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Scaling of spectral anisotropy with magnetic field strength in decaying
magnetohydrodynamic turbulence
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Space plasma measurements, laboratory experiments, and simulations have shown that
magnetohydrodynamic~MHD! turbulence exhibits a dynamical tendency towards spectral
anisotropy given a sufficiently strong background magnetic field. Here the undriven decaying
initial-value problem for homogeneous MHD turbulence is examined with the purpose of
characterizing the variation of spectral anisotropy of the turbulent fluctuations with magnetic field
strength. Numerical results for both incompressible and compressible MHD are presented. A simple
model for the scaling of this spectral anisotropy as a function of the fluctuating magnetic field over
total magnetic field is offered. The arguments are based on ideas from reduced MHD~RMHD!
dynamics and resonant driving of certain non-RMHD modes. The results suggest physical bases for
explaining variations of the anisotropy with compressibility, Reynolds numbers, and spectral width
of the ~isotropic! initial conditions. © 1998 American Institute of Physics.
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I. BACKGROUND

Several lines of investigation have shown that spec
anisotropy is dynamically generated in magnetohydro
namic ~MHD! turbulence when a mean magnetic field (B0)
of sufficient strength is present. For example, experime
with fusion-related machines1,2 found that correlation length
computed parallel toB0 were typically ten times larger tha
those computed perpendicular to the mean field. In the s
wind, data analysis of MHD-scale fluctuations reveals t
the magnetic autocorrelation tensor has a two-compon
structure,3,4 suggesting the presence of both a para
‘‘slab’’ component and a perpendicular ‘‘two-dimensiona
component, and again indicating spectral anisotropy.

On the theoretical side, efforts to explain this type
behavior have often employed the reduced MHD~RMHD!
description,5–7 which in effect assumes anisotropy from th
outset8 while relying on dynamical theory and physical arg
ments for its justification.9 In a similar vein, perturbation
theory has provided insights into the processes which ge
ate the anisotropy.10–13

There is also considerable numerical support. This
cludes results from both forced and unforced tw
dimensional~2D! simulations,11,14–16 and unforced incom-
pressible and compressible 3D simulations.17,18 Moreover,
while dissipation appears to be essential for the long-t
persistence of the anisotropies,11,17 the precise nature of th

a!Electronic mail: sean@math.ucl.ac.uk
b!Mailing address: Code 692 NASA Goddard Space Flight Center, Gre
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dissipation appears not to be crucial.19 Shell-model closure
calculations also evince a similar development
anisotropy.20

For incompressible flows, a perturbation theory a
proach~‘‘weak turbulence’’! yields a useful physical expla
nation for the dynamical development of the anisotropy,
either two or three dimensions.10,11 The argument is briefly
summarized here. Assume that the zeroth-order state con
of linear Fourier modes; these correspond to~propagating!
Alfvén waves—provided the Fourier wavevector,k, is not
perpendicular toB0 . Suppose two modes interact~nonlin-
early! to drive a third, initially unexcited, mode. In order fo
this resonant triad interaction to occur, at least one of
modes must have its wavevector perpendicular toB0 ~a
‘‘nonpropagating’’ or ‘‘zero frequency’’ mode, or in the lan
guage of turbulence rather than wave theory, a 2D com
nent of the turbulence!. As a consequence, the newly excite
mode can have a largerk' than either of the driving modes
but not a largerki . Energy is thus preferentially transferre
to modes withk quasi-perpendicular toB0 , thereby engen-
dering the observed spectral anisotropy.

Note that there has been some recent discussion on
relevance of these resonant triad arguments,21–24due to con-
fusion over the nature of Fourier modes withk•B050. It
appears that formulations such as Ref. 21, which take
account only propagating eigenmodes, are only relevan
the case where there is no 2D component to the fluctuati
i.e., whenall modes withk•B050 remain unexcited forall
time.22–24 This is a rather restrictive condition and is n
expected to hold in many circumstances. Indeed, simula
studies suggest that such perpendicular fluctuations can

n-
5 © 1998 American Institute of Physics
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in multi-dimensional systems as a response to backgro

noise. For example, 212D simulations of the nonlinear stag
of parametric instabilities support the resonant triad desc
tion, since turbulence with largek' is generated following
the nonlinear saturation of the lowest-order one-dimensio
parametric processes.25

Thus, there is substantial evidence for the commonpl
development of spectral anisotropy in turbulent MHD flow
threaded by a large-scale magnetic field—the energy
which is at least comparable to the energy associated
the turbulence (b/B0&2). However, a model describing th
level of anisotropy as a function of plasma parameters ha
far been lacking.

