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Abstract. We present a candidate mechanism for heating of the solar corona, via the interaction of
(chromospherically-generated) A1fven waves, their reflections, and quasi-two dimensional (relative to the
mean magnetic field) MHD turbulence. The non-propagating nature of the latter means that the restrictive
Alfven timescale constraints associated with high frequency wave heating models are avoided. A phe-
nomenology for this mechanism is described here, and "proof of concept" support from reduced MHD
(RMHD) simulations is also discussed. &timates of the achievable heating efficiency based on turbulence
models are favorable, and encourage further investigation of the model's quantitative feasibility.

INTRODUCTION

FIGURE 1. Cartoon sketch of the basic physics under-
lying the proposed coronal heating mechanism.

ones, with wavevectors kQ almost perpendicular to
the (average) coronal magnetic field Bo-then the
waves can pump the turbulence (14, 15, 16, 17). At
large Reynolds numbers, the quasi-2D fluctuations
engage in a transverse turbulent cascade involving
successive reconnection of poloidal flux structures,
thereby transferring energy to small (perpendicular)
scales where it is dissipated. Related studies using
solar wind parameters suggest that excitations with
highly oblique wavevector can damp due to both ion-
cyclotron damping and other processes, such as Lan-
dau damping (18, 19).

Several aspects of the model warrant comment.
Motivation is dually provided by observations, where

It seems likely (1, 2) that a physically accept-
able model for origin of the high latitude fast so-
lar wind will involve some process(ffi) which produce
significant heat deposition within the first several so-
lar radii above the photosphere, in order to account
for the observed rapid acceleration of the wind (3).
Thus, the coronal heating and sol&r wind acceleration
problems are tied together. Theory and observations
also indicate (4, 5, 6) that the magnetic field plays a
crucial role in the heating process, with Alfven waVffi
and magnetic reconnection as probable agents. Here
we present a mechanism for the heating of coronal
hole plasma which takes thffie featurffi into account
while avoiding the pitfalls of wave heating models
which rely on high frequency waVffi (4,7,8).

The basic physics of the mechanism is shown in
Figure 1. The fluctuations are considered to con-
sist of two interacting components: parallel propa-
gating Alfven (aka "slab") waVffi and quasi-two di-
mensional (2D) MIlD turbulence. The waVffi drive
the turbulence and the latter dissipates the energy at
small perpendicular scalffi. Specifically, we assume
that the continual energy supply for the turbulent
heating arisffi from (approximately) Alfvenic fluctu-
ations, generated in the chromosphere. Thffie prop-
agate up into the corona where some fraction experi-
ence non- WKB reflection off the large-scale density
and field gradients (9, 10, 11, 12, 13).

When sufficient fluctuation energy resides in a dis-
tinct set of modffi-namely, low frequency quasi-2D
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With the above assumptions it is straightforward
to construct a two-component ("slab + 2D") trans-
port model for the coronal (hole) fluctuations, draw-
ing on related models for solar wind fluctuations
(26, 27, 28) and phenomenologiffi for homogeneous
MIlD turbulence (29). We assume that the fluctu-
ations are incompressible here, although this can be
relaxed to near incomprffisibility (21) without undue
hardship. Denote the energy of the upward (down-
ward) high frequency slab waVffi by w: (w~). Sim-
ilarly, let the energy in the quasi-2D low frequency
fluctuations be z~, with associated energy-containing
length AL. In place of an equation for AL we work
with one for L = z2AL' where z2 = (z~ + z:)/2.
Collecting the (inhomogeneous) transport terms on
the left and the turbulence phenomenology terms on
the right, we obtain

~

w- w+z. .L% 2W=F = -,\1- I \.L)

2

L:i:Z~:f:MD=-Q~, (2)

U D
at +U.VL+(V.2)(1-Z2)L=(Q-{3)z~, (3)

:i: {)
L = 'at :f: VA. V =F (V. VA), (4)

8L

significant fractions of the fluctuation energy are in-
ferred to be quasi- 2D (20), and by results from theory
(21,22,23) and simulations (14, 15, 16,24,17). The
latter show that plasmas with a strong Bo and/or
fJ « 1, such as the chromosphere and corona, dy-
namically favor development of states dominated by
quasi-2D and slab-like modes.

