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Abstract. The issue of dynamical anisotropy in helical three-dimensional magneto-
hydrodynamic turbulence with a mean magnetic field By is investigated. Using
high-resolution direct numerical simulations, we follow the evolution of various
isotropic initial states characterized by their different values of the kinetic helicity.
The cross helicity and magnetic helicity of the initial conditions are also varied. In
agreement with earlier work, we find that such initial states become anisotropic in
of order an eddy-turnover time, with correlation lengths parallel to B, remaining
largely unchanged while finer scales are excited in the perpendicular directions.
Moreover, it is found that the development of both the anisotropy and the energy are
essentially independent of the initial level of kinetic helicity. The physics associated
with this latter feature is discussed.

1. Introduction

Kinetic helicity Hj, = 3(v- ), is a measure of the linkage and twist of the vorticity
in a fluid (see Sec. 2 for definitions), and has long been recognized as a concept of
importance in understanding and characterizing electrically conducting turbulent
flows. The generation of magnetic fields by dynamo action, for example in the in-
teriors of stars and planets, is thought to depend crucially on the presence of kinetic
helicity. Indeed, pioneering work on the « effect found that a lack of reflectional
symmetry in the underlying velocity field, associated with non-zero Hy, is a nec-
essary condition for the existence of a kinematic dynamo (Steenbeck et al. 1966;
Pouquet et al. 1976; Moffatt 1978; Krause and Rédler 1980). Moreover, in many
space physics and astrophysical systems, significant levels of kinetic helicity are
observed or inferred to exist, often as a consequence of (differential) rotation. It is
therefore of some interest and importance to elucidate the role of Hj, in plasmas.

Quite generally, helicities can be associated with the linkage and/or twist of the
field lines of the fields of interest (Moffatt 1969; Berger and Field 1984). In addition,
there is a connection with the handedness of a vector field, with the latter often
being restated in terms of a helicity; the presence of kinetic helicity, for example,
implies that the velocity field lacks reflectional invariance. Care is required when
considering these two aspects, however, since they are not equivalent (Frisch 1995).
On the measurement side, the extraction of various helicities, and their spectra,
from spacecraft datasets is also relatively easy to accomplish (Matthaeus et al.
1982, 1986).

Here, we examine the influence of kinetic helicity on the dynamical development
of three-dimensional magnetohydrodynamic (MHD) turbulence with a mean mag-
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netic field By. A particular focus is the impact of Hy on the development of spectral
anisotropy. As is well known, a large value of kinetic helicity corresponds to a strong
alignment of the velocity and vorticity fields. In the case of a non-conducting fluid,
such alignments reduce the nonlinearity of the Navier—Stokes equation, and hence
suppress the turbulent (inertial) transfer of energy. For a conducting flow, however,
the Lorentz force provides a second source of nonlinearity. Thus, one might expect
significant kinetic helicity to reduce the strength of the nonlinear MHD couplings,
but with the subsequent impact being less than in an analogous Navier—Stokes sit-
uation. We show here that this is not necessarily the case, even for very high initial
values of Hy,. In particular, the evolution of energy and the development of spectral
anisotropy appear to be largely independent of the initial level of kinetic helicity.

Previous work related to the topic considered here has mostly focused on the
By = 0 situation. This includes direct simulation studies with maximum helicity
(kinetic and/or magnetic) initial conditions (Pouquet and Patterson 1978), eddy-
damped quasinormal Marbovian (EDQNM) simulations (Frisch et al. 1975; Pouquet
et al. 1976), and a wide range of dynamo studies (e.g. Soward and Roberts 1992;
Hughes et al. 1996).

The remainder of the paper is organized as follows. Section 2 introduces the
governing equations and definitions for the relevant physical quantities and pa-
rameters. The numerical method employed is described in Sec. 3, with the results
discussed in Sec. 4. The final section summarizes our conclusions.

