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Abstract. We review the use of reduced magnetohydrodynamics (RMHD) in coronal
heating models, with particular emphasis on models for magnetically open regions. A
brief review of the nature of the coronal heating problem is presented first, followed by
detailed discussion regarding the assumptions and features of RMHD and its applica-
bility to the dynamics of the solar corona. We then review a class of heating models
based on quasi-2D turbulent cascades driven by low-frequency Alfvén waves.

1 Introduction

The fact that the solar corona is over a hundred times hotter than the visible so-
lar surface was first established in 1939 [1,2]. Observations indicate that coronal
temperatures are typically ~ 10 K, while the temperature of the photosphere
is &~ 6000 K. Although much effort has been expended in attempts to explain
this “coronal heating problem”, the mechanism underlying the heating process
is still not known; see, e.g., [3-7]. In this paper we review first the role of re-
duced magnetohydrodynamics (RMHD) in coronal dynamics and second a class
of heating models which employ RMHD processes in a central way.

Note that it is the mechanism of coronal heating which has remained uniden-
tified, not the energy source for the heating. An ample reservoir of energy is
available to heat the corona, in the form of the (convectively) turbulent photo-
spheric and subphotospheric motions. The associated energy flux is essentially
equivalent to the Poynting flux § = E x B, where the electric field is that in-
duced by the convective motions [8]. Thus, the “problem” in the coronal heating
problem is primarily concerned with how to transport this energy up into the
corona and then convert it into heat within a few solar radii (Rgy, = 700 Mm).
Recent observations [9-13] emphasize that the bulk of the heating needs to occur
within this distance, which is a rather strong constraint.

Table 1 lists some of the heating models which have been proposed over
the last 60 years. Although no one heating theory has been entirely successful,
substantial progress in understanding the situation has nonetheless occurred.
A key recognition is that the corona is magnetically dominated, in the sense
that there is a large (often approximately vertical) mean magnetic field (Bj)
throughout it, with the fluctuations in the velocity and magnetic fields being
much smaller in magnitude [6,14,15]. As discussed in the subsequent sections, this
physical situation of a strong By with small (but finite) amplitude fluctuations
can be exploited to simplify the full 3D MHD equations to those of reduced
MHD. Figure 1 is a sketch depicting the magnetic structure of the corona.
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Table 1. Some candidate heating mechanisms for the solar corona (after Ulmschneider
1996 [5]; see also [4])

Energy Carrier Dissipation Mechanism

Acoustic waves
Slow mode MHD waves Shocks
Longitudinal MHD waves

Fast mode MHD waves Landau damping

Phase mixing
Magnetoacoustic surface waves Mode coupling

Resonant absorption

Mode coupling
Phase mixing
Alfvén waves Resonance heating
Viscous heating
Turbulent heating

Landau damping

Current sheets Reconnection (turbulent/wave heating)

Magnetic field Nanoflares

Most of the approaches listed in Table 1 can be characterized as direct, in
the sense that the energy of the energy carrier is converted directly into heat
without passing through any other channel. On the whole, direct methods have
so far proved to be either insufficient or inadequate (e.g., [4]), thereby prompting
consideration of indirect methods. In an indirect heating method the free energy
source in the corona is first converted into some other form of excitation, which
is itself subsequently converted into heat energy.

Various other divisions of the heating models have been employed, for ex-
ample wave versus turbulence and acoustic versus magnetic. In the latter case,
the magnetic mechanisms are often subdivided into either AC (aka wave) mech-
anisms, wherein the field guides the (dissipative) waves, and DC (aka current)
mechanisms where it is the dissipation of the energy stored in the magnetic field
which provides the heating [3,4,8,16,17]. In this review we pay particular atten-
tion to an indirect turbulence heating model, where the (quasi-2D) turbulence
is driven by low-frequency Alfvén waves.

Note that the traditional schism between wave models and turbulence models
can be misleading and/or over-restrictive. A similarly misleading schism has also
featured in models for the transport and evolution of solar wind fluctuations
[18 21]. However, in both the corona and the solar wind, observations indicate
that the systems are strongly dynamic with wave and turbulence processes each
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Fig. 1. Cartoon sketch of the (magnetic) structure of the corona. Shown are a few
magnetic field-lines delineating coronal loops and coronal holes. Also indicated are the
convective motions which power the atmospheric heating. Plasma heating in both the
magnetically open and the magnetically closed regions remains unexplained. Note that
at photospheric heights the magnetic flux bundles are typically spatially well separated.
In contrast, the coronal field is essentially space filling, with adjacent flux bundles
subject to shear due to the independent motion of the photospheric “footpoints”

playing important roles, and, moreover, that activity occurs over a wide range of
spatial and temporal scales amenable to MHD-based descriptions. For example,
in the corona measurements from various satellite and ground-based instruments
show the presence of waves and substantial transverse (to the local vertical)
structuring (see, e.g., [7,22]). Observations of counter-propagating waves [11]
and reconnection [23] have also been reported, although in such cases a unique
interpretation of the data is often not possible. Taken together, the observations
imply that coronal dynamics involves both wave effects and nonlinear MHD
effects, such as turbulent reconnection and cascades.

The remainder of the paper is organised as follows. Section 2 contains a
detailed discussion of the assumptions and characteristics of reduced MHD, along
with a critique of their relevance to the corona. In Section 3 we review several
coronal heating models which employ RMHD, focusing primarily on models for
magnetically open regions. The final section summarises our conclusions. Two
appendices, one a brief history of RMHD derivations and the other on the subtle
relationship between RMHD fluctuations and solutions of the RMHD equations,
close the paper.
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2 Reduced MHD

The equations of reduced MHD, first derived by Strauss [24], can be obtained by
considering the strong By, low-frequency limit of the full 3D MHD equations.
Note that they are not a linearization of the MHD equations the nonlinear
terms are always important, by construction. The RMHD equations have also
been derived from various other perspectives, some of which are summarised in
Appendix A.

In this section, we begin by stating the RMHD equations and then derive
the timescale condition which determines whether or not a fluctuation is RMHD
in character. Subsection 2.2 is a discussion of the nature of cascades in RMHD
turbulence and their relation to cascades in full 3D turbulence. Subsection 2.3
reviews the relevance of RMHD to coronal dynamics.

2.1 Equations and Timescale Conditions

The usual primary assumption of RMHD is that there is a strong uniform mag-
netic field, By = Bpz, present [24—26]. The field is strong in the sense that the
amplitudes of the velocity and magnetic field fluctuations are small. Since the
full 3D MHD equations have terms like Bg - Vb, these terms will be much larger
than the nonlinear ones (e.g., v-Vv), unless gradients along By are restricted to
be small, as is the case for RMHD. When this situation is enforced, the natural
coordinates to use involve a rescaling of the parallel (z) coordinate to be purely
large-scale and of By to be O(1).

