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ABSTRACT

We investigate the non-linear evolution of Alfvén waves
in a stratified corona with wind, from the base out to the
Alfvénic point, where the wind speed equals the veloc-
ity of the waves. We consider both an isothermal corona,
with spherically expanding flux tubes, and the more re-
alistic case of a corona and wind where the flux-tube ex-
pansion is supraspherical and the temperature peaks at
about3 R⊙ and then falls off. Nonlinear interactions,
triggered by wave reflection due to the atmospheric gra-
dients, are assumed to occur mainly in directions perpen-
dicular to the mean magnetic field. The nonlinear cou-
pling between waves propagating in opposite directions is
modeled by a phenomenological term, containing an inte-
gral turbulent length scale. Low frequency waves, which
suffer the strongest reflection, drive dissipation for waves
across the whole spectrum; lower coronal temperatures,
by increasing density gradients and therefore reflection,
also enhance the dissipation rate. We find also that for
typical coronal gradients, the power-law index of a wave-
spectrum does not change much from the coronal base to
the Alfvén point.

1. INTRODUCTION

One of the most promising mechanisms for heating the
open solar corona is the development of MHD turbulence
driven by the reflection of Alfvén waves.
The presence of MHD waves inside the solar corona has
been proved indirectly by measurements involving Fara-
day rotation at distances of∼ 8R⊙ from the sun’s surface
(Hollweg et al., 1982), while much farther away “in situ”
measurement of magnetic and velocity field fluctuations
from Helios and Ulysses have revealed a broad devel-
oped spectrum for frequencies ranging from10−4 Hz to
10−2 Hz (for the fast component of the solar wind). Typ-
ically, a strong correlation between magnetic field and
velocity fluctuations in this distance range persists (Man-
geney et al., 1991). At intermediate distances (from 10 to
40 solar radii) ground based radio scintillation measure-
ments using radio sources (Scott et al., 1983) have shown
velocity field fluctuations to increase together with bulk
flow speed (both around∼ 200 km/s) but data on corre-
lated magnetic field fluctuations are still missing. More-
over, if one assumes the origin of the MHD fluctuations
to lie in photospheric motions at the Sun’s surface, one
would expect some signature in the observations of a fre-
quency corresponding to the characteristic time-scale of
the energy injection at that level, while no such signal
is observed. One is then tempted to suppose that strong

nonlinear interactions are at work from the very begin-
ning and that the original wave spectrum is modified dur-
ing propagation through the outer atmosphere by the de-
velopment of a turbulent cascade. In this way the energy
is exchanged between modes of different frequencies and
transferred toward smaller scales where dissipation be-
comes efficient.
It is well known that nonlinear terms couple Alfvén
waves propagating in opposite directions whereas one ex-
pects waves to propagate only outward, as observed in
fast solar wind streams.
The inhomogeneities of the ambient medium suggest a
solution for this apparent contradiction between unidirec-
tional propagation and developing of nonlinear interac-
tion. Variations of the group velocity of the wave (Alfvén
speed gradient) linearly couple the outgoing and ingoing
waves producing one from the other and furnishing the
background for nonlinear interactions to take place.
Intensive studies of this mechanism have been carried
out in terms of the dynamical time scales which en-
ter the governing equation, the anisotropic nature of
the problem was handled naturally in the context of an
RMHD description which allows one to treat properly
non linear terms (Dmitruk et al., 2000, 2002; Dmitruk
and Matthaeus, 2003; Oughton et al., 2001, 2004). This
kind of approach has led to the understanding of the or-
dering of the characteristic times which should effec-
tively favor the development of a turbulent cascade in
planes perpendicular to the direction of wave propaga-
tion (along the magnetic field) and the efficiency of dis-
sipation. Other authors (Heinemann and Olbert, 1981;
Leroy, 1980, 1981; Krogulec et al., 1994; Krogulec and
Musielak, 1998; Lou and Rosner, 1994; Mangeney et al.,
1991; Velli et al., 1991; Velli, 1993; Moore et al., 1991;
Similon and Zargham, 1992, but also Dmitruk et al., 2001
for a phenomenological non linear model) have focused
their attention on the linear aspect involving wave prop-
agation. As a result three main features have proved
to be essential. The first one concerns the geometry of
the medium, the second one concerns the extension of
the atmosphere whose global stratification determines the
transmission of waves at a given frequency, and finally
the third aspect involves the presence of a wind which
separates the atmosphere into two parts. The Alfvén crit-
ical point (the distance from the sun at which the wind
speed equals the Alfvén speed) represents a natural sepa-
ration between an internal region where the wind is slow
and affects the propagation of the waves only slightly (at
least at high frequencies) and an outer region, beyond the
critical point, where the waves are advected by the wind
expansion. The aim of this paper is to investigate non-