2. Governing equations and definitions

The zero-mean turbulent velocity (v) and magnetic field (b) fluctuations occurring
in an incompressible unforced magnetofluid, with a uniform (and static) external
magnetic field By also present, are assumed to evolve according to the standard
equations of incompressible three-dimensional MHD:

%w-vv: —Vp*+b-Vb+B;-Vb+vVy, (2.1a)
db )

o TV Vb =b- Vv By Vv Vb, (2.1Db)

V.-v=0, V.-b=0. (2.1¢)

Lengths are normalized on L, where the computational box is a cube of side 27 L,
while By, b (in Alfvén units), and v are measured relative to an arbitrary speed
Uy. Taking L and U, equal to unity, the unit of time, L/Uj, then corresponds to
one large-scale eddy-turnover time, provided that the total turbulent energy is also
chosen to be unity, as is done hereinafter. In deriving these equations, the plasma
density has been taken constant, and thus the total (mechanical plus magnetic)
pressure p* is not an independent dynamical variable. In view of the solenoidal
nature of v and b, a magnetic vector potential a and a fluid stream function 1 can be
introduced as usual (b = Vxa, v = Vxvy). Recall also that, in these dimensionless
units, the electric current j and the fluid vorticity o are respectively defined as
j = Vxb (the displacement current being neglected in MHD) and @ = V xv.

As is well known, the MHD equations are invariant under Galilean transforma-
tions, so that we take the mean velocity equal to zero, unlike the mean magnetic field
By = Byz, which cannot be transformed away. Collisional dissipation is included in



Kinetic helicity and MHD turbulence 181

the model via isotropic viscous and resistive terms, whose dimensionless scalar co-
efficients v and 7 are the inverse (kinetic and magnetic) Reynolds numbers. In real
plasmas, these transport coefficients take on a wide range of values. For example,
the magnetic Reynolds number can be of order 107 for fusion devices and of order
10'? in some astrophysical plasmas. Similarly, the magnetic Prandtl number v/7 is
of order 1077 in the Sun’s photosphere but of order 10! in the corona. In direct nu-
merical simulations of a turbulent plasma, values for v and 7 are constrained by the
maximum resolution that it is practical to use on the available computing systems.
Here we take n = v and use values of ﬁ or ﬁ The impact of anisotropic tensor
viscosity is discussed elsewhere (e.g. Montgomery 1992; Oughton 1996, 1997).

In the ideal (i.e. v = 7 = 0) continuum limit, (2.1) conserve an infinite number of
invariants and the ideal evolution is constrained by all these quantities. However,
when even a small amount of dissipation is present, only the linear and quadratic
invariants still play a key role (Kraichnan 1973). This follows since the invariance
of higher-order quantities requires the existence of excitation at arbitrarily small
scales. However, such scales are dynamically smoothed by the dissipative terms.
Similarly, since numerical simulations are inherently restricted to a finite set of
lengthscales, they too can only conserve at most the linear and quadratic invariants
— completely independent of the presence or absence of numerical dissipation. For
3D MHD, the quadratic invariants — termed ‘rugged invariants’ — are the total
energy E = 5(v’+b”) = EY + E®, the magnetic helicity H,, = 1(a-b), and the cross
helicity H, = %(v -b) (see e.g. Frisch et al. 1975). Although the kinetic helicity Hy =
%<V -m) is a rugged invariant for 3D Euler flows, it is not one for MHD systems. It is
nonetheless an important quantity, as noted in Sec. 1. Other bulk quantities useful
in characterizing the turbulent dynamics, although again not invariants of the ideal
MHD equations, are the enstrophy Q = %<m2>, the mean square current density J =
1(*). and the current helicity H; = 1 (b-j). Angle brackets denote volume averaging.

When analysing the simulation results, various normalized versions of the above
parameters are often relevant. These include the normalized cross helicity o. =
2H./F and its spectral form o.(k) = 2H.(k)/E(k), the normalized magnetic he-
licity spectrum o, (k) = kH,,(k)/E®(k), the normalized kinetic helicity spectrum
or(k) = Hy(k)/[KE"(k)], and the normalized energy difference op = [EY(k) —
Eb(k)]/[E® (k) + Eb(k)]. The dynamical information contained in these normalized
values is complemented by the geometric ‘mean alignment angle’ content of ratios
associated with Schwartz inequalities. For example, the globally averaged angle be-
tween the velocity and vorticity fields, @y, satisfies cos @ = (v - @)/ /(v?){@?) =
Hy/VQE®v. An alternative interpretation is that cos @y is the correlation coefficient
for the two fields. All of the normalized quantities defined in this paragraph are
bounded by £1.

Note that magnetic helicity is nof conserved when a mean magnetic field is present
(Matthaeus and Goldstein 1982; Stribling et al. 1994, 1995), a feature that has
recently provoked interest (Berger 1996, 1997; Matthaeus 1999; Montgomery and
Bates 1999).