Here we present a simple model for the scaling of
anisotropy as a function of the fluctuating magnetic fie
over the total magnetic field. Our approach requires qua
tative descriptions of the anisotropy and the age of the
bulence. Suitable definitions are given in the next sect
prior to the model’s presentation. Comparisons of the m
el’s predictions with results from numerical simulations
incompressible and compressible MHD follow, with a d
cussion section closing the paper.

II. THEORY AND MODEL „S…

We denote the fluctuating~zero-mean! velocity and
magnetic fields byv andb, respectively, with both quantitie
being functions of spacex and time t. The total magnetic
field is B5B0ẑ1b, whereB0 is a uniform constant. Angle
brackets indicate spatial averaging, so thatb5A^b•b& is the
rms value of the fluctuating magnetic field, etc. The Four
transform ofv~x! is denoted byv~k!, and similarly for the
other fields. The units and initial conditions~ICs! are such
that whenB051, the mean field,v, andb each have the sam
~initial! energy.

As a quantitative measure of spectral anisotropy, it
convenient to use theanisotropy angles, u(t).11,17 For ex-
ample, for the velocity field,uv(t), is defined by

tan2 uv5
Sk'

2 uv~k!u2

Ski
2uv~k!u2

5
^k'

2 &v

^ki
2&v

, ~1!

wherek is the Fourier wavevector with componentski and
k' parallel and perpendicular toB0 , and the summations
extend over all retained wavevectors. Thev subscript on the
angle brackets indicates the weighting field. Physically tanuv
is a ratio of~energy-weighted! rms wavenumbers compute
perpendicular and parallel to the mean magnetic field. Th
special cases are relevant: isotropic fluctuations havu
'54°, purely parallel~slab! fluctuations haveu50°, and
fully perpendicular~2D! fluctuations haveu590°. Anisot-
ropy angles for other fields are defined in direct analogy
~1!. We shall make considerable use ofuv , where v
5“3v is the vorticity. As discussed elsewhere, the anis
ropy angles tend to increase with time—indicating evolut
towards quasi-2D flows—provided the energy associa
with B0 is at least comparable to the energy of the turbul
fluctuations.11,14,17,18,20

Since the anisotropy angles are functions of time,
must ensure that the different turbulent flows are compa
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at the same relative state of evolution, i.e., at the same
bulence age. IfE(t) is the total fluctuating energy of the flow
~kinetic plus magnetic!, then the instantaneous energy dec
timescalet(E) is defined by

dE

dt
52

E

t
. ~2!

This timescale can be used to define a dimensionless timt8
interpreted as the age of the turbulence in characteristic
ergy decay times. Letdt be an unnormalized time incremen
anddt85dt/t the corresponding normalized time increme
Integrating this last equation we obtain

t8~ t !52E
0

t 1

E

dE

dt
dt5 logFE~0!

E~ t ! G . ~3!

Thus, turbulent systems are of the same intrinsic~or turbu-
lence! age when the same fraction of their initial energy h
been dissipated.26 Below, we will find it convenient to com-
pare simulations att60, defined as the time when 60% of th
initial energy remains.

We are now ready to consider the anisotropy scal
model. Previous results11,17,18,20have shown that for decay
ing MHD turbulence, greater dc magnetic field strengths le
to increasing levels of dynamically appearing anisotro
This may be understood straightforwardly, if not rigorous
through the following over-simplified argument. For incom
pressible MHD each Fourier mode has two relevant tim
cales: the Alfve´n timescale,tA51/uk•B0u, associated with
wave-like effects, and the nonlinear timescale,tNL

51/(kvk)'1/(kbk), associated with effects like advectio
and magnetic tension, wherebk

2 is approximately the mag
netic energy associated with modes of wavenumberk.27 The
modes can thus be divided into two distinct kinds, those w
tNL<tA , and those where the inequality is reversed.6,13

In RMHD efficient energy transfer occurs for mode
with tNL&tA .6 This relation is most restrictive whentNL is
the global eddy-turnover time 1/(kcb), since the nonlinear
time typically decreases with scale~kc is the wavenumber
corresponding to the correlation length of the turbulen
lc!. Thus,

ki&kc

b

B0
. ~4!

This gives an estimate for the maximum parallel wavenu
ber excited dynamically by RMHD activity, denoted here
ki

(R) . More specifically, in the derivation given b
Montgomery,6 it is clear that the RMHD description pertain
to those excitations for which the Alfve´n wave period is not
shorter than the timescales associated with ‘‘slow,’’ or no
linear, processes. For small expansion parametere and strong
magnetic fieldB05O(e21), the Montgomery derivation re
stricts RMHD to slow variations alongB0 , i.e., ki;]/]z
5O(e).