The RMHD equations are then conveniently written—using non-dimension-
alized (Alfvén speed) units—as equations for the evolution of the fluctuations in
the fluid vorticity w(x,y, z,t) and the magnetic vector potential a(x,y, 2, t):

0 9j
(8t+v.vl>w:b.VLj+yViw+Boa—‘i, (13)
o 0
(-(% + v-VJ_) a=nVia+ Boa—f, (1b)

where V| = (0;,0,,0), v = Vx 92z, b=V xaz, w=-V3¢, j = —-Via
V1-v = 0, and the other symbols have their usual meanings (see, e.g., [25]).
Since the equations are written using Alfvén speed units, By is actually the
(large-scale) Alfvén speed. However, it is often convenient to still refer to it as
the mean field. We emphasize that the z coordinate has been rescaled such that
only large-scale variations with z are permissible. For example, the final term

in (1a) can be rewritten as
By dY .
20) (£ 2
SICIE @)

where a small parameter e appears explicitly (see below). The two terms in
brackets then correspond directly to the actual physical mean field and the
gradient operator along it [25].
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It is evident that in RMHD the velocity is incompressible and that setting
By = 0 would yield precisely the equations of incompressible 2D MHD, on
a set of independent z-planes. On the other hand, if the only terms retained
are the time derivatives and the terms involving By, the solutions are parallel-
propagating (transverse) Alfvén waves. Thus it is clear that the By terms provide
the explicit coupling between the otherwise independent planes of 2D excitation.

A related point is that while v and b depend upon all three spatial coordinates
(although as noted the z dependence is “slow”) the amplitudes of these excita-
tions are confined to the planes perpendicular to Bg.! In this sense, the RMHD
equations are complementary to systems employing Z%D geometry, wherein vec-
tor fields have three components but depend on only two spatial coordinates.

A derivation of the equations is now sketched. Consider a fluctuating mag-
netofluid? threaded by a uniform magnetic field By. The dynamics of the fluc-
tuations is given by the usual 3D MHD equations in the presence of a mean
field. In order to compare the characteristic timescales associated with these
fluctuations, it is useful to employ a Fourier decomposition. Accordingly the
mean square magnetic fluctuation (b?) may be decomposed into a spectral dis-
tribution. The magnetic energy spectrum, i.e., the distribution of energy over
wavenumber magnitude k, may be designated as Fy(k), and satisfies

<b2—> _ /OOO Ey(k) dk. 3)

The contribution to the magnetic energy density due to fluctuations near spatial
scale 1/k may be estimated in the usual way as b7 = kE, (k).

In incompressible MHD each Fourier mode has two® timescales associated
with it:

1 1
Ta(k) = = , 4a
ak) |k - Bo|  [ky|[Bol (42)
1
TNL(k) = _k,‘bk s (4b)

where these are respectively referred to as the Alfvén (or wave) timescale and
the (direction-averaged) modal nonlinear timescale; kj is the component of the
Fourier wavevector parallel to Bg. Two points regarding the Alfvén timescale are

! This is not quite the full story. For a derivation beginning from the incompressible
equations [25], it can be shown that, to the same order as (1a) and (1b), RMHD
also involves fluctuations whose amplitudes are purely parallel to By. For a deriva-
tion beginning with compressible MHD [26] the parallel fluctuations are down by a
factor equal to the turbulent Mach number (interestingly, this relative ordering of
the parallel amplitude also emerges in incompressible and compressible simulations
of the full MHD equations [27]). However, in both cases these parallel fluctuations
are dynamically passive and thus of reduced interest [25,26].

2 Density fluctuations are likely to be of interest along with the velocity and magnetic
fluctuations.

3 Where the viscous and resistive timescales are not considered.
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noteworthy. First, it is the time it takes an Alfvén wave to propagate a parallel
wavelength for the mode (modulo a factor of 27), and is thus quite distinct from
the box-crossing timescale of a wave, which for a box of length Lpox would be
Thox = Lbox/Bo, independent of k. Second, it depends strongly on the orientation
of its wavevector but is independent of the energy of the fluctuation.

The nonlinear timescale as defined in (4b) is local and direction-averaged
(over all k with the same |k|). Consequently, it cannot be viewed as anything
other than a reasonable approximation in the present context, which is expected
to be highly anisotropic. Its analogue for hydrodynamic turbulence is, however,
familiar and reliable in the context of incompressible homogeneous hydrody-
namic turbulence [28], and therefore it is believed that this type of estimate
is a good starting point for MHD as well. It is also useful to define the global
nonlinear timescale Tni, = A /db, where A is a lengthscale characteristic of
the turbulent (nonlinear) dynamics* and 6b = /(b?) is the root mean square
magnetic fluctuation (assumed ~ év).

Forming the ratio of the modal timescales yields the central parameter of
RMHD:

ermup (k) = T;L((kk)) = %%} (5)

This is the ratio of the timescale associated with wave-like activity, which de-
pends upon parallel structure, to the timescale of nonlinear activity, which does
not depend upon direction at the current level of approximation. Physically, it
appears likely that the set of (Fourier) modes which satisfy mnp (k) S 7a(k)—
that is those modes for which the wave timescale is not dominant—will behave
quite differently from those for which it is. Thus, we partition the modes on the
basis of the inequality egmup(k) < 1, and investigate the governing equations for
the two sets of modes.® As it turns out, the modes which satisfy this inequality
are the RMHD ones.

Note that the critical balance condition employed by Goldreich and Srid-
har [29] in a paper on strong MHD turbulence is essentially the condition
ermup (k) = 1, and is thus related to the boundary between RMHD and non-
RMHD fluctuations (cf. Appendix B and Fig. 7a).

Up to this point no major assumptions about the nature of the fluctuations, or
the geometry of the system, have been made. As noted above, the usual primary
assumption of RMHD is that Bg is a strong field, meaning that its energy
density is much greater than that of the fluctuations. Consequently, for each
Fourier mode By/by > 1, and satisfaction of ernup (k) < 1 requires that kj < k.
In other words, the RMHD modes have wavevectors which are approximately
perpendicular to Bg. This leads to two approximations employed frequently in
RMHD, namely k ~ k) and i (k) =~ 1/(k.Lbg).

4 The “1” subscript is included since we have in mind specialisation to the RMHD
case.

5 For systems which are not in steady-state the partitioning is likely to be time-
dependent.
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The Strauss [24] and Montgomery [25] derivations of the RMHD equations are
perturbation expansions in distinct but related small parameters. Respectively,
€Strauss = EL/EH and enont = 0b/ By, where the £s are characteristic lengthscales
in the directions indicated by their subscripts (relative to Bg). Note that these
small parameters are based on global, not modal, quantities. RMHD provides
the leading-order dynamics for each of these derivations (cf. Appendix A).

Subsequently, Zank and Matthaeus [26] noted that a more rigorous derivation
is also possible. They showed that the 3D compressible MHD equations have
leading-order solutions which obey the RMHD equations, provided that (i) the
sonic Mach number, My = §v/cs, is small, (ii) the plasma beta,® 3, is at most
of order unity, (iii) characteristic lengths along By are much longer than those
perpendicular to it, and (iv) all high-frequency” modes have been eliminated.
It is condition (iv) which ties their derivation of the RMHD equations to the
timescale-based discussion of the RMHD modes presented above.

