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ABSTRACT

The complexity of magnetic flux surfaces is investigated analytically and numerically in static homogeneous
magnetic turbulence. Magnetic surfaces are computed to large distances in magnetic fields derived from a reduced
magnetohydrodynamic model. The question addressed is whether one can define magnetic surfaces over large
distances when turbulence is present. Using a flux surface spectral analysis, we show that magnetic surfaces
become complex at small scales, experiencing an exponential thinning that is quantified here. The computation
of a flux surface is of either exponential or nondeterministic polynomial complexity, which has the conceptual
implication that global identification of magnetic flux surfaces and flux exchange, e.g., in magnetic reconnection,
can be intractable in three dimensions. The coarse-grained large-scale magnetic flux experiences diffusive behavior.
The link between the diffusion of the coarse-grained flux and field-line random walk is established explicitly
through multiple scale analysis. The Kubo number controls both large and small scale limits. These results have
consequences for interpreting processes such as magnetic reconnection and field-line diffusion in astrophysical
plasmas.
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1. INTRODUCTION

Magnetic flux surfaces afford familiar descriptions of spatial
structure, dynamics, and connectivity of magnetic fields, with
particular relevance in contexts such as solar coronal flux
tubes (Parker 1979; Kopp & Pneuman 1976; Wang & Sheeley
1990), magnetic field connectivity in the interplanetary and
interstellar medium (Bruno et al. 2001; Borovsky 2008; Wright
& Berger 1989; Crutcher 1991; Subramanian 1998; Zimbardo
et al. 2004), and magnetic reconnection (Sweet 1958a, 1958b;
Parker 1963; Petschek 1964), as well as in laboratory plasmas
and dynamo problems (Rosenbluth et al. 1966; Zaslavskii &
Chirikov 1972; Brandenburg & Subramanian 2005). Typical
models assume that field lines are orderly and flux tubes remain
identifiable over macroscopic distances; however, a previous
study has shown that flux tubes shred in the presence of
fluctuations, typically losing identity after several correlation
scales (Matthaeus et al. 1995). Here, we quantify the growth of
distortions of flux surfaces with increasing distance for a specific
model, demonstrating both exponential scaling of the smallest
features, and diffusive mixing at larger scales. These features
mandate revision to models based on simple laminar flux tubes:
it becomes exponentially more difficult to identify flux tubes
over macroscopic distances. This has conceptual implications
for magnetic reconnection theory and numerous astrophysical
applications.

To frame the topic, we begin by pointing out related problems
that are not addressed herein. First, we are not discussing
either the dynamics of field lines, a notion that becomes
poorly defined in the presence of nonideal effects including
reconnection (Eyink et al. 2013), or the related problem of the
time development of magnetic connectivity (Rappazzo et al.

2012). Second, we are not specifically concerned with the very
short distance behavior of field lines and flux surfaces; in this
regime one may find superdiffusive behavior akin to turbulent
“Richardson diffusion,” or exponential separation of trajectories
at small separations (Zaslavskii & Chirikov 1972). Finally,
we do not address similar concepts of relevance in laboratory
plasmas, such as “good” and “destroyed” flux surfaces and
Kolmogorov-Arnold-Moser (KAM) surfaces that emerge in a
bounded volume with toroidal periodicity (Rosenbluth et al.
1966). The focus here is on statistically homogeneous non-
periodic astrophysical systems for which many elegant theorems
that hold for the periodic toroidal case are not relevant.

Our concern is the magnetic field at a single instant of time in
the presence of broadband turbulence as expected in astrophys-
ical systems. By addressing the defining characteristic of flux
tubes, this study addresses the underpinnings of numerous so-
lar, heliospheric, and astrophysical applications. The topology
of any magnetic field can be described in terms of magnetic sur-
faces, which are everywhere tangent to the field vector (Parker
1979). To construct these, begin with an arbitrary smooth closed
contour C and a static magnetic field B(x). Transport every line
element on C along the local direction of B to generate a sur-
face S. Any topologically similar contour C ′ lying on S defines
the edge of an open surface S ′. Application of Gauss’s law and
∇ · B = 0 shows that the magnetic flux Φ = ∫