Using the above equations, one can obtain an evolution equation for v - o:

(gt+v~V—VV2) (v-0)=-V. [(p—%UQ)O)]

O Owa
+m-ij+v-Vx(ij)—2y%%, (2.2)
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where B = By + b. Integrating over an appropriate volume then gives an evolu-
tion equation for the kinetic helicity. Clearly this is a rather complicated equation,
driven by both velocity-based and magnetically based nonlinearities, where the lat-
ter are responsible for the non-conservation of Hy (in the ideal limit). The advective
and dissipative terms are readily identified in (2.2), and the remaining terms alter
v - o via distinct processes. Evidently the strong alignment of either the vorticity
and the Lorentz force, or the velocity and the curl of the Lorentz force, is likely
to produce a sizable change in v - @. Note that a flow that is instantaneously non-
helical and/or irrotational will not remain so if V x(j x B) has a non-zero projection
on the velocity.

Finally in this section, we comment on the incompressibility assumption. The
theory of nearly incompressible (NI) MHD (Zank and Matthaeus 1992) indicates
that even in systems that are manifestly compressible, such as the solar wind, the
small-scale fluctuations are nonetheless approximately incompressible when, for
example, the plasma [ (ratio of thermal to magnetic pressure) is low, and the in-
itial fluctuations are not dominated by compressive elements (Zank and Matthaeus
1992). Indeed, in such situations, the leading-order equations governing the fluctua-
tions are precisely the equations of incompressible MHD. Observational, simulation,
and modelling support for the quality of this approximation is well documented (see
e.g. Tu and Marsch 1995; Matthaeus et al. 1996, 1998, 1999). Thus, the incompress-
ible results presented below are also likely to be of relevance to various compressible
space physics and astrophysical systems.

3. Numerical method and initial conditions

In order to investigate the development of anisotropy in helical flows, we numeri-
cally integrate the MHD equations (2.1) in a cube with periodic boundary con-
ditions using a dealiased Fourier—(ialerkin spectral code (Orszag 1971; Gottlieb
and Orszag 1977; Canuto et al. 1988). The equations are solved in Fourier space,
on a discrete grid with N modes for each spatial direction. The components of the
retained wavenumbers thus range between —%N +1 and %N . Aliasing removal for
the nonlinear terms is carried out by exploiting the ‘E rule’ (Patterson and Orszag
1971; Canuto et al. 1988). Time-advancement is achieved by means of an explicit
second-order Runge—Kutta scheme. Fields in Fourier space are denoted by the same
symbol used for the z-space representation, with the x or k argument made explicit
when ambiguity might result. Further details of the numerical method are available
in Oughton et al. (1994).

Initial conditions (ICs) are generated isotropically in Fourier space, with the
amplitudes of the velocity and magnetic field coefficients satisfying

C
1+ (k/ko)?’

The constant C' is chosen so that the total turbulent energy is unity and equipar-
titioned between the magnetic and kinetic contributions. It follows that the initial
spectrum has a power-law form at large wavenumbers (k > ko) and is flat in the
opposite limit. All the runs discussed here are initialized using the values ¢ = %
and ky = 4, with only modes such that 3 <k < 8 being excited.

Clearly the assignment of the phases of v(k) and b(k) determines the spectra of
the kinetic helicity, cross helicity, and magnetic helicity. More specifically, we write

Ivk)[* = 3b(k)|[* = (3.1)

o=
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every Fourier component of the velocity field in terms of its poloidal and toroidal
components:

v(k) = ik x 2y (k) — k x (k x 2)

a(k)
k

(2 is the unit vector parallel to By). The form for b(k) is identical, with the potentials
denoted by a; and as. In the case of completely uncorrelated initial conditions, each
of the scalar potentials ay, a2, 1, and 1) is assigned using two independent Gaussian
random variables, one each for the real and imaginary parts. Conversely, non-zero
correlations between the potentials lead to non-zero levels of the various helicities.
In particular, specifying the degree of correlation between 1, and v, determines
the value of the kinetic helicity. Similarly the 1;—a; and t¥s—as correlations control
the cross-helicity level.

4. Results and discussion

Using initial conditions generated as described above, we now proceed to investigate
the sensitivity of the turbulent evolution to the initial kinetic helicity level. For
each distinet initial condition, various runs are typically performed, with the only
parameter varied being the strength of Bj. Here we report on six such runsets,
with each runset defined by its common initial condition (Table 1). For example
the ‘A’ runs have (approximately) zero cross helicity and magnetic helicity, but a
moderate value of kinetic helicity, while run E is similar but with a moderate value
of o.. Note that the (initial) magnetic helicity is approximately zero in all runsets
except F. The slightly anomalous nature of runs BB and FF is discussed in the
table footnote.