Note that there is a subtle but important distinction to be made between
the set of RMHD fluctuations and solutions of the RMHD equations. It is quite
possible to solve the RMHD equations using initial conditions which include
non-RMHD fluctuations, e.g., in simulations with rectangular domains in k-
space (see Fig. 7a). The solutions to the equations at later times would, presum-
ably, also include contributions from non-RMHD fluctuations. Several questions
then arise as to the consistency of the RMHD equations. For example: Do they
adequately capture the physics of non-RMHD fluctuations along with that of
the RMHD fluctuations? If an (initial) solution to the RMHD equations con-
tains only RMHD modes, how rapidly will non-RMHD modes be generated?
Do RMHD solutions “escape” from the range of validity of the equations them-
selves? Concerns such as these have prompted some implementations of RMHD
to include ad hoc and perhaps unnecessary parallel dissipation terms which
damp energy production at high k). Further discussion regarding this point is
presented in Appendix B.

2.2 Anisotropy and Cascades

The RMHD equations are manifestly anisotropic, containing as they do a strong
mean magnetic field with the (dynamically important) fluctuations strictly per-
pendicular to it. Associated with this is the lengthscale anisotropy between the
x and y coordinates and the slowly-varying z coordinate These anisotropies have
important consequences for the development and interpretation of RMHD energy
cascades.

In RMHD the cascade is such that excitations are principally driven towards
high perpendicular wavenumbers [25,30,31]. That is, the evolution in physical
space involves the development of structure with finer and finer scale perpen-
dicular to By (with the smallest scales attained set by the Reynolds numbers).

6 The plasma beta factor, 3, is the usual ratio of thermal and magnetic pressures.
" Where high-frequency is defined to be on the acoustic timescale or faster.
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This inherent feature of RMHD is often identified by referring to a strong per-
pendicular cascade. It should be kept in mind, however, that it is the parallel
cascade which is substantially weakened in RMHD, rather than the perpendic-
ular cascade being strengthened [30-34].

To understand the weakening of the parallel cascade it is helpful to consider
cascades in fully 3D (i.e., not reduced) MHD turbulence when db/By is small.
Considering the turbulent fluctuations as Alfvén wavepackets, the strength of By
means that the packets are rapidly propagating. Hence, the (nonlinear) interac-
tion time for two counter-propagating wavepackets is much reduced, leading to
a weakened cascade. There is, however, an escape clause, since this argument
ignores the anisotropy of the wave dispersion relation wa = k - Bg. If one or
more of the wavepackets has large spatial extent (i.e., has a characteristic kj
which is small)—as is the case for RMHD fluctuations—then even though they
are moving rapidly through each other, the interaction time for the packets can
still be long, and in particular of order 7w, rather than 1/(kBg). Consequently
the cascade associated with these interactions is only weakly affected by the
strong By. Shebalin et al. [33] presented a “weak turbulence” analysis of such
interactions which revealed that strict resonant driving occurs only when a prop-
agating mode interacts with a non-propagating (i.e., 2D) mode of opposite cross
helicity (see also [35,36]). In such cases the driven mode has exactly the same kj
as that driving mode which is propagating. Thus, in the weak turbulence limit
there is strong perpendicular spectral transfer but no parallel spectral transfer.
The arguments can be generalised to allow for broadened resonant interactions
[30,31], and one finds that the interaction of an arbitrary propagating mode with
an RMHD mode also leads to strong perpendicular cascade.

Additional support for suppressed parallel cascade with still strong perpen-
dicular cascade comes from analytic work, and compressible and incompressible
simulations with a strong mean field [25,27,30-33,37—42]. Moreover, these stud-
ies indicate that turbulence which is initially isotropic dynamically reorganises
to favor RMHD-type fluctuations. For example, one can examine the evolution
of mean wavenumbers computed parallel and perpendicular to By using sim-
ulations. Figure 2, reproduced from [31], displays results from two (unforced)
incompressible 3D MHD simulations with different values of By. When By = 0,
the mean k, and k| are essentially the same at all times, showing a monotonic
increase as the nonlinear interactions cause transfer of energy to smaller scales,
followed by a gradual decline as the turbulence decays. Such isotropy is of course
expected when there is no preferred direction. For the By = 4 case, in contrast,
the mean k|| remains almost constant, indicating that the cascade in this direc-
tion has been strongly suppressed. The mean k, , however, behaves in the same
way as it did in the By = 0 simulation.®

There is a technical point about the ful-MHD perpendicular cascade that
warrants mention at this point, namely that it consists of two distinct parts

8 The maximum value attained, however, is somewhat less than in the isotropic case
since the initial conditions contain both RMHD and non-RMHD fluctuations and
the latter are influenced by By while the anisotropy is developing.
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Fig. 2. Mean parallel and perpendicular wavenumbers as a function of time for two fully
3D MHD simulations. The simulations are unforced and have the same initial conditions
and Reynolds numbers but different values of By. A value of By = 1 corresponds to
equipartition of the energy in the initial turbulent fluctuations and that in the mean
field. Note the lack of evolution in k| for the Bo = 4 case (figure courtesy of [31])

[30,31]. The first part involves the self-interactions of only the RMHD modes.
As these are in effect “zero-frequency” modes, the interactions are (trivially)
always resonant. Perpendicular cascade proceeds unimpeded for RMHD modes.
Moreover, because the resonance condition is trivial, it does not impose any addi-
tional restrictions on parallel spectral transfer, provided that excitations remain
within the RMHD region egmup S 1. Thus, RMHD spectral transfer is essen-
tially isotropic although its region of applicability is emphatically not (cf. Fig. 7).
The second type of perpendicular cascade in fullMHD comes from modes that
are outside the RMHD region. Sufficiently far outside the egmup = 1 boundary
the resonance conditions described by Shebalin et al. [33,35,38,42,43] prevail, and
the only surviving incompressible couplings are those that maintain constant k.
This resonant cascade of high-frequency modes to higher k£, is nonlocal, since it
relies upon driving by (inherently) low-frequency RMHD modes.

2.3 Relevance in the Corona

Here we briefly summarise some of the theoretical and observational support for
using RMHD in studies of coronal dynamics.

As noted above, an important characteristic of both coronal holes and coronal
loops is that they are permeated by a strong large-scale magnetic field. Moreover,
the large-scale field can be approximated as uniform over significant distances
(e.g., fractions of a loop length).

Observations of coronal quantities [11,44-46] in magnetically open regions
suggest that év ~ 25-35kms™!, ¢, ~ 115kms~ !, and that Alfvén speeds are in
excess of 1000kms~!. Thus, Mg = dv/cs ~ 0.2-0.3 and Bp ~ 0.01, consistent
with the assumptions underlying RMHD derivations.

The timescales of the processes involved in heating models can also be ex-
amined for consistency with the assumptions of RMHD. In estimating a coronal
value for 75, = A /0v we may take A\; to be in the range 3-30 Mm, where the
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upper value is given by the size of super-granules (equivalent to the magnetic
network separation distance). This yields 7np, &2 102-10%s. Now let us consider,
somewhat arbitrarily, the parallel system size to be one solar radius.® Using a
nominal Alfvén speed of 1000kms™!, the associated T,0x is 700s. The longest
period waves that fit within the system thus have egyup = 1. Hence, for RMHD
to be sensibly applied, the driving fluctuations should have periods which are of
order a few hundred seconds or longer. Fluctuations associated with 7o > Thox
do not “fit” within the system, and the nomenclature “low-frequency waves”
gives way to “quasi-static fluctuations” as this inequality becomes progressively
better satisfied. However, both low-frequency waves and quasi-static fluctuations
can be dynamically included in the RMHD formulation.