linear effects on wave propagation and spectra modifica-
tion once the background medium and the entire (lower)
atmosphere are taken into account. Following Dmitruk
et al., 2001, we choose a constant transverse dissipative
length scale but we introduce frequency coupling to ac-
count energy redistribution inside the spectrum.

2. THE MODEL

The equations describing the propagation of Alfvén
waves in an inhomogeneous stationary medium can be
derived from the MHD equations under the hypotheses
of incompressible adiabatic transverse fluctuations. The
velocity (v) and magnetic field fluctuations(b) can be
combined to form the Elsässer variablesz

± = u ∓
sign(B0)b/

√
4πρ which describe Alfvén waves prop-

agating outward(z+) or inward (z−). B0 stands for
the average magnetic field and the sign is taken with re-
spect to the outward direction on the field line whileρ
represents the mass density (not constant) of the ambient
medium. In terms of these variables we can write down
the equations for the two fields
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whereU is the mean wind speed and the Alfvén speed
is Va = B0/

√
4πρ, colinearity between magnetic and

gravitational field is assumed. On the right hand side we
have grouped the nonlinear terms including total (mag-
netic plus gas) pressure, which in the limit of incom-
pressible fluctuations can be written as combinations of
the productz+ · z−. The nonlinear terms which don’t
average to zero are to be considered part of the back-
ground medium equation. In the linear part of the eq.1
we can recognize a propagation term (II) and two terms
accounting for reflection due to the variation of the prop-
erties of the medium, one isotropic (IV) while the other
(III) involves variations along the fluctuations’ polariza-
tion. One can clearly see how reflection linearly couples
the equations for the two counter-propagating waves.

2.1 The background atmospheres

An isothermal atmosphere is completely defined by set-
ting the values for temperature, density and magnetic
field intensity at the base together with mass and radius
of the central object (M⊙ andR⊙). Nevertheless, with
regards to wave propagation, we are only interested in
wind speed and Alfvén speed profiles (and their deriva-
tives) which are selected among the solutions imposing
the two parametersα, the adimensional scale height, and
β, the plasma parameter at the base,

α =
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(cs is the sound speed,vesc =
√

2GM⊙/R⊙ is the
escape speed from sun surface). This allows one to
solve numerically the implicit equation for the isother-
mal wind (whose temperature is fixed at the critical point,
r = R/R⊙ andA is the flux tube expansion, equal tor2

for the spherical case),
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and then obtain the profile for Alfvén speed,
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The values at the base for mass density and magnetic
field intensity are related by the Alfvén speed defini-
tion (ρ0 = B2

0/4πV 2
a0), so one has to impose only one

of the two, while their profiles are fixed by flux con-
servation equations,ρ = ρ0A0/A(r) × U0/U(r) and
B = B0A0/A(r)

We also consider a more realistic Solar case, in which the
wind expands super-radially, as from the sun’s coronal
holes. Streamlines follow a flux tube expansion of the
form A = fr2 with f a function which has a maximum
close to the coronal base and tends to 1 at large distances
(see Kopp & Holzer, 1976, and Munro & Jackson, 1977).
The temperature profile fitted to Sun’s observations starts
at about 8 105 K at the coronal base, peaks at about 3
106 K at 3 Rs and then falls off with distance as R−0.7

(see Casalbuoni et al., 1999). Eq.3 slightly changes, since
on the RHS we have to include the temperature variation
(+T ′/T ), and the sonic critical point is not determined
a priori but it must be found with an iterative procedure.
Flux tube expansion modifies the conservation equation
for the mass and the magnetic field, hence also the Alfvén
and the wind speeds, producing a heavier stratification in
the expansion region (enhanced reflection).