Now, by definition, cos2 uv5^ki
2&v /^k2&v , and ^k2&v

5V/E}kT
2 , whereV is the enstrophy~mean-square vortic-

ity! andkT the Taylor microscale wavenumber.28,29 So writ-
ing ^ki

2&v5a@ki
(R)#2, for some constanta, we obtain
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cos2 uv.aS kc

kT
D 2S b

B0
D 2

.aS lT

lc
D 2S b

BD 2

. ~5!

In the final equation we have replacedB0 with B
5AB0

21b2, a measure of the total field strength. This h
the advantage of keeping the RHS bounded~and thus
cosuv<1! asB0→0 ~where RMHD ceases to be valid!, but
making no significant difference whenB0 is large, as has
already been assumed by using RMHD arguments. The ra
fications of this patching are discussed later.

While a simple proportionality between cos2 uv and
(b/B)2 is appealing, the neglect of various important effe
in the above argument suggests that a linear relation ma
more accurate. In particular, modes withtNL.tA are likely
to play a role.13 We have been implicitly assuming that the
is negligible energy in Fourier modes withki.ki

(R) , and that
there is no energy transfer to such modes, i.e., thatall modes
are ‘‘Strauss-like’’ or RMHD in character. This need not b
the case. For example, the initial conditions may cont
fluctuations which have theirkis outside the RMHD band
width. It follows that the width of the initial conditions in
k-space has an impact on the~equilibrium! anisotropy level.
Specifically, if ki

(IC) is the maximum parallel wavenumbe
excited in the initial data then there are two cases to cons
~cf. Ref. 13!.

Case~1!: ki
(IC)<ki

(R) . This is essentially the situatio
considered above. Initially spectral transfer occurs in all
rections, but once energy reaches the RMHD ‘‘wall’’
ki

(R) , efficient transfer of excitation to higherki is stymied
@Figure 1~a!#. However, the perpendicular cascade contin
until the dissipation scalekdiss is reached.30 At equilibrium,
then, we anticipate that cosuv'ki

(R)/kdiss.
Case~2!: ki

(IC).ki
(R) . Here there are two distinct dy

namical regimes. Modes with parallel wavenumbers l
than the limiting RMHD value behave as in Case~1!. The
remaining modes, however, are subject to a resonant inte
tion, where two of them may be catalyzed by aki50
mode.11 This process causes energy to be transferred
modes with higherk' , but fixed ki . See Figure 1~b! and the
discussion of resonant triad interactions in the introducti
Clearly, both the energy in the strict-2D component of t
turbulence (ki50) and the energy in the non-RMHD~aka
resonant or non-Strauss! modes is important in determinin

FIG. 1. Cartoon sketches of the physics behind the scaling relations,
~5! and~6!, and the effects on the spectral anisotropy of initial data width~in
Fourier space! and Reynolds number. Arrows indicate the direction of sp
tral transfer.
s

i-

s
be

n

er

i-

s

s

c-

to

.
e

the efficacy of the resonant process. Under the assump
that the perpendicular transfer rates are roughly the sam
each wavenumber regime, we may estimate the equilibr
anisotropy from cosuv'ki

(IC)/kdiss.
31

This discussion indicates how the scaling relation~5! can
be improved upon. Let the kinetic energy beE5ER1EN ,
where the subscriptsR and N indicate contributions from
RMHD and non-RMHD modes, respectively. Breaking t
sum in the definition of̂ ki

2&v into the same types of contri
butions, and writingSNki

2uv(k)u252bEN@ki
(IC)#2, for some

constantb, we obtain

cos2 uv'
aER

E S kc

kT
D 2S b

BD 2

1
bEN

E S ki
~ IC !

kT
D 2

, ~6!

5mS b

BD 2

1c, ~7!

where we have again substitutedB for B0 to ensure sensible
behavior of the model asB0→0. Naturally, the entire argu
ment may be carried through for fields other thanv. For
example, in the case of the vorticityv we obtain an equation
structurally identical to~6!, but with the kinetic energies re
placed by the appropriate enstrophy contributions, and
correlation scale and Taylor microscale replaced by
analogous quantities based onv, e.g.,kT→P/V, with P the
palinstrophy. For reasons discussed in the following sectio
we prefer to present our results in terms of scalings involv
uv .