S ′ n̂ · B d2x
(where n̂ is an oriented unit vector normal to S ′), is the same
for all S ′. This defines the “flux tube” S, a surface tangent
to the magnetic field, labeled by a value χ , which may be
viewed as itself transported along the field. A family of flux
tubes is defined by a nested set of coplanar contours C(χ ), for
a continuous flux label χ . These basic constructs describe flux
tubes, flux ropes, magnetic connectivity, and magnetic topology.
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The limit Φ → 0 produces a zero-volume flux tube, coinciding
with a magnetic field line. Any flux function χ satisfies the flux
surface differential equation B · ∇χ = 0, which forms the basis
of our analysis below.

2. BACKGROUND AND NUMERICAL EXPERIMENT

To examine the spatial complexity of χ (x, y, z) in the
presence of turbulence, we adopt a specific magnetic field
model, B = B0 + b, where B0 = B0̂ z is a uniform mean field
and b is the fluctuating component. Anisotropy associated with a
strong mean magnetic field (Shebalin et al. 1983; Oughton et al.
1994; Bigot et al. 2008) is of substantial importance in space
and astrophysics (Zank & Matthaeus 1992b; Bieber et al. 1994;
Goldreich & Sridhar 1995). To capture this effect, we employ a
reduced magnetohydrodynamic (RMHD) model (Strauss 1976;
Montgomery 1982; Zank & Matthaeus 1992a), a nonlinear
model valid when the normalized fluctuation amplitude δb/B0 is
a small parameter. Here, δb is the rms strength of the fluctuations
b. The total magnetic field is written as

B(x, y, z) = B0̂ z + ∇⊥ × ẑa(x, y, z), (1)

where ∇⊥ = (∂/∂x, ∂/∂y), and the magnetic potential a varies
in three Cartesian directions, but only slowly with z. The RMHD
model incorporates both variance anisotropy, i.e., b · B0 = 0,
and spectral (or correlation) anisotropy, in that ∂/∂x ∼ ∂/∂y �
∂/∂z. This magnetic field is weakly three dimensional (3D) and
is sometimes classified as “Alfvénic turbulence,” because the
polarization is reminiscent of linear Alfvén waves, or “quasi-
two-dimensional,” because the wavevectors are mostly within a
small angle of the (x, y) plane.

For a uniform mean magnetic field with transverse fluctua-
tions, the flux surface equation, B · ∇χ = 0, becomes

∂χ

∂z
+

b
B0

· ∇⊥χ = 0. (2)

Equation (2) is of the same form as an ideal two-dimensional
passive scalar equation (Matthaeus et al. 1995; Kadomtsev &
Pogutse 1979), with correspondence of ∂/∂z with a (slow) time
derivative, and of b/B0 with a two-dimensional incompressible
velocity field. In analogy with passive tracers (Matthaeus et al.
1995), we expect flux surfaces to become increasingly “mixed”
and complex with increasing z, even when the boundary data
on χ , say at z = 0, are smooth. We now quantitatively describe
this development of spatial complexity.

To analyze flux surfaces we specify B everywhere, choose
a flux function χ (x, y, z = 0), and then solve Equation (2)
for increasing z. To obtain b we perform a series of direct
numerical simulations of RMHD turbulence, with resolution
10243, extracting the data at the time of peak nonlinear activity
(after ≈ one nonlinear time). Details on the code can be found
in Oughton et al. (2004). The domain is Lx = Ly = 2πL0, and
Lz = 9Lx . The dimensional wavevectors may be written as k =
(mx/L0,my/L0,mz/(9L0)) for integer triplets (mx,my,mz).
Initial conditions consist of a random phased superposition
of Fourier modes for the magnetic and velocity fields, in the
(dimensionless) wavenumber band 4 �

√
m2

x + m2
y � 150

and |mz| � 25. The total fluctuation level is δb = 1. The
perpendicular and parallel correlation lengths for b, computed
as the integral of its correlation functions, are �⊥ = 0.088 L0 and
�z = 0.615 L0, respectively, where L0 is a characteristic length.
Note that the derivation of the RMHD dynamical equations

Figure 1. Flux function χ (x, y, z) at two distinct altitudes z̃ = z/�z, namely,
z̃ = 0.4 and 9.4. Two groups of field lines, starting from different topological
regions, are also shown. Smooth initial flux tubes become complex, developing
finer scales.