2.2 Non-linear interactions

Since the ambient medium is in stationary equilibrium we
can Fourier transform with respect to time and identify
propagating fluctuation with waves at a given frequency
ω. Following Dmitruk et al. (2001) we choose the fol-
lowing model for the nonlinear terms in eq.(1)

NLj = z
±(ωj)

|Z∓(ω1, .., ωn)|
L

= z
±(ωj)

√

Σn
1 |z∓(ωi)|2

L
(5)

where L represents an integral turbulent dissipation
length andZ

± stands for the total amplitude of the
Elsässer field at the pointr, (hence including, for a given
frequency, coupling to all others) .
Alternatively, the coupling can be considered local in fre-
quency so that only waves of the same frequency inter-
act nonlinearly. In this case the dissipation rate is inde-
pendent of the way the energy is distributed and is deter-
mined essentially by the local frequency-dependent re-
flection rate.



In the first case, the energy distribution over the spectral
range influences the dissipation rate of all the waves cou-
pled. In particular, at a fixed total rms energy, dissipation
is reduced if the energy of the higher frequency waves is
comparable to the lower frequency ones (flatter spectra)
with respect to the case in which most of the energy is
contained in the low frequency modes (steeper spectra).

The form of the nonlinear term may be heuristically de-
rived from the following arguments. When eq. (1) is
Fourier decomposed (z± → z±

k
= uk ∓ bk) nonlinear

terms couple several wave numbers in thek-space. When
a strong magnetic field (Va in velocity unit) is present, the
propagation time of the Alfvén wavesτa = (k ·Va)−1

is equal or longer than the characteristic time-scale for
nonlinear interactionτNL = (kvk)−1 ≈ (kbk)−1, the
nature of the nonlinear cascade is highly anisotropic, de-
veloping preferentially in planes perpendicular to the di-
rection of the mean field. It is than useful to decompose
local wavenumber in projections along the magnetic field
(k||) and in the perpendicular planes (k⊥) because en-
ergy transfer occurs only among the latter, so that Fourier
decomposition is exploited only ink⊥. When small fluc-
tuation are consideredVa ≫ bk ≈ vk these arguments
lead to the so called RMHD description which can be
derived as an expansion of the usual MHD equation in
the small parameterǫRMHD = τNL/τa (see Oughton
et al., 2004 and reference therein for more details on
RMHD), in which variation along the perpendicular di-
rections are decoupled from those along the magnetic
field (∇ = ∇⊥ + ∇||, with ∇⊥ ≫ ∇||).

We can describe the global effect of this perpendicular
cascade by means of two quantities at the large scales,
namely an integral scaleλ0, giving the dimension of the
greatest eddies in which energy is injected, and the aver-
age velocities difference (∆v) among points belonging to
the same eddy, which in RMHD turbulence also contains
magnetic field fluctuations in velocity units (∆b/

√
4πρ).

Identifying these two quantities with the integral turbu-
lent length (λ0 = L) and the fluctuations’ amplitude
of the Elsässer fields we can construct a characteristic
timescaleτ±

NL = L/|Z∓| which accounts for nonlinear
turbulent interactions in eq.(1).

The nonlinear model equations become, after Fourier
transform in time:
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(againL is expressed in units ofR⊙, and velocities in
units ofcs).

The dissipative feature of the nonlinear terms can be
shown multiplying eq.6 by the complex conjugatez

±∗ to

obtain the evolution equations for the Elsässer energies at
a given frequencyE± ≡ 1

2
|z±(ω)|2. It is than evident

how nonlinear terms produce a dissipative effect (on the
RHS we have the form−|z±|2|Z∓|/[(U ±Va)L]), which
is independent of the phase difference between the two
fields and involves the total amplitude of the fluctuations.