Slab modes, of course, propagate at the Alfven
velocity V A, so that in the absence of reflections
or couplings, their energy would be rapidly trans-
ported through the corona. Modes with short enough
wavelengths will undergo WKB reflections; however,
in the corona such waves are high-frequency and
it is unclear whether there is sufficient energy in
this frequency band to provide the requisite heat-
ing (4, 7). Fortunately, lower frequency modes can
undergo non-WKB "mixing" reflections (25) off the
gradients in the mean fields. In the corona such gra-
dients are inferred to be strong so that significant
non- WKB reflection is likely to occur.

The non-propagating nature of the quasi-2D
modes is important: for these modes the associated
Alfven frequency UJ = kQ .V A ~ 0, so that wave
effects are of secondary importance. Thus the en-
ergy of this component is transported outwards at
essentially the flow speed U, which is much less than
~ in this height range. As a consequence, heating
resulting from dissipation of the quasi-2D modes oc-
curs more or less (spatially) in place, and at about
the right height to fit with observations.

In addition, quasi-2D fluctuations are only weakly
affected by Bo, and thus the heating rate for these
modes is also ffisentially independent of the strength
of Bo. This may help explain the approximate con-
stancy observed for quantities like the solar wind
mass flux and coronal temperature. Details aside,
the main tradeoff in the present model relative to
models relying upon high frequency wave damping
(7) is the following. For damping of high frequency,
parallel propagating waves, the cascade in the par-
allel direction in wavenumber is exceedingly slow (8)
and direct cyclotron rffionance absorption occurs for
progressively lower frequency since the cyclotron fre-
quency decreases with altitude. The present model
can begin with waVffi having essentially the same ori-
gin as envisioned in the above models. However, in
view of the rapid transverse cascade, we suggest that
the restriction on having power in high frequencies
is relaxed. In fact, because reflection is expected to
be more efficient at lower frequency, the mechanism
we propcse should actually work better for low fre-
quency wave input. This may be an advantage if low
frequency fluctuations are favored in the generation
mechanism, as we suspect is the case.

i i III

1~I~I

where z' = (z~z- + z:z+)/(z~ + z:) is an average
Elsasser velocity, the effective eddy-turnover time is
T = ALl z', and the linear Lx operators represent
WKB effects in the limit ~ » U. Non- WKB ef-
fects appear in connection with the "mixing" op-
erator M = \7. VA + ~ \7 .BOj .As the density
and mean field vary strongly in this region of the
corona, mixing effects are expected to be strong (25).
There are no mixing terms in the slab equations since
such waves have an energy difference of zero. Typi-
cally the MIlD Taylor-Karman constants take valu~
Q = 1 and fJ = 0 to 1 (29, 27).

Closure of the model requir~ an equation for
D = (z+ .z_), the energy difference of the quasi-2D
fluctuations. One appropriate to coronal conditions
is under development; however, motivated by numer-
ous simulation results, here we use the approximation
Dlz2 = const < O.

Analytic solutions to Eqs. (1-4) can be obtained
when the RHSs are neglected and simple forms cho-
sen for p, U, and Bo (e.g., powerlaws). For more
realistic profiles of the mean fields (30, 31) numerical
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solutions will probably be required, perhaps supple-
mented by asymptotic analysis of the equations.

Note that the models discussed above are of an
energy-containing type, i. e., spectral information has
been integrated out. Each component is character-
ized by its relevant Elsasser energies, along with, po-
tentially, a lengthscale for each "energy," although
here we describe the model in its simplest incarnation
employing just the single characteristic length ).-1-.
The reflection and transmission coefficients, however,
include implicit dependence on various lengthscales.

tempts to direct a substantial fraction of its energy
into heat.