Notice in Eq.~6! that cosuv is approximately linear in
b/B whenER /E→1 ~andEN /E→0! for fixed values of the
other constants. In the opposite limit, when most of the
ergy lies outside the RMHD regime, cosuv→const. Apart
from the ~B0 dependent! partitioning betweenR and N
modes, this simplified treatment of the anisotropy depe
on other constants (a,b,kc ,kT) that characterize the spectr
shapes within theR andN regions. In the present paper ou
emphasis is on the qualitative nature and physical origins
the anisotropy and its scaling, and we therefore defer to
ture work attempts to accurately predict these constants.
also worth emphasizing that the model is essentially o
valid for smallb/B0 . TheB0→0 limit is crudely accounted
for by replacingB0 with B in the slopem @see Eq.~5!#, and
is thus unlikely to accurately represent the true physics
the full range ofb/B ~see Sec. IV!. Nonetheless, as shown i
the next section, the agreement between simulation data
scaling relations like Eq.~6! is encouragingly good—
particularly for intermediate values ofb/B—and suggests
that the model provides a useful description of the unde
ing physics.

III. SIMULATION RESULTS

A crucial assumption in the above models is that para
spectral transfer is ‘‘frozen out.’’ Weak turbulence mode
for anisotropy generation11–13 indicate that at leading-orde
this is correct for non-RMHD modes. While higher-ord
effects almost certainly involve some parallel transfer,
the present purposes we have neglected this.
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Numerical support for the suppression of parallel tra
fer is also available. Figure 2 displays time histories of
square roots of̂ ki

2&v and ^k'
2 &v /2 for two runs with the

same initial conditions, apart from their values ofB0 ~the
factor of a half in^k'

2 & accounts for the two degrees of fre
dom present in this quantity!. It is evident that asB0 in-
creases, spectral transfer in the parallel direction is incre
ingly suppressed. Indeed, forB0*2 there is essentially no
parallel transfer. The same type of behavior is seen for
run sets listed in Table I. Note that there is also a~smaller!
reduction in^k'

2 &v asB0 is increased. Since the initial con
ditions are isotropic, this is expected as much of the ini
energy is then subject to the Alfve´n decorrelation effect,32,33

and indeed continues to be until the anisotropy has es
lished itself. Put differently, prior to formation of th
~strongly! anisotropic state many of the excited modes
not quasi-perpendicular and so their spectral transfer
strongly influenced byB0 .

Figure 3 shows a plot of cos2 uv as a function of (b/B)2.
The data points are taken from distinct spectral-meth
simulations of the standard~and unforced! 3D MHD equa-
tions. Each simulation has a different value ofB0 but the
same~broadband! isotropic initial conditions;uv is always
evaluated att60, the wall-time at which 60% of the initia
energy remains. Relevant run parameters are listed in Ta
with further particulars given elsewhere;17,18 Re andRm are
the kinetic and magnetic Reynolds numbers. Most of
variation inb/B is due to the different values ofB0 used in
each run. Least-squares straight-line fits to the data indi
that the scaling relation,

FIG. 2. The variation of mean parallel and perpendicular wavenum
~vorticity weighted! with time for variousB0 . Data are from run set B.

TABLE I. Simulation parameters for the runs. Each row is associated w
a set of runs having the same initialv andb. Different rows have different
ICs, except that the final three rows all employ the same IC~with uniform
r!. All initial conditions are isotropic and have“•v50. Initial values for the
sonic Mach numberMs and the~large-scale! kinetic and magnetic Reynolds
numbersRe ,Rm are listed. The plasmab is given bybp5(B0Ms)

22.

Runs B0 Ms Re5Rm

k’s initially
excited

A 0,0.1,1,1.5,2,3,8 0 200 1–3
B 8,4,0 0 200 1–3
C 0.4,0.6,0.8,1,1.2,1.5,2,4,8 0 200 1–8
D 0,0.8,1,1.2,1.5,2,4,8 0 250 1–8
s00,s01,s07,s08 0,1,4,2 0.15 250 1–8
s02–s04 1,2,4 0.5 250 1–8
-
e

s-

ll

l

b-

e
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d

e I

e

te

cos2 uv5m8S b

BD 2

1c8, ~8!

is a good approximation to the true relation in two way
First, it is an excellent approximation over a restricted ran
of values of b/B, namely those not too close to 0 or
~dashed line!. Second, it is also a useful, but clearly crude
approximation for all values ofb/B ~dotted line!. Hereafter,
we focus mainly on the intermediateb/B case, since the
physics of our model is most relevant here. As shown in
previous section and discussed further below, the slopem8
and they-interceptc8 are functions of the Reynolds num
ber~s!, the initial thickness of the fluctuations in theki direc-
tion, and the partitioning of excitation betweenR andN type
modes.

The particular choice oft60 is governed by several fac
tors. First, it corresponds to roughly two large-scale ed
turnover times, so that the turbulence has had adequate
to establish its nonlinear correlations~see, for example, Fig
3 in Ref. 17!. Second, the turbulent dynamics is still signi
cantly nonlinear at this point, so that the anisotropy gene
tion process is active. At later times the nonlinear dynam
is weaker because of the modest computational Reyn
numbers available. We note in passing that for the simu
tions discussed here, the wall-times~in units of initial large-
scale eddy-turnover times! corresponding tot60 lie between
roughly 1 and 4. Discussion on the appropriateness ofuv as
the primary diagnostic is presented in the final section.