4.1. Evolution of global quantities

An overview of the evolution of several typical runs is provided by Fig. 1, which
displays time histories of the fluctuation energy, total rate of dissipation nJ + vQ,
normalized kinetic helicity, and normalized cross helicity o.. With one exception,
the runs shown were all performed with By = 1, and initial conditions with small
or moderate cross helicity and moderate to large kinetic helicity (Table 1). The
exception is a reference run with By = 0 and moderate H} (run A0).

Figures 1(a,b) indicate that, as far as energy decay is concerned, the initial level
of Hy, is of only minor importance. Indeed, the Al, Bl, and D runs — for which Hy,
is the only global parameter varied — are visually almost indistinguishable (solid
lines) in these two plots. Moreover, runs C1 and E, which have a moderate level of
Hj; but moderate and approximately equal cross-helicities, also exhibit very similar
energy evolution and dissipation rate behaviour. Evidently the turbulence, in the
process of establishing its desired nonlinear couplings, rapidly dispenses with the
v—o correlations imposed initially, thereby making the initial value of Hj almost
irrelevant in this context. Note that for ¢t < é, all the By = 1 curves shown in
Figs 1(a.b) are indistinguishable. Recall that an eddy-turnover time is roughly the
period required for the turbulence to establish an energy ‘pipeline’ from the large
energy-containing scales to the small dissipative scales, via a nonlinear cascade.
For freely decaying turbulence, one may extend the pipeline analogy by positing
that, prior to ¢t =~ 1, the pipeline is filling without being aware that a (dissipative)
drain exists at its (high-wavenumber) end. In these cases, the peak dissipation rate
occurs soon after the pipeline is filled.
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Table 1. Initial values for the run parameters.

Run N v=n By Oc cos ®,, cosOyg

A0 64 505
Al
A2
A3

~0 ~ 0 0.42

- =D

B1
B2
B3 ) .
BB 128 I

— = b —

D 64

—

0.96

Cl .
C2 . . 2

—

0.28 . ~0

E . . 1 0.31 . 0.42

F } } . ~0 0.33
FF 128 1

100

Blank lines separate sets of runs with the same initial conditions, differing only in the
value for the d.c. magnetic field strength By. The two highest-resolution runs, BB and IF,
have independently generated initial conditions but the same values of the global quantities
characterizing their respective runsets. A dot indicates that the value is the same as that
above it. All runs have initial kinetic and magnetic energy equal to one half.

It is also clear from Figs 1(a.b) that energy decay is significantly enhanced for
By = 0 cases, as has been noted previously (see e.g. Shebalin et al. 1983; Oughton
et al. 1994). This indicates that the decay of energy is reduced more effectively by
a mean magnetic field — via suppression of parallel spectral transfer — than it is by
significant levels of initial kinetic helicity (cf. Sec. 4.3).

Considering now Fig. 1(c), one sees that for 0 < ¢ < %, Hj; typically decays rapidly.
The dependence on the initial value is again weak, with Hj being reduced by ap-
proximately 50% over this interval in each case shown. We suggest that this rapid
early decorrelation of v and o is due to the action of the (strong) Lorentz force non-
linearities, which drive the velocity field without any particular correlation between
1 and 1 being imposed or enforced. For i St S 1.5, there is a slower decrease of
Hy,, with a rough levelling out thereafter. The residual correlation associated with
this levelling out is larger for larger initial values of Hj, although still relatively
small. A striking feature of the plot is the collapse of the Hy curves for runs Al,
B1, and D onto each other. This suggests that for runs where the only parameter
varied is the initial level of Hy, the evolution of Hy is universal when normalized
by the initial level.