2.3 Initial conditions

Eqs.6 are integrated backwards from the Alfvénic critical
point till the coronal base. The amplitude of the outgo-
ing wave is imposed while the ingoing wave amplitude
is determined demanding the regularity of the solutions
at the singularity (the Alfvénic critical point). The spec-
tra are then fixed at the top of the layer and propagated
back, the reference value for the power-law scaling is
the amplitude of the wave at lowest frequency coupled
(fundamental mode), i.e.z+(ω0), while the Elsässer en-
ergy of the higher frequency waves (interacting mode)
scales as(ωi/ω0)

−5/3. We fix our attention on the cou-
pling formed with the following frequencies,ω0 = 10−6,
ω1 = 10−4 andω2 = 10−2 for two reasons. The first
is that we cover the range in which Alfvénic turbulence
is observed at1 AU , the second refers to results com-
ing from linear analysis. When propagation in a non-
uniform moving medium is considered total wave action
density is conserved (a generalization of total wave en-
ergy flux) and with appropriate boundary conditions one
can define a transmission coefficient. Actually in the
range considered the transmission coefficient shows the
highest frequency dependence behavior (see Velli, 1993)
causing spectra modifications during wave propagation in
absence of nonlinear interactions.
Once nonlinear terms are introduced we loose the predic-
tive feature of the linearized equation for which given an
increment of a factorf in the initial conditions we have
an equal incrementf for the values at the base, hence, to
get realistic values of velocity and magnetic field fluctu-
ations at the base of the atmosphere, we have to tune the
amplitude of the outgoing wave imposed at the Alfvénic
critical point for every frequency and coupling consid-
ered. These amplitudes are constrained by measures of
line broadening which give root mean squared values ap-
proximately between20 km/s and30 km/s (Chae et al.
, 1998) for coronal temperature.
In the isothermal case the atmosphere parameters are im-
posed at base of the layer:β0 = 0.08 (i.e. Va0 = 5 × cs)
for all the temperatures considered which vary between
1×106K and3×106K (corresponding to10 ≤ α ≤ 4).
For the non-isothermal layer we imposeT0 = 0.8×106K
andTmax = 3.5 × 106 K atRmax ∼ 3R⊙ (β0 ∼ 0.01).
In both cases the magnetic field at the base isB0 ∼ 10 G
and densities are of the order of108 cm−3.

3. RESULTS

To quantify dissipation we look at the linearly conserved
quantity, that is total wave action density at the bottom
and top boundary (S∗

0 andS∗
c respectively). Dissipation

efficiency,γ ≡ (S∗
0 −S∗

c )/S∗
0 , accounts for dissipation in



Figure 1. Dissipation efficiency as function of initial outgoing wave amplitudez+
c (ω0) imposed at the top of the layer

for an isothermal (left panel) and a non-isothermal layer (right panel). Initial wave amplitude is scaled following a
power-law spectrum (see text). The different plots refer toatmospheres withα = 4, 6, 8, 10, solid, dotted and dashed line
represents respectivelyγω0, γω1 andγω2.

Figure 2. Spectra at the top (dotted line) and the bottom (solid line) of the atmosphere for three representative initial
values ofz+

c (ω0) (1 km/s, 100 km/s and1000 km/s marked with crosses, stars and diamonds respectively). Left panel:
isothermal layer (α = 6). Right panel: non-isothermal layer

the whole layer. In fig.1 dissipation efficiency is plotted
as function of the fundamental mode initial wave ampli-
tude for a power-law initial spectrum in both isothermal
(various temperature) and non-isothermal layer (left and
right panel respectively); solid, dotted and dashed lines
refers respectively toγω0, γω1 andγω2. For both kinds
of atmospheres the three curves relative to the coupled
waves show that for intermediate frequency (dotted line)
dissipation efficiency soon reaches the fundamental mode
regime even in the coolest atmospheres, while for the
high frequency interacting waves (dashed line) this con-
dition is achieved for higher initial amplitudes (roughly
greater than50 km/s). A major difference between cool
and hot atmospheres is the behavior of the intermediate
frequency which, for low enough initial amplitude shows
a more efficient dissipation than the fundamental mode.
For cooler atmospheres and weak couplings (low wave
amplitudes) the wind carries low frequency waves out to
the Alfvénic critical point reducing their reflection. So
one can actually separate very low frequency behavior
(wave mainly transmitted, poor dissipation) from inter-
mediate frequency behavior (wave mainly reflected and
strong dissipation) only for small enough waves ampli-
tudes.
Differences between the two kind of atmospheres orig-
inate mainly from the different expansion rate. A