The argument leading to Eqs.~5! and ~6! can be modi-
fied in various ways to motivate several other scalings@e.g.,
cosuv;(b1B0)/A(b1B0)21b2#. This is accomplished by
employing different models for the characteristic timescal
For example, replacingkc in tNL with kc,' may be appropri-
ate sinceki is probably largely irrelevant to the quasi-2
nonlinear dynamics. However, in terms of both visual a
pearance andx2 tests, Eq.~8! has almost always provide
the best fits to the simulation data. For consistency all
figures presented use scalings based on Eq.~8!.

rs

h

FIG. 3. Scaling of spectral anisotropy with (b/B)2. Recall B5AB0
21b2.

Data points are from run set A~Table I!, each of which has a different valu
of B0 but otherwise identical initial conditions. Two least-squares best-
are shown: one to all the data points~dotted!, and another to data points with
intermediate values ofb/B ~dashed!.
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A. Dependence on turbulence parameters

The physics associated with Eq.~6! enables two qualita-
tive, numerically testable predictions to be made. First, si
in the perpendicular direction the largest dynamically act
wavenumber is determined by the dissipation scale,
equivalently by the Reynolds numbers,30,34 increasing the
Reynolds numbers should result in higher averagek' exci-
tations for bothR and N modes. Consequently, higherRe

should result in greater spectral anisotropy, as manife
here by larger values ofuv .

The second prediction concerns parallel transfer.
sume that the excitations fill theR-mode channel and exten
into theN-mode region so that Case~2! above pertains. IfB0

is strong enough to freeze out parallel transfer~cf. Fig. 2!,
then the mean parallel wavenumber becomes sensitiv
ki

(IC) , which for the present purposes is assumed to be
termined by the ICs. It follows that runs with ‘‘thinner’
~parallel! ICs should be more anisotropic than those w
‘‘thicker’’ ICs ~e.g., see Table I, run sets A and C!, provided
other parameters permit approximately equal perpendic
transfer ofR- andN-mode energies.

To examine these expectations we again plot cos2 uv vs
b2/B2 ~Fig. 4!, but this time including data from runs wit
different Reynolds numbers and initial conditions. In
cases the least-squares best-fits are performed only for
points with 0.15,b/B,0.45. The diamonds and solid curv
are for the same data as in Figure 3: thin ICs,Re5200.
Compared to this the dotted trace, which is the best-fit
data with thicker ICs but the sameRe , has a shallower slope
and a largery-intercept. This corresponds to reduced anis
ropy, in accord with the second prediction made above.
ing between these two curves is the best-fit line for simu
tions with thick ICs but higherRe5250 ~dashed!. The
associated anisotropy is increased relative to the lowerRe ,
same IC-thickness data, but reduced relative to the lowerRe ,
thinner IC-thickness data. This is consistent with both of
predictions. The fact that the anisotropy varies in accorda
with the above expectations, at least for the moderate va
tions of parameters that we have attempted, lends creden
the physical picture underlying the model.

Note that according to Eq.~6! increasedRe—and thus

FIG. 4. Scaling relations for~sets of! runs with different Reynolds numbe
and different width of initial conditions.
e
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increasedkT , at fixedki
(IC) should produce lower values fo

bothm andc, if all other parameters remain unchanged. T
Figure 4 data indicate that onlyc decreases, thereby impli
cating changes in factors like theR-N energy partitioning
and the correlation lengths. It should also be borne in m
that the simulation data are for relatively lowRe turbulence,
whereas the model assumes high values for the Reyn
numbers.

We have also performed a limited number of other ru
with the same parameters as run set A, but which us
different realization of the initial fluctuations, i.e., the Fo
rier phases and~small! cross helicity are different. Over ap
propriate ranges ofb/B the best-fit lines for these two sets o
runs have slopes which differ by less than 3%. Such n
equivalence for different realizations of the turbulence in
cates that the governing parameters for the scaling rela
coefficients are indeed likely to be independent of the
details.