The large oscillations in H}, associated with run Cl are somewhat misleading,
since Hy =~ 0 both initially and throughout the run. Note, however, that the period
of the oscillations is the same as that characterizing Alfvénic fluctuations at the
maximum allowed lengthscale, signifying that long-wavelength Alfvén waves are
important in this case. As with the energy decay, the strongest overall decay of the
kinetic helicity is associated with the By = 0 case. In addition — and in contrast
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Figure 1. Time evolution curves for (a) fluctuation energy, (b) total (resistive plus viscous) dis-
sipation rate, (¢) kinetic helicity relative to the initial value, and (d) normalized cross-helicity.
Data are from runs Al, B1, D (solid curves), run C1 (dotted), and run E (dashed), which all
have By = 1, and run A0 (dash-dotted), which has By = 0. See Table 1. Note the generally
weak sensitivity of the various quantities to the initial value of Hy, and the rapid decrease
of Hy.

to the non-zero B, cases — the decay of Hj continues throughout the run, with
no levelling out at later times. Evidently, the presence of a significant By acts
to preserve some ‘residual’ level of kinetic helicity. The mechanism is presumably
related to the suppression of parallel spectral transfer discussed below, with the
residual helicity being ‘trapped’ at relatively large (parallel) scales (cf. Fig. 2c).

Figure 1(d) displays the evolution of the normalized cross helicity for the various
runs. As is well known, for turbulent MHD flows, o, tends to increase in magnitude
with time, via the dynamic alignment process (Dobrowolny et al. 1980; Matthaeus
and Montgomery 1984; Grappin 1986; Pouquet et al. 1986). The simulation results
shown suggest that, as for energy decay, the initial level of kinetic helicity is also
largely irrelevant to the dynamic alignment process.

4.2. Spectral evolution

In this subsection, we examine the influence of helicity on the spectral evolution
of some important quantities. Figure 2 displays various omnidirectional spectra
from run FF at ¢ = 0 and four subsequent times. This By = 1 run has moderate
amounts of initial kinetic and magnetic helicity. Figure 2(a) shows the evolution
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Figure 2. Omnidirectional wavenumber spectra at various times for run FF, which has
By =1 and, initially, moderate Hy and H,,.

of the magnetic energy spectra. It is clear that much of the decay is self-similar
(Hossain et al. 1995; Galtier et al. 1997), even though there is no well-defined (power-
law) inertial range present.

Also evident is a slight but progressive build-up of kinetic and magnetic energy
at the (two) smallest wavenumbers. Almost all runs performed show this effect
out to at least two eddy-turnover times, with the weakest build-up apparently
being associated with By = 0 runs. While this could be construed as evidence of
a weak inverse cascade of magnetic energy, and thus dynamo action, it is worth
recalling that the inverse cascade of magnetic energy is often associated with an
inverse cascade of magnetic helicity when this latter quantity is an ideal invariant
of the system (Frisch et al. 1975; Stribling and Matthaeus 1990, 1991). However,
as noted in Sec. 2, when By # 0, H,, is not an invariant, so that the origin of
an inverse cascade process is uncertain. Nonetheless, Figs 2(c,d) reveal that the
magnetic helicity at the largest scales also tends to increase, both in an absolute
and in a relative sense. This effect is less evident, although not absent, in runs
with approximately zero initial magnetic helicity, and is the subject of current
investigation. Note that for this run the peak of the magnetic helicity spectrum
tends to move towards lower k with time, which is also consistent with inverse
cascade activity. However, the figure also clearly shows that significant magnetic
helicity is transferred towards higher wavenumbers, where o, (k) is very roughly
flat, although decaying with time. (cf. Stribling et al. 1994, 1995).

In solar wind observations (Matthaeus and Goldstein 1982; Goldstein et al. 1994),
and also in the simulations of Stribling et al. (1995), 0,,(k) is found to fluctuate
about zero, in marked contrast to the essentially single-signed spectra presented
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here. However, the results are not directly comparable. The Stribling et al. (1995)
simulations are ideal, and the spectra obtained therein are averages over many tens
or hundreds of eddy-turnover times. Our results are dissipative, and extend out to
only a few eddy-turnover times, so that the initial bulk value of H,, has not yet been
sufficiently eroded to reveal the long-time fluctuations. The relationship between
the H,, evolution that we report on here and that in the solar wind remains to be
determined.