higher stratification produces a stronger reflection and
one should expect an enhanced dissipation efficiency for
all the amplitudes considered. If we compare the results
with the hotter atmospheres (α = 4, 6) we see that it
is actually true. Temperature variation mainly modifies
the wind solution. As in theα = 4 atmosphere, which
has approximately the same temperature of the peak of
the non isothermal layer, the wind is not able to greatly
reduce the amount of reflection for the low frequency -
low amplitude waves. This is also due to the fact that the
β of the plasma is very low and Alfvén wave gradients
are mainly responsible of wave reflection. In the linear
case, a so strong Alfvén speed produces a shift toward
higher values of the critical frequency, defined as the fre-
quency beyond which waves are completely transmitted.
Hence reflection (and dissipation) at high frequencies is
enhanced. The result is that despite strong reflection we
don’t find an enhanced frequency dependence, dissipa-
tion efficiency of the three coupled waves reach again the
same value approximately for the same wave amplitude
of the non-expanding case. To guess the modifications of
initial spectra (top of the layer) one can look at dissipa-
tion efficiency. If in fact it is the same for all the coupled
frequencies (strong coupling) we expect the spectrum to
remain almost unchanged during wave propagation.
In fig.2 the spectraǫ = ρ(|z+(ωn)|2 + |z−(ωn)|2) im-



Figure 3. Normalized ratioξ (dotted lines) for the two cases in fig.2: values lower -greater- than one mean spectrum is
steepening -flattering- (see text for details). For comparison the linear case is also shown (continuos line).

posed at the top of the atmosphere (dotted line) and
those at the base of the atmosphere (solid line) are
plotted for two different layers, isothermal (α = 6)
and non-isothermal (respectively on the left and right
panel). Three representative initial wave amplitudes for
the fundamental frequency are considered,z+

c (ω0) =
1, 100, 1000 km/s and frequencies are marked with
different symbols (crosses, stars and diamonds) to dis-
tinguish the three initial amplitudes. Since we impose
a power-law spectrum at the top of the layer all dotted
lines have slope−5/3 and can be used as reference to
see the modification induced by wave propagation. It is
striking how much the spectra remain unchanged practi-
cally for all temperatures and all initial amplitudes con-
sidered. The different energy contained in the spectra
is mainly due to difference in mass density at the criti-
cal point which for the non isothermal case is located at
∼ 12 R⊙ and for the isothermal atmosphere (α = 6)
at ∼ 6 R⊙. A more accurate inspection, using the ratio
ξ(ωi) = ǫc(ωi)/ǫ0(ωi) shows that the spectra do change
slightly. In fig.3 we plot such ratios normalized to the
value of the previous frequency, i.e.ξ(ω1)/ξ(ω0) and
ξ(ω2)/ξ(ω1) (the fundamental being normalized to its
value). Since the top spectrum is fixed by the initial con-
dition a normalized value lower (greater) than one means
the spectrum is steepening (flattening) with respect its
shape at the atmospheric base. Consider first the isother-
mal layer (left panel). For low initial amplitudes the cou-
pling is not strong and the spectrum evolution is simi-
lar to the linear case, it steepens at low frequencies and
flattens at the higher ones. As we increase the strength
of the coupling by increasingz+

c (ω0), at low frequen-
cies the spectrum steepens (reaching the linear value). At
higher frequencies it steepens too, asymptotically reach-
ing the same slope of the low frequency part (the effect
of a strong coupling).