B. Compressible results

Various compressible~polytropic! simulations,18 with
initial sonic Mach numbers ofMs50.15 and 0.5, have also
been performed~Table I!. Our definition of the plasma bet
@bp5cs

2/VA
2[1/(B0Ms)

2# is based onB0 rather than the to-
tal magnetic fieldB01b, since we are primarily interested i
cases withB0*1. Comparisons with alternative definition
of bp are readily accomplished by noting that for all ru
listed in Table I,b2 is initially unity. Further details on these
runs are given elsewhere.18

Even though the anisotropy scaling model presen
above takes no account of compressive effects, knowledg
the character of magnetoacoustic fluctuations allows qua
tive predictions to be made regarding changes in anisotr
when the system is~weakly! compressible. The dispersio
relations of linear wave theory demonstrate that fast mag
toacoustic waves propagate approximately isotropically,
so will tend to reduce the net anisotropy, relative to an o
erwise equivalent incompressible flow. Slow modes pro
gate more anisotropically and thus their influence is harde
assess at this level~for both modes there is also a depe
dence onbp!. So to the extent that linear wave theory
valid in nonlinear simulations,25,35,36 one might expect the
presence of fast modes, and possibly also slow modes, t
associated with reduced anisotropy angles. In fa
simulations18 of low Mach number MHD turbulence show
that the longitudinal~compressional! velocity fluctuations
display a strong tendency towards isotropy over the rang

bp investigated (14&bp&44), even when the solenoida
component ofv is highly anisotropic. Nonetheless, the sam
simulations reveal that for isotropic and solenoidal init
conditions, ~low Ms! compressive activity typically only
slightly reduces the spectral anisotropy ofv andb.

Moreover, several lines of research indicate that of
much of the behavior occurring in~sub-sonic! compressible
systems is controlled by incompressible dynamics. Theo
ical developments show that turbulence can often be tre
within the framework of nearly incompressible~NI!
theory,7,9,37 wherein the leading-order fluctuations are i
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compressible with magnetoacoustic fluctuations playing
secondary role—provided the nonsolenoidal componen
the initial velocity fluctuations is small. Simulation studie
also provide evidence that, at least as far as spectral an
ropy is concerned, NI theory is valid for a wider range
initial conditions than have so far been rigorously justified18

We therefore expect the strongly anisotropic incompress
component to be dominant, with small corrections due to
existence of a halo of isotropic compressive fluctuations.

Related work on anisotropies in the Hall MHD system38

shows that significant fast and slow mode activity only o
curs if the wavevectors lie within 45° ofB0 . While fast
modes also appear at larger wavevector angles, they onl
so in the dissipation range and are thus not relevant to
present discussion. The oblique, weakly dissipative regio
the Hall MHD spectrum~uk̂•B̂0u.45° and k',kdiss! is
marked by strong density–magnetic ener
anti-correlations39 and essentially zero correlation betwe
the density and longitudinal velocity. This is consistent w
NI theory predictions. The fluctuation energies are also la
est in this region of wavevector space, indicating that
~quasi-!perpendicular Fourier modes are also energetic
dominant for Hall MHD.

Thus, for various reasons, compressible runs—altho
still exhibiting anisotropy of the quasi-2D type—are e
pected to be somewhat less anisotropic relative to analog
incompressible runs. In terms of the scaling relation~8! this
implies shallower slopes and largery-intercepts. Figure 5
shows relevant data points for various compressible and
compressible runs, all withRe5Rm5250. As a baseline we
use the thick-IC incompressible data of Figure 4~run set D!.
Almost overlying the best-fit curve to the intermediateb/B
data is that for theMs50.15 data~dash–dot!. This corre-
spondence strongly suggests that these runs are N
character,7,9,37 although we have not checked this in deta
The third curve~dotted! is for the higher Mach numbe
~Ms50.5, all points! runs, and is much less anisotropi
Higher Ms is likely to be associated with greater magneto
coustic activity, which, as noted, tends to decrease the

FIG. 5. The same as for Figure 4, but with compressible data also inclu
All data points are forRe5250 runs with ‘‘thick’’ (k51 – 8) ICs. The
least-squares best-fits are for ‘‘intermediate’’ values ofb/B, except for the
Ms50.5 case where all the data points are used.
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isotropy relative to incompressible situations, so that the
sults are in accord with qualitative expectations.18,36

IV. DISCUSSION

We have shown, using theory and numerical simu
tions, that to a good approximation cos2 uv can be modeled
as a linear function of (b/B0)2. It is evident that the scaling
relation can only be valid for intermediate values ofb/B0 ,
and we have presented physically motivated arguments
departures from this scaling for both small and largeB0 . We
have also discussed sensitivity of the anisotropy to variati
of Mach number, Reynolds numbers, and initial conditi
bandwidth, and numerically verified these expectations.