The normalized energy difference spectra (Fig. 2b) indicate that the magnetic
energy tends to become more predominant with increasing k. This structure is es-
tablished in a fraction of an eddy-turnover time, remains approximately steady
thereafter, and holds for all the By = 1 runs. At first sight, this seems to be in
contradiction to the predictions of the Alfvén effect. This posits that in a system
with a strong By, small-scale incompressible MHD fluctuations are well approxi-
mated as Alfvén waves, i.e. small-amplitude fluctuations about a background field
(Kraichnan 1967; Pouquet et al. 1976). Consequently, these fluctuations should
obey EY(k) ~ Eb(k). or equivalently op(k) = 0. There are several factors to con-
sider here. First, for the By = 1 runs, the energy in the turbulence is comparable to,
rather than much less than, the energy in the mean field, although for small-scale
fluctuations this should be less relevant, not the reverse as is actually observed.
Secondly, the above physical justification for the Alfvén effect fails to take into ac-
count the anisotropic dynamics engendered by a mean field, and in particular the
suppression of parallel spectral transfer, which results in the evolution of the flow
towards quasi-two-dimensional states (see Sec. 4.3). Fluctuations that are strictly
two-dimensional relative to By are dynamically unaware of the mean field, and are
thus not subject to a By-induced Alfvén effect; however, the fluctuating large-scale
field may play an analogous role (Kraichnan 1967; Pouquet et al. 1976; Hossain
et al. 1995). The fact that the smaller scales are less Alfvénic suggests that these
scales are the most quasi-2D-like, and thus the most anisotropic, as is also indi-
cated by the results of the next section. Simulations using initial conditions with
no significant initial H}, display the same behaviour (Oughton 1994; Matthaeus et
al. 1996). On the other hand, on comparing runs with increasing values of By (e.g.
runset A), one finds similar quasi-steady behaviour of op(k), but with (i) the flat-
ness of the spectrum becoming more pronounced, and (ii) equipartition at these
scales being an improving approximation. Both of these features are in accord with
the Alfvén-effect predictions.

Two other factors that may influence the development of ‘excess’ E° are
local, in k-space, dynamo activity (Pouquet et al. 1976) and the current-sheet—
vorticity quadrupole structures associated with small-scale turbulent reconnection
(Matthaeus and Lamkin 1986). Such excess magnetic energy has been seen in many
other simulations (Pouquet et al. 1976; Pouquet and Patterson 1978; Shebalin et al.
1983; Matthaeus and Lamkin 1986; Oughton et al. 1994; Matthaeus et al. 1996), and
is also a robust feature in the solar wind, where observations indicate that op ~ —%
(Matthaeus and Goldstein 1982; Roberts et al. 1987a,b). One typically finds that in
the solar wind, E/B3 ~ 1, which in our units corresponds roughly to simulations
with By = 1. Thus, the simulations are consistent with the proposal that solar wind
fluctuations have an energetically significant component of quasi-2D fluctuations
(Matthaeus et al. 1990).

On the basis of EDQNM calculations for isotropic MHD, Pouquet et al. (1976)
suggested that, along with op(k) = 0, the Alfvén effect should also be associated
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with a zero ‘helicity difference’ oy (k) = Hi(k) — k* H,, (k) at the smaller scales, or,
more specifically Hy (k) —H;(k) =~ 0 (Pouquet and Patterson 1978). Our simulations
are in accord with this prediction, with oy (k) typically having a magnitude much
less than ﬁ, except at early times for some of the runs with larger initial helicity.
Initial values of oy (k) were in the range 0.3-0.6.

Considering now the spectral evolution of the kinetic helicity, we see from Fig. 2
that Hy (k) is predominantly forward-transferred, with an overall tendency to decay
in amplitude. The other runs reported on here evince similar behaviour. This is
reminiscent of the linear cascade of Hj, seen in Navier—Stokes turbulence (Brissaud
et al. 1973), although, as (2.2) shows, the behaviour is more complicated because
of Lorentz force influences.

On examining Fig. 2f, one observes that there is significant transfer of relative
kinetic helicity to the largest scale. This is a typical feature of the simulations
discussed here, as is the oscillation of og(knin). However, the oscillations do not
appear to be dynamically significant, because of the small energy content of these
modes. The similar oscillations seen in o p (kmin) suggest that both types of variations
are associated with long-wavelength Alfvénic fluctuations. The figure also indicates
that H,,(k) and Hi(k > kunin) are positive at all times shown. This single-signed
nature of the helicities, with the occasional exception at the largest scales, appears
to be a robust result, provided only that the relative helicities are not approximately
zero (however, see Stribling et al. (1995) for discussion of distinct behaviour at long
times). It is an aspect of another robust feature of the evolution, namely that, for a
given k, Hy(k) and H,,(k) have a very strong tendency to have the same sign, even
if this is not the case initially. This is, of course, almost necessary for compatibility
with the helicity difference prediction associated with the Alfvén effect discussed
above. When the relative helicity levels are initially low at all values of k£ excited,
the turbulent fluctuations in oy, (k) or ox(k) behave differently, with numerous sign
changes taking place over time. Clearly, for such low initial levels, the turbulent
fluctuations in these quantities are larger in amplitude than any average values.