(A color version of this figure is available in the online journal.)

requires that B0 � δb, while the parallel and perpendicular
derivatives are ordered such that B0(∂/∂z) ∼ b · ∇⊥. In
code units, the lengths and mean magnetic field are rescaled
consistent with the latter relation.

To solve Equation (2), we employ a separate fully de-aliased
(2/3 rule) pseudospectral code, with fourth-order Runge–Kutta
integration along z. Smooth boundary data are specified as
χ (x, y, z = 0) ∼ cos x cos y, on a N2 = 10242 Cartesian
collocation grid.

In the diagnostics presented here, the value of B0 is varied in
order to explore different Kubo numbers:

R = δb

B0

�z

�⊥
, (3)

specifically cases with R = 0.116, 1.16, and 11.6.
It is well established that statistical transport properties of

flux surfaces and field lines are regulated by the Kubo number
(Kadomtsev & Pogutse 1979; Isichenko 1991). Organization of
transport effects according to Kubo number has proven useful
in various studies, for example, the small pitch angle cross
field diffusion of cosmic rays (Hauff et al. 2010) and field-line
separation effects on electron heat transport in coronal loops
(Bitane et al. 2010). In the present context it is readily apparent
from examination of Equation (2) that the Kubo number is the
only parameter that enters in an RMHD description of flux
surface transport (as well as the magnetic field-line random
walk; see also Ruffolo & Matthaeus 2013).

Figure 1 shows cross-sections of the flux function for R =
1.16 at two distinct altitudes z̃, where z̃ = z/�z is the nor-
malized parallel coordinate. Tracing the magnetic surface(s)
along z̃, a dramatic increase in complexity is observed. This
effect was previously described as a qualitative context for de-
velopment of nonlinear theories of magnetic field-line random
walk (Matthaeus et al. 1995) and of perpendicular diffusion of
charged particles (Matthaeus et al. 2003). Here, we will de-
scribe the phenomenon quantitatively, with refined techniques
and more detailed analysis of the RMHD magnetic fields.
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Figure 2. Top: spectrum Eχ of the magnetic flux function χ , for R = 1.16,
at several z̃. An exponential fit is plotted with dashed (black) lines. Bottom:
smallest excited scale of the system δ, as function of z̃, for several Kubo numbers
R. An exponential fit is plotted with dot–dashed lines. The horizontal dashed
(gray) line represents the Nyquist scale.

(A color version of this figure is available in the online journal.)

3. SMALL-SCALE ANALYSIS

Figure 1 shows that at larger z̃, a small amount of “thermal-
ization” develops at small scales (Wan et al. 2009), associated
with limited resolution. To quantify and control this effect, we
introduce measures of numerical accuracy based on the ex-
act conservation laws implied by Equation (2). A useful sub-
set is the set of Casimir invariants A{n} = ∫

dx dy χn(x, y, z̃)
with n = 2, 4, 6, . . ., which are independent of z̃ according to
Equation (2). Due to the accuracy of the spectral method, the
fractional errors of these invariants are ∼10−8 when we carry out
most analyses shown here, and ∼10−2 for the larger z̃ analyses
shown.

To evaluate complexity in the magnetic flux function, it is
useful to compute its power spectrum Eχ (k⊥, z̃) = |χ̂(k⊥, z̃)|2,

where k⊥ =
√

k2
x + k2

y , and χ̂ is the Fourier decomposition of
the flux function. Finer scale structures in χ produce higher
wavenumber Fourier components. Figure 2(a) shows the χ
spectra at several values of z̃, for the case with Kubo number
R = 1.16. Emerging complexity is seen in the increased
amplitudes at high wavenumber at larger z̃. To quantify this,
at high k⊥ we fit the χ spectra to an exponential

Eχ (k⊥, z̃) ∼ e−2δ(z̃)k⊥ , (4)

thus defining a measure of the smallest excited scale δ(z̃) (Frisch
et al. 1983). As shown in Figure 2(a), the fit is confined to scales

well-separated from both large (energy-containing) scales, and
the smallest (thermalizing) scales.