Several issues regarding the scaling in Eq.~6! require
discussion. For example, for largeB0 Eq. ~6! suggests that
the anisotropy saturates, provided of course that other par
eters do not contain a hidden dependence onB0 ~see below!.
The saturation level should depend on the distribution
energy between RMHD and non-RMHD modes, and in o
simple model presupposes a ‘‘freezing out’’ of parallel spe
tral transfer. Two cases arise, involving the extent of exc
tions in the perpendicular and parallel directions. The form
is always limited by the dissipation wavenumber, while t
latter is limited either by the wavenumber beyond whi
wave propagation effects induce freeze-out of parallel tra
fer, or by the wavenumber describing the parallel bandwi
of the ICs. Our model estimates these effects in an extrem
simplified way. However, we expect that the physics of t
above arguments is somewhat more robust than the pre
values of the coefficients estimated in relations like Eq.~7!.
More quantitative evaluation of these predictions is defer
to future work.

At the other extreme,B0→0, the ratiob/B0 becomes
unbounded and cosu<1 cannot be satisfied~physically, as
the influence ofB0 decreases, wave effects become progr
sively weaker and energy transfer increasingly isotropic!. As
we have shown the model can be patched up by replacingB0

with B in the above ratio. The correction is small whenB0 is
not small, but restricts the ratio to values less than unity
B0→0, allowing the isotropic value for cosuv to be recov-
ered, if one wishes to employ a linear fit over the entire ran
of values ofb/B.

Unfortunately this introduces another problem. Consid
increasing the Reynolds number, and thus alsokT . Equation
~6! then indicates thatm and c both decrease, predictin
greater anisotropy at fixedb/B. The latter effect is consisten
with both the physics and the simulation data. However
we also insist that the linear relation goes through the iso
pic point associated withb/B→1 and cos2 u→1

3, then it is
impossible to pivot the straight line about this point and
multaneously decrease both the slope and they-intercept.
Since our arguments are predicated on the presence of a
nificantB0 , and essentially only crudely patched to give se
sible behavior asB0→0, it is not surprising that this limit is
the source of the problem.

Indeed, Eq.~5! has the correct physics built-in, withm
decreasing askT increases, yielding stronger anisotropy f
given b/B0 . In this case, however, the linear scaling pivo

d.
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about the origin, with theB0→0 limit simply being outside
the model’s scope. Despite these limitations, the linear s
ings fit the simulation data encouragingly well, and t
model appears to be a good and useful approximation a
stands.

Nonetheless, there are several possible remedies to
above smallB0 defect. Perhaps the simplest is to let the slo
m depend one5(b/B)2. Assuming that ase→0 the RMHD
physics is correct we require thatm(e) approach the value o
m defined by Eqs.~6! and ~7!. At the other limit, e→1,
recovery of isotropy mandates thatm→ 1

32c. Interpolating
linearly between these extremes gives

cos2 u5F1

3
2~m1c!G S b

BD 4

1mS b

BD 2

1c. ~9!

Clearly, there are many other models which can be c
structed to bridge between the smalle RMHD regime and
the e'1 isotropic regime.

The choice ofuv as our primary diagnostic, rather tha
some other anisotropy angle, warrants discussion. Using
angles for the velocity, magnetic field, or electric curre
makes no essential difference to the quality of the sca
law fits, such as Eq.~8!. The equivalence ofv-like andb-like
angles can be understood in terms of the Alfve´n effect,
wherein energy is approximately equipartitioned between
netic and magnetic modes.41 More importantly, however,
previous work11,17has shown that, compared to larger scal
smaller scales are more anisotropic and achieve a given
of anisotropy sooner. This is usually explained by noting t
the characteristic timescale for turbulent fluctuations
creases with length-scale, and so smaller scales have
relatively longer to try and achieve local equilibrium. Thu
for the modest Reynolds number simulations which are c
rently feasible, the smaller-scale eddies are probably m
representative of true~high Re! inertial range dynamics.

Unfortunately, there is also a disadvantage to employ
uv . The simulations discussed here are only borderline
solved, in the sense that the dissipation scale is compar
to the gridscale, rather than significantly greater than it.
discussed elsewhere17 this is associated with under
estimation of the small-scale anisotropy angles~compared to
otherwise identical runs with higher resolution!. However,
the effect is small for the runs considered here and the va
obtained can be considered as lower bounds to the true
ues.

A particular issue that merits further discussion is t
nature of the largeB0 limit, and its possible dynamical im
plications. Let us take as our starting point in this parame
regime the perspective that~a! parallel spectral transfer i
frozen out, and~b! ~incompressible! resonant modes engag
in spectral transfer only through interaction with a quasi-
mode~low frequency, RMHD mode!. ~Note that in leading-
order perturbation theory the resonant interaction is media
by a strictly 2D mode that hasexactly zero Alfvén fre-
quency.! The second assumption is physically consist
with arguments presented previously.11 On this basis one can
readily write an estimate for the separate decay of energ
l-
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the R modes, and theN modes that interact only via thes
resonances. A simple theory of the Taylor–Karman type33,40

is

duR
2

dt
52

uR
3

lR
,

duN
2

dt
52

uN
2 uR

lN
, ~10!

wherelN andlR are lengthscales associated with the ene
containing eddies of theN andR types, respectively.