In summary, the kinetic helicity does not appear to have a strong influence on the
spectral (energy) dynamics of unforced turbulent MHD flows. In contrast, spectral
evolution can be significantly influenced by cross-helicity and magnetic-helicity
levels, as discussed elsewhere (Frisch et al. 1975; Pouquet et al. 1976; Dobrowolny
et al. 1980; Matthaeus and Montgomery 1984; Grappin 1986; Oughton et al. 1994;
Stribling et al. 1994, 1995).

4.3. Anisotropy

In agreement with the previous literature on the subject, we observe that when
B2 2 E, any isotropic initial condition tends to evolve towards an anisotropic quasi-
two-dimensional state (Shebalin et al. 1983; Carbone and Veltri 1990; Oughton et
al. 1994, 1998; Matthaeus et al. 1996, 1998). At leading order, the dynamical pro-
cess responsible for this development of anisotropy can be understood in terms of
the nonlinear interaction of Alfvén waves (Shebalin et al. 1983). Examining the
situation in Fourier space, one finds that energy is preferentially transferred to-
wards higher k; at fized k||, so that spectral transfer of energy parallel to By is
(approximately) frozen out. In physical space, this manifests itself as flows that
develop fine-scale structure perpendicular to the mean field, while maintaining es-
sentially unchanged characteristic parallel lengthscales. Important refinements to
this picture are discussed elsewhere (Grappin 1986; Kinney and McWilliams 1998;
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Figure 3. Anisotropy angles for the vorticity and current density as functions of time; see
(4.1). We compare the effect that kinetic helicity and cross helicity have on the development
of anisotropy. The left-hand side shows runs with By = 1: A1, B1, D (solid lines), and C1
(dotted). The right-hand side shows runs with By = 2: A2, B2 (solid), and C2 (dotted). The
curves fluctuating about 54° are for run A0, with By = 0

Matthaeus et al. 1998; Oughton et al. 1998). The net result is that after a few
eddy-turnover times, the turbulence is in a state which is well characterized by
descriptions based on reduced MHD (RMHD), even when the initial states are em-
phatically not RMHD-like (Strauss 1976; Montgomery 1982; Zank and Matthaeus
1992).

The degree of anisotropy can be measured quantitatively using a ratio of (suit-
ably weighted) average lengthscales in the directions parallel and perpendicular to
By, or by its spectral counterpart, the anisotropy angle g (Shebalin et al. 1983),

_ Yk 1)
S R2Q(k, 1)

where the sums are over all wavevectors, k3 = k2 + k; and Q is any one among
y, v, ®, a, b, j. By definition, 6g ranges between 0° and 90° (respectively, exci-
tation of only parallel modes and only perpendicular modes), taking on the value
arctan v/2 &~ 54.74° in isotropic conditions.

In Fig. 3, we plot anisotropy angles resulting from the analysis of the simulation
data. Before discussing the effect of the initial value of Hy, we report on a few
general features regarding the anisotropy, which are in agreement with the discus-

tan” g 4.1)
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sion presented in Oughton et al. (1994). Following an initial increase with time,
the angles reach more or less saturated values after a few eddy-turnover times,
which they retain for the remainder of the run(s). Both the time taken to attain
the plateau and the value of the plateau itself depend on the intensity of B, and on
the field Q under consideration. Furthermore, the usual ordering 0 o < 0y < 0, ;
is seen, suggesting that the smaller scales are more anisotropic. Discussions on the
scaling of anisotropy angles with the ratio of fluctuating to total magnetic field
strength can be found in Matthaeus et al. (1998) and Oughton et al. (1998).

Let us now consider the influence of kinetic helicity on the development of spec-
tral anisotropy. As can be seen in the left-hand panels of Fig. 3, the anisotropy
angles for runs with By = 1 and low (Al), moderate (Bl), and high (D) initial
kinetic helicity follow essentially the same curve. This is consistent with the insen-
sitivity of the evolution of the energy, and other integral quantities, to the initial
value of Hy, discussed above. Qualitatively similar features hold for higher values of
the external magnetic field, but with stronger anisotropy being evident (right-hand
panels). However, the increase in anisotropy with By saturates for By 2 3, as is also
the case for ICs with Hy ~ 0 (Oughton et al. 1994).