Theoretical discussion based on an exponential form of the
spectrum has been employed previously, in the study of current
sheet thinning in ideal MHD (Frisch et al. 1983), and in the
examination of possible finite time singularities in turbulence
(Brachet et al. 1983, 2013; Sulem et al. 1983; Rappazzo &
Parker 2013). The scale δ is interpreted as the distance in the
complex plane to the nearest singularity. A systematic decrease
of δ is suggestive of an approach to a real singularity (Brachet
et al. 1983, 2013).

Here, we computed the decrease in δ(z̃) with increasing z̃,

δ(z̃) ∼ e−γ z̃, (5)

and find approximately exponential behavior, with γ > 0, until
accuracy becomes questionable at larger z̃. This is illustrated
in Figure 2(b), which also shows the smallest physical resolved
scale (Nyquist scale) Δmin = 1/(2kmax), where kmax = N/3 is
imposed by the de-aliasing procedure. The exponential fit in
Equation (5) captures well the thinning of δ with increasing z̃.
Evidently the Kubo number is the controlling parameter, and
γ = γ (R). For the cases shown, with R = 0.116, 1.16, 11.6,
we obtained γ ∼ 0.02, 0.33, 3.3 (in units of �z). We will return
to this point later.

In principle, of course, use of greater spatial resolution
might extend this range of exponential decrease. Adequate
spatial resolution at large distances z̃ requires that a maximum
wavenumber kmax be retained in the computation of χ such that
kmax(z̃)δ(z̃) > 1, or equivalently that the number of required
Fourier modes scales as N2 ∼ exp (2γ z̃). Note that the flux
surface equation is fundamentally ideal, so there is no physical
basis for adding small diffusivity to the rhs that would alleviate
this requirement.

From the point of view of computability, unless a simplifica-
tion is found, the problem of computation of flux surfaces would
be placed in the class of exponential complexity, which describes
formally intractable problems (Mertens 2002). Alternatively, it
is possible that a simplified strategy might be found that al-
lows the computation to be performed using a nondeterministic
polynomial (or NP) approach, possibly requiring nonclassical
computation (e.g., through exponential parallelism).

The difficulty in accurate computing of flux tubes over
extended distances has conceptual implications. For example
(Schindler et al. 1988; Yamada et al. 2010), there are two main
approaches in defining the magnetic reconnection problem: one
considers the global flux exchange between topologically dis-
tinct families of flux surfaces, indicated by the presence of an
electric field along a separator that divides the families. Alterna-
tively, reconnection may be defined locally, as the local break-
down of the ideal MHD frozen-in property. While the global
definition may be criticized on other grounds (Schindler et al.
1988), our analysis suggests that the identification of families
of flux surfaces—a requisite condition for the global definition,
may be formally intractable in 3D. Therefore, the global char-
acterization of reconnection may not always be realizable in a
3D turbulent magnetic field, as the distinct families of surfaces
may extend beyond the limit of computability.

4. LARGE-SCALE ANALYSIS

At this point we establish a link between the large-scale
complexity of flux surfaces and the theory of field-line random
walk (Jokipii 1966; Jokipii & Parker 1968; Matthaeus et al.
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1995; Shalchi & Kolly 2013; Ruffolo & Matthaeus 2013;
Zimbardo et al. 2004), which is expressed in terms of individual
magnetic field-line trajectories. It is useful to proceed using
a multiple scale analysis (Frisch 1987; Biferale et al. 1995), in
which the diffusion is expected at perpendicular scales �∗ � �⊥,
which are large compared to the perpendicular correlation scale.
Accordingly, we define ε = �⊥/�∗, and introduce slowly
varying in-plane spatial scales η = (ηx, ηy) to complement
the “fast” variation at scale x = (x, y), and similarly a slow
scale ζ in the z direction to complement the fast variation
of the coordinate z. Treating the coordinates as independent,
we expand the flux function as χ (x⊥, z) → χ (x, η, z, ζ ) =
χ (0) + εχ (1) + ε2χ (2) + ε3χ (3) + . . ., where all quantities may
depend formally on x, η, z, and ζ . An averaging operator 〈· · ·〉
is introduced, such that for any F the mean (or coarse-grained)
value 〈F (x, η, z, ζ )〉 varies at the slow scales η and ζ only. Thus,
for example, χ = 〈χ〉+χ ′ and the fluctuation χ ′ has a vanishing
average value.