In this approximation the decay rate for theN modes
depends on the energy levels in both types of mod
whereasR-mode decay depends only onR-mode energy.
Note that in writing these equations we in effect treat t
resonance width as of orderki

(R) , the parallel bandwidth of
the RMHD regime. Because both kinds of turbulence
driven essentially only byR modes, it is clear that the parti
tioning of energy betweenR and N categories is importan
for understanding the strongB0 limit. In particular, scaling
of spectral transfer withB0 directly influences anisotropy in
this limit. For a fixed distribution of energyE(ki)
5*dk'E(k), the energyuR

2 in RMHD modes can be esti
mated in two entirely different ways yielding distinct concl
sions.

First, consider the case appropriate to an infinite spa
domain for which E(ki) is a continuously-varying finite
function of ki nearki50. For this case

uR
252E

0

ki
~R!

dkiE~ki!, ~11!

implying that uR
2;b/B0 , provided E(ki50) is nonzero.

Consequently, the effective eddy-turnover timetN5lN /uR

;AB0→` as B0→`. Similarly tR5lR /uR;AB0 and all
turbulence is quenched in this limit. The implications f
anisotropy are interesting. The extent of the spectra in
perpendicular direction in both theN andR regions is typi-
cally limited by the dissipation wavenumberkdiss, which is
an increasing function of the spectral transfer rate. In
above limit perpendicular spectral transfer rates become v
ishingly small and thereforekdiss is expected to decrease
and thus anisotropy would alsodecrease.

The second case of interest in the context of theB0

→` limit is that of a domain of finite extent in the paralle
direction. This can be modeled by a box with a large perio
icity length L and associated discreteki’s with spacing 1/L.
In contrast to the first case, here asB0→` we do not con-
clude thatuR

2→0. In fact afterB0 becomes so large tha
ki

(R),1/L, the partitioning betweenuR and uN becomes in-
dependent ofB0 , and uR is thereafter identified with the
strictly zero frequency purely 2D modes in the spectru
Under the assumption that these modes possess nonzer
ergy, we conclude immediately that the decay rates of b
R- andN-modes remain finite asB0→`. Since the spectra
transfer rates in theR and N regions become insensitive t
B0 , the dissipation wavenumbers also become indepen
of B0 , and the turbulence approaches a limitingB0 indepen-
dent nonvanishing anisotropy.

The contrast between the above two possibilities is gr
On the one hand it appears that for MHD turbulence in
infinite domain, both spectral transfer and spectral anisotr
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may be suppressed for extremely strong magnetic field. F
finite system, however, spectral transfer rates and spe
anisotropy remain finite and become insensitive to magn
field strength in the strong field limit. We note in passing th
the numerical experiments do not show a reversal of
trend of increasing anisotropy for strongerB0 , which is un-
derstandable since the simulations are carried out in a fi
periodic box. However, there is a hint of a saturation
anisotropy at the strongest values ofB0 computed~cf. Ref.
20!. On the basis of the finite box discussion above
would expect the saturation to occur afterki

(R)5kcb/B0,1,
where kc'3 – 4 in simulation units. Therefore saturatio
might start to occur for values ofb/B0& 1

3, and indeed such
a suggestion is consistent with the results shown in Figu
3–5. The same scenario—linear scaling of anisotropy
lowed by saturation of decay rates at largeB0—is also con-
sistent with earlier work that examined phenomenologies
energy decay using similar computer runs.33

We anticipate that the simplest linear scaling model p
sented here@e.g., Eq.~5!# may be useful in many applica
tions, since this case appears to be relevant to the intere
parameter regime nearb/B0'1. This model is most usefu
when nearly all of the turbulent energy resides in RMH
modes, and resonant transfer among other modes is a s
part of the energy transfer budget. Refinements to this s
plest scaling relation that we described here take into acc
an eventual transition, for largerB0 , to a situation in which
more ~and perhaps most! of the energy resides in non
RMHD modes. In this case a dependence on the initial
tribution of energy is observed, and the model predicts s
ration of anisotropy and a concomitant saturation of ene
decay rates.33 In this latter regime resonant interactions a
dominant but RMHD is formally not applicable. In spite o
this it remains a matter of some interest that investigation
strong B0 anisotropies that begin with the RMHD
equations13,23 arrive at conclusions that are in at least part
agreement with analyses based upon the full MHD eq
tions, such as the present one.6,11,17,18 We expect that the
refinements in description of spectral anisotropy presen
here will be of wide applicability in models of MHD turbu
lence, particularly those employed in space physics and
trophysics.
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