While the anisotropy evolution is relatively insensitive to the initial value of
Hy,, it is much more sensitive to the initial cross helicity. For comparison, we also
plot data from run Cl (dotted), which has o.(t = 0) =~ 0.28. This reveals that
even relatively small v—b correlations noticeably weaken the development of the
anisotropies, although the effect is rather small. In fact, as is well known (see
e.g. Dobrowolny et al. 1980; Grappin 1986), non-zero cross helicity is associated
with reduced strength of the nonlinear couplings, and thus a reduction of spectral
transfer. Since the development of the anisotropy is a nonlinear process (Shebalin
et al. 1983; Oughton et al. 1994, 1998; Oughton 1996; Matthaeus et al. 1998), one
then expects initial conditions with cross helicity to evolve into states that are less
anisotropic than their zero-H, analogues, as is seen to be the case here.

5. Conclusions

We have presented results from direct numerical simulations of unforced incom-
pressible three-dimensional MHD turbulence in a strong external magnetic field,
which show that the presence of kinetic helicity does not strongly affect the develop-
ment of the flows, in the sense that the evolution of energy and spectral anisotropy
are almost independent of the initial level of kinetic helicity. These results have
been obtained for the freely decaying case, with no energy or helicity supplied dur-
ing the evolution, and are thus influenced by the fast decay rate of the kinetic
helicity itself. We find that the turbulent dynamics rapidly destroys the initial cor-
relation between the velocity and vorticity fields. This contrasts with the typical
enhancement of the v—b correlation (i.e. the cross helicity) via the dynamic align-
ment process (Dobrowolny 1980). A possible explanation for this dichotomy lies
in the dimensionality of the contributing fields. Any velocity fluctuations that are
strictly two-dimensional will of necessity have v - @ = 0, whereas non-zero values
of the cross-helicity can occur independent of the the two- or three-dimensional
nature of v and b. Since the anisotropy generation process is associated with evolu-
tion towards quasi-two-dimensional states, it is consistent that the kinetic helicity
decreases apace with the increase in anisotropy angles. However, this cannot be a
full explanation, since Hj also decays rapidly in By = 0 runs.

At variance with what is known to occur for Navier—Stokes turbulence (Brissaud
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et al. 1973; André and Lesieur 1977; Moffatt and Tsinober 1992), we have shown
that the depletion of the (velocity-based) nonlinearity in the momentum equation
(2.1a) does not significantly inhibit the spectral transfer of energy to small scales.
The usual picture of high-Reynolds-number MHD flows as a complex mixture of
waves and turbulence remains appropriate for flows with substantial initial kinetic
helicity. This is true for all values of By, although when By is not energetically
weak relative to the turbulence, the energy flux is primarily to small perpendicular
scales, with only weak transfer in the parallel direction, and an associated reduced
decay of energy. In effect, the nonlinear process that produces the observed spectral
anisotropy is almost immune to the initial value of Hj.

The physical basis for the insensitivity of the dynamics to Hy can be seen by
recalling that Ov/0t ~ v x @ +j x b, where only the nonlinear terms are considered.
It follows that the velocity will be strongly driven by the Lorentz force term, even
when v X @ is weak by virtue of the alignment of the two fields.

The caveat to the above conclusions regarding the irrelevance of the initial value
of Hy, is that they may not hold when the j xb term is too weak to produce effective
driving of v away from the initially helical states. Given that a broadband pool of
magnetic fluctuations exists, j x b will be significant provided that j and b are
not nearly parallel. This last condition may be rephrased in terms of the current
helicity H; = 1(b - j), where the requirement is then that Hj; is not near-extremal.
When the magnetic helicity is dominated by contributions from a narrow range
of wavenumbers centred on kg, one has H; =~ kfIHm, and the condition for the
insensitivity to initial values of Hj is equivalent to demanding that H,, is not
near-extremal. Thus we conjecture that decaying flows that do not simultaneously
have almost-extremal values of both the kinetic and the magnetic helicity will
rapidly remove the initial v—@ correlation and proceed thereafter as if there was
initially no significant kinetic helicity.

In summary, as far as the evolution of kinetic helicity is concerned, the natural
action of unforced (and non-rotating) incompressible MHD turbulence appears to
be to remove it from the flow, so that even a large initial value has little significance
to the subsequent (energy-based) dynamics. Evidently, unless some process — such
as rotation — acts to maintain, inject, or produce kinetic helicity, this quantity is
rapidly disposed of via the turbulent dynamics.
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