Treating slow and fast variables as independent (Nayfeh
1973), we substitute a diffusive ordering of parallel and per-
pendicular scales, ∇⊥ → ∇x + ε∇η and ∇z → ∂z + ε2∂ζ , into
Equation (2) to obtain

(
∂z + ε2∂ζ

)
χ + b/B0 · (∇x + ε∇η

)
χ = 0.

Inserting the expansion of χ and equating to zero the sum
of coefficients of like powers of ε, we find at O(ε0) that
∂zχ

(0)′ + b/B0 · ∇xχ
(0)′ = 0. This is a linear homogeneous

equation (lacking sources) and therefore, if at some plane (say
z = 0) the leading-order flux surface function χ (0) lacks small-
scale structure, then χ (0)′(z = 0) = 0. This property will per-
sist in z as long as the perturbation expansion remains valid.
Consequently, we may specify that χ (0)′ = 0.

At O(ε) we find the equation ∂zχ
(1) + b/B0 · ∇xχ

(1) =
−b/B0 · ∇η〈χ (0)〉. The term on the right-hand side (rhs) acts as
a source in the Lagrangian frame, and ∇η〈χ (0)〉 is a constant
relative to integration in the fast variable z. To solve, we
integrate along Lagrangian characteristics to find χ (1) = −q ·
∇η〈χ (0)〉 + C, where C is a constant of integration and q =∫ z

0 dz′ b(x(z′), z′)/B0. Note that the quantity q is precisely the
transverse displacement Δx(z) of a field line after traveling
a distance z along B0, computed from solving the field-line
equation dx(z)/dz = b/B0. This reflects the fact that χ is
constant along field lines.

The full O(ε2) equation (not shown) contains some terms that
are rapidly varying; their sum must be set to zero as a solvability
condition. The remaining (slow) O(ε2) terms imply that

∂〈χ (0)〉
∂ζ

+
∂

∂ηi

〈biχ
(1)〉

B0
= 0. (6)

Inserting the above solution for χ (1), this becomes

∂〈χ (0)〉
∂ζ

= ∂

∂ηi

[
DS

ij

∂〈χ (0)〉
∂ηj

]
(7)

with

DS
ij =

∫ z

0
dz′ 〈bi(x(z), z) bj (x(z′), z′)〉

B2
0

. (8)

Equation (7) is a standard diffusion equation at slow (i.e., large)
scales, as anticipated, while DS

ij has the standard form of a
Green–Kubo–Taylor diffusion tensor. Note that we may write
the trace as DS = T r(DS

ij ) = 〈b(x(z), z) · q(x(z), z)〉/B0 =
〈dΔx(z)/dz · Δx(z)〉 = (1/2)(d/dz)〈|Δx(z)|2〉. The last term
is explicitly equivalent to the trace of the diffusion coefficient
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Figure 3. Large-scale Fourier mode of χ vs. z̃, for different R. The exponential
fit (dashed black lines), consistent with Equation (9), determines the values D̃S .
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(A color version of this figure is available in the online journal.)

for a random walk of individual field lines, which we designate
as DL.