Continual buffeting from the granular and super-granular motions associated
with the convective dynamics of the interior is believed to be the source of the
driving fluctuations and can excite Alfvén waves which propagate upwards along
the (mean) field in magnetically open regions.'Y Observations indicate that the
timescale associated with the coronal base driving fluctuations is 7pn ~ 103-10%s
[7,8,47], which is clearly much longer than the estimates for 7nr..

For magnetically closed regions, like coronal loops, both ends of the “coro-
nal box” are anchored in the photosphere, where the granular motions induce
continual displacements of the field-lines. Provided again that those motions
proceed on a slow scale, compared to the typical nonlinear time, the RMHD
condition will be satisfied. (See the end of Sect. 3.2 for an important distinction
between the wave box-crossing time and the modal Alfvénic time in connection
with consideration of the RMHD condition.)

In summary, there are good theoretical and observational grounds for using
RMHD to study the dynamics of coronal plasma. Parcels of the corona typically
have: low 3, a strong approximately uniform magnetic field with low fluctuation
levels (6b/By < 1), and egymup < 1, all of which are in accord with the assump-
tions underlying RMHD. Thus, we expect that RMHD-based models will capture
the essential physics of the low-frequency waves, quasi-static fluctuations, and
turbulence that we wish to investigate. From a practical perspective, RMHD
also affords considerable advantages in numerical simplicity and efficiency. Nat-
urally, results from RMHD models will only provide an approximation to the
true dynamics since, among other effects, it is highly likely that compressibility
and kinetic processes will play important roles.

9 This choice is not entirely without justification since observations indicate that heat-
ing in open field-line regions operates within about a solar radius above the photo-
sphere.

10 Similarly, buffeting and other processes (e.g., reconnection events) in the chromo-
sphere and transition region may also excite Alfvén waves or related propagating
fluctuations. For the heating model(s) considered below the actual source of the
fluctuations is not particularly important. What is important is that such fluctua-
tions are present at some (perhaps only notional) coronal base.
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Fig.3. Cartoon sketch of the heating model for magnetically open regions. Low-
frequency waves are reflected off inhomogeneities in the large-scale density and mag-
netic field. The ensuing population of counter-propagating modes interacts to drive an
RMHD (quasi-perpendicular) turbulent cascade, with the energy at the small-scale end
of the cascade being converted into heat by kinetic processes

3 Coronal Heating Models

3.1 Coronal Holes

The class of models to be described was first presented by Matthaeus et al.
[48] and has subsequently been investigated using phenomenology based models
and nonlinear simulations [49-53]. As we shall see, an important distinguishing
factor between the various models is the degree of realism and self-consistency
associated with the reflection and driving terms.

Figure 3 is a schematic representation of the physics associated with the pro-
posed heating scenario. Low-frequency Alfvénic fluctuations, generated some-
where below the coronal base, propagate up into the corona. Whilst progress-
ing through the corona they undergo (non-WKB) reflection off the gradients
in the background density and magnetic fields. This produces a population of
counter-propagating fluctuations, which interact. The interaction is nonlinear
and, because the modes are low-frequency, predominantly acts to drive quasi-2D
fluctuations; these then self-interact to produce a cascade of energy towards small
perpendicular lengthscales, with the formation of current sheets and the recon-
nection of transverse magnetic islands featuring prominently in the dynamics.
Kinetic effects at these scales convert the turbulent energy into heat.

Models of this kind exhibit several features [51] which void some of the crit-
icisms which have been leveled at direct wave heating models. For example, the
usual criticism of (direct) wave heating models in magnetically open regions
is that, because of the large propagation speeds (~ 10°kms™1!), Alfvén waves
propagate out of the region where the heating needs to occur (within ~ 2 Rqyy
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of the surface) before they can be significantly damped [54,55]. However, in the
above indirect model, the waves lose energy primarily due to (nounlinear) transfer
of excitation to the quasi-2D turbulent cascade, rather than (direct) viscous and
resistive wave damping. For the low-frequency waves considered in the model,
this is a relatively fast process and associated with the extraction of significant
amounts of wave energy. Provided there is a region containing a population of
low-frequency counter-propagating waves these will interact nonlinearly to drive
a sustained quasi-2D cascade. Naturally, the strength of the cascade will depend
on factors such as the abundance of upward and downward propagating modes
(and hence the reflection rate), and the wave amplitudes, but the cascade’s ex-
istence is not unduly constrained by the large Alfvén speed.

Note that direct wave damping models usually rely on damping of high-
frequency (e.g., ion cyclotron) waves, whereas the class of models described
above extracts energy from low-frequency waves. There are several advantages
to using low-frequency waves as the input energy source. First, photospheric ob-
servations indicate that there is substantial energy in this range of the frequency
power spectrum, whereas the spectrum at high frequencies (~ kHz), although
unobserved, is expected to be of much lower amplitude [55-57]. Second, non-
WKB reflection due to inhomogeneities in the solar atmosphere is most efficient
for low-frequency fluctuations [58-61].

Another feature of the model depicted in Figure 3 is that since the cascade is
quasi-2D, both its dynamics and the associated heat output at small perpendic-
ular scales are largely insensitive to the strength of By [27,33,34,37,38].1! This
aspect may be of relevance in explaining why coronal heating appears to de-
pend only weakly on solar cycle phase. Moreover, since the nascent solar wind is
relatively sluggish over the height range where the counter-propagating fluctua-
tions interact [12], one concludes that the heating occurs “in place.” This follows
since when the low-frequency waves supply energy to the cascade at a height rq,
say, the quasi-2D cascade transfers the energy to small scales at about this same
height. Thus, a quasi-2D cascade, coupled with low wind speed, helps circumvent
problems associated with the rapid removal of energy from the desired heating
region by fast propagating waves.

We turn now to several studies of specific models within the above class
of heating model. Note that at least two points make the RMHD equations a
natural choice for use in investigating such models. First, the driving in the model
is via low-frequency (and hence long wavelength) Alfvén waves propagating along
a strong Bj. Second, the primary couplings of such counter-propagating waves
are to (Fourier) modes with wavevectors which are quasi-perpendicular to Bi.

' Although the existence of a sufficiently strong By may well be required in order to
produce a substantial population of quasi-2D fluctuations in the first place. Moreover,
even though the existence and strength of a quasi-2D cascade may be insensitive to
the strength of By, the wave transmission out of the system and reflection within the
system may retain a dependence upon Bp. Thus, the relative strength of turbulence
versus wave effects at a fixed frequency of driving is expected to remain sensitive
to the size of the Alfvén speed. It is only for the idealized case of “zero-frequency
driving” that complete insensitivity to By would be expected.
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The initial investigation was via a one-point homogeneous turbulence closure
for the energy in the upwards (Z3 ) and downwards (Z2) quasi-2D/RMHD fluc-
tuations. Terms representing the forcing (F), energy-conserving reflection (R™),
and transmission (7) (see Fig. 3) were included using ad hoc rates [49],

dz? VANA
= =- ;¢+ +F R Z>+R"Z2 -TZ2, (Ga)
az? 727
d—t+ - ;l +R 72— R+Z_2i_. (6b)

The model was closed by including an equation for the evolution of the charac-
teristic transverse lengthscale of the quasi-2D fluctuations, A} , giving a (numer-
ically) tractable system of three nonlinear ODEs [49].