Connection with RMHD. It is also possible to
perform more sophisticated (spectral) simulations of
the homogeneous model based on the reduced MHD
(RMHD) equations (32, 33, 21). This approximation
to the strong Bo limit of the incompressible MIlD
equations can be interpreted as planes of 2D tur-
bulence coupled together weakly by long wavelength
Alfven waves. The nonlinear terms are no longer
modeled but calculated in full, with low-frequency
outward "pump" modes being forced, reflected, and
removed (r..- transmitted). Early results from these
simulations indicate that driving an initially pure 2D
state with just a single upward wave can lead to sig-
nificant and sustained heating. Thus in the RMHD
framework wave input and reflection is very capable
of driving roughly steady quasi-2D MHD turbulence.
These results indicate heating efficiencies (heating
rate/wave energy supply rate) that are comparable to
the order-one efficiencies seen in the ODE-based phe-
nomenological model. The RMHD test is more strin-
gent than the ODE-based test. It is also interesting
that the initial 2D turbulence stays essentially 2D.
There is some transfer of energy to quasi-2D modes,
but, perhaps surprisingly, not a great deal to the fully
3D modes (which RMHD supports). The 2D compo-
nent acts as a catalyst [see (17, 24, 16)] that allows
the interaction of upward and downward propagat-
ing waves to efficiently (i. e., resonantly) dissipate at
high perpendicular wave number. The RMHD sim-
ulations show that higher-order (nonresonant) cou-
plings are adequate to maintain this essential cat-
alytic function. The process is essentially nonlinear
and crucially dependent upon mode couplings of sev-
eral varieties (16). Nevertheless it seems to be ro-
bust.

Homogeneous Two-Component
Equations

While the above is perhaps the simplffit "waVffi
plus 2D turbulence" coronal heating model, it is
nonethelffiS still quite complicated. We therefore in-
troduce a related model which neglects most trans-
port effects while still including the pivotal ingredi-
ents of reflection, transmission, and turbulent decay.
Instead of considering the entire system indicated in
Figure 1 we consider a sub-box of (homogeneous)
coronal material, with boundary and initial condi-
tions chosen to emulate the behavior of a similar box
in the larger system.

Constant coefficients are used to model the supply
rate of wave energy (F), and the fractions of trans-
mitted (T) and reflected (R_) upward waves, and
reflected downward wavffi (~). The reflection and
transmission terms are interpretable as proxiffi for
mixing effects. This leads to a closed model, for now
including only the quasi-2D components, consisting
of just three equations,

z~z+ + F -R_z: + Ro+z~ -Tz:,
(5)

dz~
dt =-Q ~

dz~
dt

(6) CONCL USIONS
2

Z+Z- 2 2= -a--;:- + R- Z- -R+z+,
A+

~=- ~ [~ ]dt f3 Z2 dt . (7) The various numerical rffiults noted above provide
a "proof of concept" for the two-component (slab +
2D) coronal heating mechanism. Upwardly launched
Alfven waves can scatter (without satisfying WKB
restrictions) and then interact to drive and sustain
the initial seed of quasi-2D MHD turbulence. The
turbulence undergoffi magnetic reconnect ion and a
cascade of energy to small (transverse) lengthscalffi,
where dissipation and concomitant heating proceeds.
For the tffit cases considered so far, it appears to
be possible to achieve 50% or better efficiency, i.e.,
more than half the injected wave energy is deposited

Similar equations for the slab energiffi can also be
written down. Ignoring the (nonlinear) terms model-
ing turbulent transfer, the equations are linear ODEs
with simply obtained analytic solutions. Numerical
solution of the full nonlinear ODEs reveals that the
system evolvffi towards a steady-state where the en-
ergy leaving it is approximately equipartitioned be-
tween transmission and quasi-2D turbulent dissipa-
tion, for a wide range of parameters (manuscript in
preparation). In other words, the driven system at-

~
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in the (model) corona as heat. It remains to be seen
whether or not the quantitative features are consis-
tent with observational constraints.

A crucial feature of the model is the essentially
non-propagating nature of the quasi-2D modes (com-
pared to the fast Alfven speed). Thus, for these
fluctuations, the conversion of energy into heat takes
place at roughly the same height as the injection of
turbulent energy does (via resonant couplings with
slab waves). The plentiful Alfven wave energy is
thus damped indirectly, by coupling to quasi-2D tur-
bulence and subsequent energy cascade to (small)
transverse scales. Moreover, this occurs at a rate
independent of the mean field strength and over a
height range consistent with observational data. We
believe the mechanism is a promising candidate for
explaining some parts of the coronal heating prob-
lem, with current and future work hopefully clarify-
ing its role and importance.

We thank Prof. Dermott Mullan for illuminating
conversations. This work is supported by grants from
NASA (NAG5-7164), and the UK PPARC.
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