For axisymmetric turbulence transverse to z, in standard
coordinates, we arrive at the diffusion problem

∂〈χ〉
∂z

= DS∇2
⊥〈χ〉 (9)

for the coarse-grained flux surfaces 〈χ〉. A numerical experiment
is readily constructed to evaluate the flux surface diffusion
coefficient DS, which can be compared with the (formally
equivalent) field-line diffusion coefficient DL (computed from
Lagrangian integration of an ensemble of 5000 magnetic field
lines). The mean flux surface function 〈χ〉 is conveniently
defined as the large-scale band-limited boundary data at z̃ = 0.
Here, the wavenumber of the “initial” data for χ satisfies
k̃�
⊥ = k�

⊥�⊥ = �⊥/�� � 1, as required. With increasing z̃,
spectral excitation of χ spreads to higher k⊥, as seen in Figure 2.
Consequently, the initially excited Fourier modes “decay”
and, according to Equation (9) one should find |χ̂(k̃�

⊥, z̃)| ∼
exp (−k̃�2

⊥ D̃Sz̃). Figure 3 indicates that the large-scale mode χ̂
decays exponentially, as expected, for several Kubo numbers.
From this exponential fit, values of DS are obtained, and
compared to the empirical field-line diffusion coefficients DL.
The table in Figure 3 shows good agreement between the two
approaches, with the greatest error at ∼4%.

5. CONCLUSIONS AND DISCUSSION

In conclusion, we have quantified the complexity of magnetic
flux surfaces computed at a single instant of time in anisotropic
reduced MHD. The stretching of flux surfaces generates small-
scale structure, and the perpendicular wavenumber spectrum of
the flux function is well fit by an exponential ∼ exp [−2δ(z)k⊥]
in k⊥ (see Equation (4)), in which the scale δ(z) is empirically
determined to itself decrease approximately as an exponential:
δ(z) ∼ exp [−γ (R)z]. Our results suggest that the thinning
distance 1/γ is ∼ the parallel correlation scale when the
Kubo number ∼1 (consistent with Matthaeus et al. 1995).
With this scaling, flux surfaces may become complex over
scales ∼10−2 AU in the solar wind, and ∼35,000 km in the
corona (Zimbardo et al. 2004). Under these conditions, accurate
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computation of flux surfaces falls into a very difficult class
(at best, NP) of problems.

It is tempting to associate the exponential thinning of flux sur-
faces observed here with local stochastic instability (Zaslavskii
& Chirikov 1972; Isichenko 1992). However, in our numerical
experiments, the exponential thinning of the smallest flux struc-
tures occurs (see Figures 2 and 3) in the same ranges of distance
as does the diffusive behavior of the large-scale flux function.
Thus field-line wandering, and presumably field-line separation,
is algebraic, and not exponential. The often-encountered sugges-
tion of “exponential separation of field lines” apparently is not
occurring here. This notion has also been questioned previously
for multi-scale magnetic turbulence (Ruffolo et al. 2004; Ragot
2008) such as is employed here. In these cases the linearization
associated with computation of Lyapunov exponents is likely
not applicable (e.g., Klyatskin 2008) at any but the shortest dis-
tances. A possible reconciliation of these ideas might be found
in a reconsideration of the spread of magnetic flux, as illus-
trated, for example, in the “area mapping” cartoon of Rechester
& Rosenbluth (1978). As the distribution becomes more com-
plex, the shortest distance between any two fixed points (field
lines) on the distribution may increase algebraically. However,
the distance between the same two points measured along the
distribution of flux may increase exponentially, as the flux struc-
tures stretch exponentially.

We have also shown how the ideal, nondissipative problem
of flux surface transport is transformed into a diffusion prob-
lem by coarse-graining and utilizing methods of multiple scale
analysis. The Eulerian approach given by coarse-grained mag-
netic flux is in good agreement with the Lagrangian field-line
diffusion coefficient, providing a novel approach to the study of
magnetic complexity. Moreover, both large-scale diffusion and
small-scale thinning appear to be controlled by the Kubo num-
ber. These results have consequences for understanding and
interpreting processes with wide-ranging astrophysical impli-
cations such as magnetic reconnection, field-line diffusion, and
particle transport in solar, heliospheric, and galactic plasmas.
Extensions to related time dependent problems (Rappazzo et al.
2012; Eyink et al. 2013), will be deferred to future work.
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