In such a one-point closure the simulation “box” (Fig. 1) shrinks to a point
and only volume-averaged information is available. Despite this simplicity, the
model has proved to be remarkably robust, giving heating efficiencies in excellent
agreement with models where the nonlinearities are treated with considerably
more sophistication. In particular, in the limit that the reflection rate is much
greater than the transmission rate, one can show analytically that the dissipation
rate approaches F/2 asymptotically (from below). Defining the heating efficiency
as the dissipation rate divided by the rate of energy injection, one finds that the
maximum heating efficiency is 50% (see Fig. 5).

More sophisticated investigations of the heating scenario can be achieved
using spectral method simulations of the nonlinear dynamics [51,53]. Such an
approach is superior to the turbulence phenomenology in the sense that it does
not assume that the turbulence is self-sustaining, allowing for the possibility that
the heating mechanism may not be viable. When performing such simulations,
the basic equations of RMHD, (la,b), require augmenting with terms which
account for the forcing, reflection, and transmission. In the simplest case [51]
this is achieved using terms which are essentially the same as their analogs in
the phenomenology, i.e., F' is a body force, and R* and T are imposed rates.

Figure 4 shows time histories of several interesting quantities from a (peri-
odic) RMHD simulation of this kind [51], with Reynolds numbers of 800, F' = 1,
R = R* = 0.5, and T = 0.3. The initial conditions involve a seed level of tur-
bulence, with the excited fluctuations having their perpendicular wavenumbers
restricted to the band 2 < k; < 6 and an approximately flat spectrum in kH. It
is evident that a statistically steady state is reached after a few tens of box cross-
ing times. These states are characterised by mixed (normalised) cross helicity!?
0. = (v-b)/({(v?) +(b?)), with around 10% of the energy contained in the strictly
non-propagating (i.e., 2D) fluctuations. Note that the mean-square current is,
visually, a much more intermittent quantity than the energy. Examination of the
probability density functions of these quantities confirms this impression, with
strongly non-gaussian tails characterising the current fluctuations [51]. Since in

12 As well as being the average correlation between v and b, cross helicity is also
interpretable as the difference between the energy in upward and downward type
fluctuations, e.g., [35,62,63]. Angle brackets denote spatial averaging.
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Fig. 4. Time histories from a 2562 x 4 periodic RMHD simulation of the heating model
discussed in the text. Shown are the energy, normalised cross helicity (which is bounded
by +1), mean-square current, and energy loss rates. In the lefthand panels, the lower
traces are the contributions to the totals due to the 2D (non-propagating) components.
The unit of time is a box-crossing time for an Alfvén wave (after [51])

this incompressible model the heating is due to viscous and resistive dissipation,
it is no surprise that the dissipation is also quite intermittent [64,65].

Examination of energy spectra and transverse cross sections in coordinate
space (not shown; see [51]) emphasizes that the dynamics is turbulent with
broadband spectra, transient current sheets, and reconnection events clearly ev-
ident. It is also shown that the long-time statistical properties of the system
are insensitive to the total energy of the initial fluctuations, indicating that the
heating process is robust.

A central question which all coronal heating models must address concerns
their efficiency. Given an input source of energy, how much of it can be sustain-
ably converted into heat within a few solar radii? In the case of the phenomenol-
ogy and the simulations, it is straightforward to calculate the steady-state rates
of dissipation and transmission. Figure 5 plots these two quantities (normalised
to the energy injection rate) for a range of reflection rates. The data points are
from the RMHD simulations [51] while the curves are calculated using the phe-
nomenology solutions [49]. Remarkably, the results from the simple one-point
phenomenology are in excellent accord with those from the full simulations. A
key feature which the plot reveals is that even when the reflection rate is very
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Fig. 5. Rates of dissipation and transmission for the one-point phenomenology (curves)
and forced periodic RMHD simulations with resolutions of 256% x 4 (squares) and
642 x 4 (other symbols), respectively corresponding to Reynolds numbers of 800 and
200. Quantities are normalised to the energy injection rate, so that the dissipation rate
is equivalent to the heating efficiency. Note the excellent agreement between the (sim-
ulation) data points and the solutions to the phenomenology, even when the reflection
rate is small

weak (e.g., ~ 0.01), the models still yield heating efficiencies of ~ 10%. Note that
if the reflection is switched off in either model, the dissipation in the unforced
modes decays to zero, so that sustained turbulent heating is not achieved [51,52].
This point is elaborated on shortly.

In summary, results obtained from the phenomenology and the periodic sim-
ulations indicate that heating efficiencies of 10%—50% are easily attainable—
provided that some reflection of the upward propagating low-frequency fluctua-
tions takes place. Given even rather small reflection rates, counter-propagating
waves will drive—and sustain—a quasi-2D cascade for a wide range of initial
conditions [51].

While these results are encouraging it is evident that they are only a first
step. Some of the limitations concern the periodic nature of the boundary con-
ditions and that forcing, reflection, and transmission are included in an ad hoc
fashion. Models which include these effects in a more self-consistent way are
clearly needed.

Recently, Dmitruk et al. [52] have extended the above models by including
modeled (mean) coronal density and magnetic field profiles, with the reflection
and transmission calculated from these in a consistent manner. Moreover, their
heating model also better addresses both the transport of the fluctuations and
the driving at the lower boundary. The basic physics is a more realistic imple-
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mentation of the scenario sketched in Figure 3, with upward propagating fluctu-
ations injected at the base, initial conditions involving a seed level of broadband
(RMHD) turbulence, and (height dependent) reflection coefficients proportional
to the derivative of the large-scale Alfvén velocity. A key feature is that the
boundary conditions are no longer periodic.

Using this model Dmitruk et al. investigated the following question: Under
what circumstances can one sustain incompressible (R)MHD turbulence in open
geometries when it is driven using unidirectionally propagating Alfvén waves?13
In these circumstances it is convenient to use the Elsésser potentials as the ba-
sic variables, rather than the vorticity/vector potential formulation employed
in (1a,b). Specifically, one introduces the potential for the upwards-type fluctu-
ations, f = ¥ — a, and that for the downwards-type ones, g = ¥ + a. We use
the word “type” to indicate that not all the fluctuations are propagating, since
in general the averages of f and g over the parallel coordinate (denoted s rather
than z in [52]) are non-zero. These averages correspond precisely to the exis-
tence of non-propagating “structures,”'* which we refer to as 2D modes, e.g.,
vop where dsvop = 0.

To address the above question, Dmitruk et al. employed a simulation domain
which is periodic in the transverse directions but bounded in the parallel direc-
tion by the planes s = 0 and s = 1. The equations solved are a modification of
the basic RMHD equations which allow for a mean field which depends on s, and
thus they include reflection in a self-consistent way [61,66,67]. This would intro-
duce a term ~ jdBy/dz in (1a), for example. The numerical algorithm employs
Fourier-Fourier-Chebyshev spectral collocation with second-order Runge-Kutta
timestepping.