Consider now the non-isothermal supra-spherical ex-
panding wind (right panel), for which a different scale as
been adopted. Here modifications to the spectra are more
evident. For low initial amplitudes the spectrum steepens
at low frequencies and flattens at higher frequencies, ap-
proximately the same way as in the linear case. As we in-
crease the energy contained in the fundamental mode the
spectrum globally steepens, being unchanged for ampli-

tudes greater than100 km/s and most steep for high fre-
quencies waves. To quantify spectral evolution we have
calculated the exponent of the resulting power-law scal-
ing at the base for the low and high frequency branches.
For the isothermal case the slope at the base varies from
1.644 at low frequencies to 1.673 at higher frequencies,
to be compared with 1.66667 (top spectrum). One can
conclude that even if the spectra evolves during propa-
gation the differences between top and bottom slopes are
always very small or negligible. For the non-isothermal
layer the slopes varies from 1.598 to 1.701 indicating a
somewhat greater evolution of the spectra.

4. CONCLUSIONS

In this paper we have modeled the nonlinear evolution
of Alfvén waves propagating through the subalfvénic re-
gion of stellar winds. Nonlinear interactions occur be-
tween outward propagating and reflected waves, and it is
assumed that a nonlinear cascade develops preferentially
in a direction perpendicular to that of propagation. The
nonlinear term acts as a dissipative sink for both outward
and inward waves of a given frequency. The stratified
atmosphere is in spherical or supra-spherical expansion
and the plasma parameter (β = 8πP/B2) at the base of
the layer, identified with the coronal base, has been kept
fixed for the isothermal case. Equations are integrated
out to the Alfvénic critical point (wind speed equal to the
Alfvén speed) whose location moves to greater distances
from the base as temperature is decreased (for the non-
isothermal layer it is placed at about12 R⊙).
With regard to the amount of dissipation generally we
can say that the lower the temperature of the layer, and
the lower the frequency of the coupled waves, the higher
the dissipation. However in this paper we focused our
attention on modification of a sample spectrum with
three rappresentative frequencies10−6 Hz, 10−4 Hz and
10−2 Hz.

As mentioned in paragraph 2.3 nonlinearities break the
scaling properties at the boundaries typical of a linearised
equation. We used solar observational constraints to de-
fine the amplitudes to impose at the top boundary, de-
pending on the kind of atmosphere considered and on



temperatures. For anα = 6 isothermal layer correspond-
ing to a temperature of2×106K (roughly the solar case),
we find amplitudes for the fundamental mode in the range
of 79km/s and117km/s. For these amplitudes the cou-
pling is strong and spectra don’t evolve appreciably. For
the non-isothermal supra-spherical expanding wind we
find higher values, i.e.164 km/s and236 km/s lying
in the range in which the spectrum globally steepens.
Generally we can say that when a non local strong cou-
pling is considered (high amplitudes), nonlinear terms
smooth differences in the dissipation of waves of differ-
ent frequencies (caused by the different reflection). For
low energies in the fundamental mode, waves evolves al-
most independently and the dissipation rate of a given
frequency wave can be guessed by its transmission coef-
ficient (linear analisys).

There are other aspects which may modify the results pre-
sented here. For instance, we have adopted a constant
dissipative turbulent length scale and nonlinear terms in
eq.6 become dominant in the outer region (the other gra-
dients reduces, this one remains constant) hence enforc-
ing the coupling. An expanding (spherically or supra-
spherically) turbulent length scale reduces greatly the ef-
fects of nonlinearities making the spectra evolution more
similar to the linear one.

In order to get a complete answer to the question of
turbulent evolution the actual nonlinear cascade must be
taken into account as well as propagation. Despite more
work has still to be done, one can preliminarily conclude
that turbulence is not able to produce substantial mod-
ification of the original spectrum atmosphere, starting
from the coronal base, at least until the Alfvénic critical
point. Beyond this limit the evolution of turbulence
is decoupled from the source from which it originates
since all the waves (propagating outward or inward) are
advected by the wind at a speed much greater than the
Alfvén speed. For the solar case an interesting develop-
ment is the extension of this analysis to deeper layer in
the atmosphere, where flux tube expansion and gradients
are so strong as to produce, in the linear regime, a very
strong frequency dependent transmission. This might
produce significant changes in spectral properties with
height.
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