) are retained. Some single-length-scale SW
transport models that retain many of the O(V,) terms nonetheless omit the O(V,) term of Equation (B1) from their length scale
evolution equation (e.g., Zank et al. 2012a; Wiengarten et al. 2015; Usmanov et al. 2016).

Papers that lack the term labeled “mixing” appear to do so because of assumptions or errors connected with the structural similarity
approximation. To illustrate consider a correlation tensor R;;({) = (v;(x)v;(x + ¢)), with ¢ being the vector lag. The direction of ¢ is
unrestricted, although for a specific symmetry of the turbulence (e.g., 2D) some directions may not provide much information.

In general, the tensor structures of (i) the variance matrix R;(0) and (ii) the lag-integrated correlation tensor L,-j(a’ ) = fo > R;(¢) d¢

differ, and in particular they do so for both isotropic turbulence and axisymmetric 2D turbulence (Batchelor 1970; Matthaeus et al.
1994). This was incorrectly accounted for in Breech et al. (2008) with an error associated with integration of their Equation (17)
causing complete (but erroneous) cancellation of the mixing terms in their \ equation;'' the equations for Z* and H, were unaffected
by the error. Unfortunately this omission propagated into some later papers (e.g., Oughton et al. 2011; Usmanov et al. 2011, 2016). A
related issue arises in Zank et al. (2012a), who employed a structural similarity approach to approximate both R;(0) and L;; as being
proportional to §; — 7;7;, for a suitable choice of the unit vector 7. This is problematic in that the tensor structures of R;(0) and L;; are
then the same, rather than different (assuming the same 7 is used in both). With their choices for the proportionality constants, this
approach also leads to cancellation of the mixing terms in (their equivalent of) Equation (B1). The same issue is present in
Wiengarten et al. 2015.

Note that it is possible for the mixing term in Equation (B1) to vanish because of an “internal cancellation” of its contributing
pieces. For example, when the large-scale SW speed is approximated as uniform and constant, i.e., U = Uf—as considered in, e.g.,
Breech et al. (2008), Adhikari et al. (2015), and Section 3.5—this mixing term is

aop Lisin? - 261 771 = Aop (1 — 2sin® y]sin (B2)
r r

This is zero when = 7/4; see Equation (34). For general SW velocities the mixing term can be made to vanish by averaging

Equation (B1) over all angles ~y (i.e., over all directions 72 L. B). See Section 3.3 and Equation (39) in particular.
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