Two types of “open” boundary condition were employed on the end s-planes.
They correspond to setting either f = Fy(z,y,t) on s =0and g =0 on s = 1,
or to setting dsf = Fo(z,y,t) on s = 0 and dsg = 0 on s = 1 (i.e., Dirichlet
versus Neumann boundary conditions). Since waves are permitted to propagate
freely out of the box, there is no need to control the “other” potential on the top
and bottom planes as it corresponds to the outward propagating characteristic
there. In both cases, the flux of downward waves at the top boundary is enforced
to be zero. Physically, one may think of the two types of boundary condition as
allowing or disallowing the presence of non-propagating 2D fluctuations [52].

This leads to four fundamentally distinct situations to investigate, made up
of the combinations of the two types of boundary condition paired with the
presence or absence of reflection (which depends on whether By is a function of
s or uniform). Dmitruk et al. examined these situations by driving the s = 0
boundary with an Fy or Fy which was monochromatic, meaning that it was
sinusoidal in time, with fixed frequency v, and that only a single transverse

3 It is well known that in incompressible MHD there are no nonlinear interactions
when only unidirectionally propagating fluctuations are present, i.e., either v = b
everywhere, or v = —b everywhere.

4 Note that these structures are not assumed to be static or even steady. In general
they should be treated as 2D or Q%D turbulence.
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Fig. 6. Heating efficiencies for two runs with boundary conditions which support the
presence in the system of non-propagating structures. Left: ratio of the dissipation rate
to the (period-averaged) input wave energy flux. Right: fraction of the dissipation rate
which is due to the undriven modes. Top row: no reflection. Bottom row: reflection.
Note that the unit of time is Tpox

wavevector (Fourier mode) was so driven. In order to make connection with
the coronal context, they employed low-frequency driving with v = 0.1/7pox-
Detailed discussion and explanation of the results is given in their paper [52].
Below we summarise their main result.

Figure 6 displays the heating efficiencies, as a function of time, for two runs
from [52]. The plots on the top row are for the case where the boundary con-
ditions support structures but there is no reflection (i.e., dsg = 0, By uniform).
Since there is then no mechanism for generating downwards fluctuations, the
cross helicity eventually becomes unidirectional. This can be interpreted as the
turbulence being turned off due to dynamic alignment!® [62,63]. Thus, although
there is significant turbulent dissipation for tens of 7.y, this is not sustained
over longer timescales. By contrast, the structures-plus-reflection situation (bot-
tom row) does yield sustained turbulent heating, and, moreover, does so with
considerable efficiency.

In the other two cases (not shown; see [52]), where there are no structures
present, the turbulent dissipation is negligible after a few 7,0x. In the absence of
reflection this occurs because although the initial conditions contained both up-

5 Maron and Goldreich [68] have recently rechristened dynamic alignment as “growth
of imbalance”.
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wards and downwards propagating fluctuations, the downwards ones propagate
out through the lower boundary in one box-crossing time, leaving only unidi-
rectionally propagating modes. On the other hand, when reflection is active it
facilitates the production of additional downward propagating modes. However,
these only interact with the propagating upwards modes (since no 2D modes
are present), and the interaction time is too short to allow a significant level of
turbulence to be maintained.

Thus, it is only in the “reflection plus structures” cases that sustained tur-
bulent heating ensues. Examination of the energy spectra for these cases verifies
that the turbulence is broadband, with the suggestion of a (short) inertial range.
As in the periodic RMHD simulations, intense transient current sheets are again
evident [52].

It is well known that (incompressible) MHD turbulence, and hence turbulent
heating, cannot be sustained solely by unidirectionally propagating waves, e.g.,
[62,69-72]. The conclusion from the above studies is that two conditions must be
satisfied if turbulence in magnetically open regions is to be sustained. These are
that (i) there exists some source of downward fluctuations, such as reflection,
and (ii) low-frequency “non”-propagating fluctuations, sometimes referred to
as structures or quasi-2D turbulence are present. In other words, in the open
boundary situation, reflection is no longer the only crucial parameter. It is also
necessary to have boundary conditions which support the sustained existence of
non-propagating modes.

3.2 Coronal Loops

RMHD-based models for the heating of magnetically closed regions have been in
use rather longer than those for open regions, e.g., [73-89,8,47,65]. Mandrini et
al. [90] have given a recent review of loop heating models in general, and Gomez
et al. [91] have reviewed models which employ MHD turbulence. Here we note a
few points regarding heating in loops and the RMHD approximation. We make
no attempt to be comprehensive in our treatment, referring the interested reader
to the above reviews for further details.

The common basic idea—often referred to as the Parker model [73]—is that
the very high electrical conductivity of the photospheric and coronal plasma
allows photospheric motions to drive magnetic stresses in the corona,6 twisting
the field-lines and generating transverse components to the velocity and magnetic
field fluctuations. As mentioned in the introduction, the fundamental question is
how the energy in these large stresses is transferred to smaller scales, where it can
be efficiently dissipated. MHD turbulence is a naturally appealing mechanism
for achieving such nonlinear energy transfer [91]. Comparisons of the scaling of
the heating laws for loop heating models with coronal observations [90], suggest
that models involving the gradual stressing of the magnetic field are generally
in better agreement with the observations than those involving driving by high-

16 The “frozen field” approximation.
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frequency fluctuations (aka “wave heating” models), although the latter are not
ruled out.

The point we wish to stress here is the similitude between heating mod-
els for magnetically closed (loops) and magnetically open (holes) regions when
the motions driving the heating are slow. This similarity exists despite the dif-
ferences between the boundary conditions and the order of magnitude of the
involved length and timescales. In effect, a coronal loop driven (at both ends) by
low-frequency photospheric motions can be thought of as an open coronal region,
where partial or total reflection!” is imposed at both the upper and lower bound-
aries. This “end reflection” provides the population of counter-propagating fluc-
tuations needed for sustainment of incompressible MHD turbulence. Features like
perpendicular small-scale structures (current sheets), transverse Kolmogorov-like
spectra, and intermittent dissipation are strikingly similar in both closed [91] and
“open plus reflection” [51] coronal simulations, confirming the analogy.

In closing this subsection we note that some coronal loop heating studies
(e.g., [8,64]), state the RMHD (global) timescale condition as w1, > 7a, which
superficially appears to contradict the the condition stated in Sect. 2.1. This
apparent problem is actually a consequence of different definitions of 74. In the
context of coronal loops, 7a is often defined to be the time it takes an Alfvén
wave to traverse the loop lengthwise. Herein, however, this timescale is denoted
by Thox, since it is independent of the wave’s k. The statement that the crossing
time for the loop (7hox) is less than the timescale based on the (perpendicular)
structure of the fluctuations (7n1,) is closely connected with the nature of the
motions perturbing the system. The slow motions of the photospheric plasma
induce quasi-static low-frequency perturbations in the loop plasma. It is essen-
tially a matter of definition that such low-frequency motions are associated with
waves that “do not fit” within the box, since in an unbounded medium they
would have wavevectors kp, which satisfy kpnLpox << 1. Nonetheless, one finds
(see [64,89]) that i, (kph) ~ Thox, S0 that the RMHD condition ermup (kpn) < 1
is still marginally satisfied even for the shortest wavelength (quasi-static) Alfvén
modes, for which 74 (k) = Tpox-

4 Conclusions

In this brief review we have attempted to show why reduced magnetohydrody-
namics (RMHD) models can be made relevant to applications in coronal heat-
ing. In particular, RMHD can capture the physics of propagation, reflection,
and cascade of incompressible MHD fluctuations in models of the lower solar
atmosphere. The essential reasons behind the viability of RMHD models for
the corona are that the Alfvén speed is large, the plasma beta (thermal pres-
sure/magnetic pressure) is small, and the characteristic lengthscales across the
large-scale magnetic field are quite likely much smaller than those along it. In
addition, there is expected to be a plentiful supply [14] of energy to drive the

17 The degree of reflection depends on the nature and strength of the photospheric
velocity field.
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quasi-2D turbulence, in the form of low-frequency Alfvén waves (generated in
the photosphere and/or the chromosphere).

Two clear conclusions have emerged from RMHD studies of low-frequency-
driven turbulent heating in regions of open magnetic field-lines, such as coronal
holes. The first is that some mechanism for generating counter-propagating fluc-
tuations from unidirectional ones is essential to these models. This requirement
has been investigated using both ad hoc parameterizations of reflection, as well
as models in which the reflection rates are computed consistently from the Alfvén
speed profile that is implied by the model adopted for the background coronal
magnetic field and density. In each case the conclusion is that turbulence, cas-
cade, and efficient heating can be maintained given sufficient reflection to sustain
a population of inward propagating-type modes. This population, surprisingly,
may be adequate at a level of just a few percent of the total turbulence en-
ergy budget. The second feature that has emerged clearly in these models is
the importance of the non-propagating structures (2D turbulence) to the sus-
tainment of the turbulent cascade. The physical reason for this is plain enough:
all modes other than the non-propagating ones drain out of the system in an
Alfvén crossing time for the system. For a model to work without quasi-2D
structures being present, turbulence must be fully replenished through nonlin-
ear processes in a time shorter than this. This is possible, but difficult. Models
in which non-propagating structure is permitted have the advantage that 2D
fluctuations (which are highly turbulent) stay “in place”, in spite of propagation
effects that affect other modes.

An observation that can be made at this point is that the differences be-
tween heating models for open field-line corona and coronal loops may not be
so great, when the analogy between the role of the reflection and the pairing of
photospheric boundaries (footpoint motions) is taken into account. Each ensures
that a supply of counter-propagating fluctuations will be maintained. While the
lengthscales and other physical parameters in loops and coronal holes can be
quite different, it still may be that a similar style of model is relevant in both
cases.

One aspect of heating models we have not addressed here is whether a suf-
ficient supply of fluctuations reaches the coronal base, a problem that impacts
most if not all coronal heating models. Although we shall not discuss this in
any detail, it is worth noting that only a small fraction of the fluctuation energy
that is apparently available in the photosphere is needed [92], and that observa-
tions suggest that fluctuations with the required 20-30kms~! amplitudes may
be present at the coronal base [11,93].

Another subject that we have not delved into is the issue of kinetic dissi-
pation [34]. In the RMHD cascade models it is very clear that the dissipation
occurs in randomly formed and highly dynamic sheets or filaments of electric
current density. This gives rise to phenomena associated with highly turbulent
reconnection [94], including turbulent dissipation of energy into heat. In a cas-
cade picture the exact details of the mechanism of dissipation are not expected
to influence the rate of dissipation itself. However, it is a matter of considerable
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interest to identify the processes that would absorb the flux of cascaded energy.
This is especially true in the corona, which is collisionless, so that the dissipative
terms typically employed in turbulence calculations are probably inappropriate,
particularly those based on scalar (and uniform) resistivity and viscosity. (They
do, however, provide the sink at high wavenumber needed for the turbulence
picture to function properly.)

A complete picture of coronal dissipation associated with quasi-2D cascade
has not yet been developed. However it seems likely that two recently investi-
gated elements will come into play. Studies of laminar spontaneous reconnection
(e.g., [95]) indicate that Hall effects become important and that the reconnection
zone takes on a characteristic structure determined by electrons and protons at
the scale of the ion gyroradius or at the ion inertial scale. Secondly, the paral-
lel electric fields associated with turbulent reconnection should rapidly produce
strong electron beams. In their nonlinear phase these beams form electron “phase
space holes” that propagate rapidly along the large-scale magnetic field. (These
are observed in the geospace environment in conditions that are analogous to
the corona in some interesting ways. See, e.g., [96]). Whether or not the scat-
tering of protons by these high-frequency electron phenomena can give rise to
the high perpendicular temperatures observed in the corona by spectrometers
such as UVCS [9,10] has yet to be determined. If it can, then this mechanism
would provide an alternative to the direct cyclotron damping mechanism often
invoked for coronal heating [14], and one that is compatible with the perpendic-
ular cascade. In contrast, direct cyclotron absorption appears to require a strong
parallel cascade [97], which is difficult to justify based on MHD turbulence the-
ory (see e.g., [34]). In any case, the wealth of possible kinetic activity within
and near turbulent driven small-scale reconnection sites should provide ample
opportunity for conversion of MHD energy into heat.

We foresee that there is a wide scope of future possibilities to extend, gener-
alize, and improve the current generation of turbulence models for heating the
corona. In the evolution towards more realism, prominent improvements would
be better boundary conditions, better models for transport effects, and improved
models of the background coronal fields themselves. Ultimately, of course, the
large-scale coronal fields, and even the accelerated solar wind, should be included
dynamically in such models. At that point the entire framework would require
generalization, and a self-consistent model would emerge. While turbulence and
cascade of MHD-scale fluctuations will remain a feature of a self-consistent coro-
nal heating formalism, it remains to be seen how far in the evolution of these
models the convenient and compact RMHD approximation will carry us.

Appendix A: Alternative Derivations of RMHD

The original derivation of the RMHD equations was presented by Strauss [24],
motivated by geometries and plasma conditions typical of fusion devices (e.g.,
low (3,, large aspect ratio tokamaks, significant nonlinearity). The treatment
was perturbative with the small expansion parameter being the aspect ratio
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€Strauss = L1 /fH, where the ¢’s characterise typical lengthscales perpendicular
and parallel to the mean magnetic field, By. Ordering the fully 3D variables and
equations in €strauss and then dropping (i) all toroidal effects, and (ii) all terms
of the same order as the toroidal ones, yields the RMHD equations.'®

Subsequently, Montgomery [25] rederived the RMHD equations from a differ-
ent perspective, based on the assumption of incompressible fluctuations, which
although weak in amplitude (relative to a strong By), were still strongly nonlin-
ear. In this case the small expansion parameter is expressible as epjony = 0b/ Bo,
where b is the RMS magnetic fluctuation. This derivation also retained the vis-
cous and resistive dissipation terms, and included discussion of the distinctive
nature of spectral transfer in RMHD (see also [32]).

The conditions under which low Mach number compressible 3D MHD systems
can be described using the equations of 2D or 3D incompressible MHD, Q%D in-
compressible MHD, or RMHD were carefully considered by Zank and Matthaeus
[26], from both physical and rigorously mathematical standpoints. As a small pa-
rameter they employed the sonic Mach number, ez = Mg = ug/cs, where ug
is the RMS velocity and ¢ is the sound speed. As they showed, RMHD is the
appropriate leading-order description when the system is characterised by (i) a
small aspect ratio, with an applied uniform magnetic field along the “long” di-
mension, (ii) either 3, < 1 or 3, ~ 1, and (iii) elimination of all high-frequency
(i.e., acoustic timescale or faster) modes.

Starting from the fully 3D compressible MHD equations with 3, < 1, Bhat-
tacharjee et al. [40] have derived a “four-field” system of equations for situations
where the mean field By is allowed to vary slowly. These equations reduce to
those of RMHD in the case that Bg is uniform.

The derivation sketched in Sect. 2 is based on the requirement that the
(global) nonlinear timescale is not slower than the wave timescale, and it is
easy to see that this involves the ratio of the Strauss and Montgomery small
parameters:

TN_L — K_J- ﬂ — g_l@ — €Strauss
TA ob B(] f” ) E€Mont

= €ERMHD 5 1. (7)

As in the Zank and Matthaeus derivation, this approach emphasizes that it is
the timescales of the fluctuations which determine whether or not RMHD is an
appropriate approximation to use. In this sense these derivations unify those of
Strauss and Montgomery.

Recently, several other derivations related to the RMHD equations have been
given. Gazol et al. [99,100] showed that when the compressible MHD equations
are perturbatively expanded using the Alfvénic Mach number as the small pa-
rameter, one also obtains equations related to the RMHD ones. Specifically, the
transverse dynamics is governed by the usual RMHD equations while the paral-
lel dynamics (with the same timescale) is governed by a generalized derivative
nonlinear Schrodinger equation. In related simulation studies, Del Zanna et al.

18 Strauss [24] notes that his motivation for deriving the RMHD equations was as a 3D
generalisation of a (nonlinear) 2D approximation derived for tokamaks [98].
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[101,102] have shown that the propagation of Alfvén waves in a 3D compressible
medium can lead to the formation of perpendicular structures, which may be
connected with RMHD dynamics. Similarly, Laveder et al. [103] showed that
in a system governed by the Hall-MHD equations, driving with finite ampli-
tude dispersive Alfvén waves can produce transverse dynamics governed by the
RMHD equations. In such cases, RMHD dynamics coexists with the propaga-
tion of small-scale Alfvén waves, thereby providing an example of the broader
validity of the RMHD description.

Note that none of these derivations of RMHD are linearizations of the MHD
equations: in RMHD the nonlinearities are always important (by construction).
Indeed, there is no linearized version of RMHD, since the nonlinear terms cannot
become small relative to the the linear (wave propagation) terms without violat-
ing the timescale assumptions used to derive the RMHD equations. RMHD fluc-
tuations are intrinsically nonlinear.!® Nonetheless, as discussed in Appendix B,
the non-RMHD modes, which contain the linear wave solutions of the incom-
pressible MHD equations, can still be simulated within the RMHD equations.

Finally, we note that the “critical balance” condition employed in a consid-
eration of the energy spectra in strong incompressible MHD turbulence [29] is
equivalent to the modal RMHD condition egmup (k) < 1, in the sense that crit-
ical balance, defined as w1, = Ta, describes the RMHD boundary (cf. Fig. 7a).

Appendix B: Self-Consistency of RMHD Simulations

To obtain the k-space boundary curve which (roughly) separates the RMHD
and non-RMHD fluctuations it is necessary to know the functional forms for
the dependence of the energy spectrum on k; and k.. For example, assuming
a powerlaw perpendicular spectrum ~ k|, and an approximately flat parallel

spectrum, the modal RMHD condition, 7nr (k) S 74 (k), becomes k| 2/ 37

For the a = 5/3 Kolmogorov case this becomes k| kg 2. Such a curve is
sketched in Figure 7a. Note that this description of the limits of applicability of
RMHD can be no more that an approximation in general, since turbulence may
not be driven or steady, as would be required to attain a strict (inertial range)
powerlaw; also, the dependence of the spectrum upon k, is likely to be more
complicated than that assumed above.

An interesting point then arises in connection with simulations employing the
RMHD equations. Since these equations are valid for RMHD fluctuations, they
should not, strictly speaking, be used to evolve non-RMHD modes. However,
as Fourier-space simulation domains are often rectangular in shape, the set of
excited fluctuations is likely to include both RMHD and non-RMHD modes, as
indicated in Figure 7a. One is then led to consider the self-consistency of such
simulations, and in particular whether or not non-RMHD modes behave in an
(essentially) correct fashion when simulated via the RMHD equations.

19 The exception to this is the subset of RMHD modes which are actually 2D (i.e., they
have k| = 0). Hence, for these modes there is no parallel-propagation timescale with
which to compare their nonlinear timescale.
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Fig. 7. (a) Cartoon sketch of the (spectral) boundary between the RMHD modes and
the non-RMHD modes. The system is assumed to be in approximate steady-state,
with an energy spectrum which is Kolmogorov-like in the perpendicular direction and
approximately flat in the parallel direction. A typical simulation domain (dotted) is
also indicated. (b) Indications of the direction and strength of spectral transfer for
RMHD and non-RMHD modes. The width of the arrows suggests the strength of the
transfer

In the case of periodic boundary conditions it appears that the situation is
indeed self-consistent. Figure 8 shows results from forced?® RMHD simulations
at resolution 642 x 32 and Reynolds numbers of 200. Shown are the steady
parallel energy spectra E,(k.) = [ E(ky, ky, k) dkydk,, as a function of k., for
five values of By ranging from 1/2 to 8. The simulations from which the plots are
made all start with identical initial data and Reynolds numbers, with only the
value of By different in each run. Note that the values of By are all large, since
the physical mean field is given by By/e (see Sect. 2.1), where € is considered to
have the same fixed value in each simulation.

The solid curve is for the “standard” RMHD situation of By = 1. Clearly,
larger values of By lead to spectra which are significantly steeper and therefore
associated with weaker parallel cascades. There is even some suggestion of a
range where the falloff is exponential, especially for the larger values of By.2!

Our interpretation of this result is that the essential physics for the non-
RMHD modes is still retained in the RMHD equations. More specifically, counter-
propagating Alfvénic wavepackets will only overlap for a time ¢ ~ X\ /(2V4),
where )| is a parallel lengthscale characteristic of the packets. If this time is
shorter than the corresponding mni, then the interaction generates destructive
interference rather than a spectral cascade.

20 The forcing consists of driving a unidirectional Alfvén wave with a k = (1,1,1).

2l The increases at the highest values of k., appear to be real properties of the numerical
approximation and we suspect they are associated with energy “splashing” at the
max k. “walls”, since there is no dissipation in this direction.
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Fig. 8. Steady parallel energy spectra E (k) for forced 64% x 32 RMHD simulations
with various values of By. From top to bottom the values of By are 1/2 (dots), 1, 2,
4, and 8 (long dashes). Note the steeper spectra for larger By, indicating a weakened
parallel cascade. The heavy (roughly) horizontal line is the initial condition

We close with a physical argument as to why the parallel spectrum could
be exponential in k,.22 In the interaction of two Fourier modes, most of the
excitation will be transferred to higher k,, at nearly fixed k, (see Fig. 7b).
However, some excitation will undergo parallel spectral transfer to a new k..
The process then repeats at this (typically larger) k, and such a survivalist
process could easily produce an exponential spectrum in k,. A fuller discussion
of the topic of this appendix is being prepared for publication.
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