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Anisotropies in the spectra of magnetohydrodynamic (MHD) scale fluc-
tuations are observed or inferred in many plasmas, e.g., laboratory fu-
sion machines, the solar wind and corona, and the interstellar medium (see
[1, 2] for references). Anisotropy is expected since a mean magnetic field
By (unlike a mean flow), cannot be transformed away and thus provides a
preferred direction. Understanding the evolution and development of this
spectral anisotropy is a major theoretical challenge as nonlinear effects play
a crucial role. Nonetheless, some progress has been made. Using numerical
simulations and a reduced MHD (RMHD) approach, we have developed a
relatively simple model of the process [1, 2], which we present below.

Simulations for freely-decaying 2D and 3D incompressible MHD turbu-
lence [1, 2, 3, 4, 5] have shown that for éB/By < %, spectral transfer in the
parallel direction is essentially non-existent, whereas in the perpendicular
direction the energy cascade continues out to the dissipation scale in the
usual way (directions are relative to By, and 6B is the rms value of the
fluctuating magnetic field). This can be understood in terms of resonant
triad interactions involving the Fourier modes. The (Fourier) eigenmodes
are left or right propagating Alfvén waves—except that excitations with
wavevector k perpendicular to By are not eigenmodes in the usual sense,
although the Alfvén waves can still couple with them. These latter modes
are known as zero-frequency or non-propagating modes and can be inter-
preted as 2D turbulence (with the planes perpendicular to Bg). Calculation
of the leading-order nonlinear corrections to the evolution reveals that two
modes, ki, ko, will resonantly pump a third, ks, only if one of the driving
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Figure 1. Schematic diagram of the distinct dynamical regions in Fourier space associ-
ated with RMHD and resonant triad dynamics.

modes is a zero-frequency one [3]. Since, also, k3 = ky + ko, it is possible
to excite modes with higher &, , but not higher k. Thus, there is preferen-
tial transfer in the perpendicular directions. Clearly, the presence of a 2D
component of the turbulence is crucial to anisotropy development via this
mechanism. Despite recent suggestions [6], there appear to be no good a
priori reasons to discard these components, and moreover caution should
be exercised when drawing conclusions about full MHD from analyses based
on RMHD [5, 7, 8, 9].

Resonant couplings are not the only way spectral anisotropy is pro-
duced, however. A strong By is associated with RMHD processes [10, 11, 5].
RMHD modes are those for which the Alfvén timescale exceeds the large-
scale eddy-turnover time, i.e., 1/|k-Bo| 2 1/(k.0B) = k) S k0B /By = kﬁ%,
where k. is the correlation scale for the turbulence. This inequality esti-
mates the minimum parallel lengthscale dynamically excited by RMHD
turbulence. For those RMHD modes which qualify, resonant interactions
still occur. In addition, however, all RMHD modes engage in nonlinear in-
teractions of the familiar Kolmogorov cascade kind, since By (e.g., wave
effects) is relatively unimportant for these modes. Thus, excitations cas-
cade out to the dissipation scale in the | direction, but only to kﬁ% parallel
to Bg. It follows that if the initial data contain excitations on both sides
of kﬁ%, there will be two distinct regions in k-space, each governed by a dif-

ferent dynamics (Fig. 1). Modes with |k| 2 kﬁ% are strongly influenced by
Alfvén wave effects, with spectral transfer occuring mainly via the resonant
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process summarised above. In contrast, the RMHD modes behave more or
less like standard MHD turbulence without a mean field, and attempt to
maintain roughly isotropic transfer. However, they are stymied in their at-
tempts at this in the parallel direction because of the dynamically imposed
RMHD “wall” at kﬁz RMHD dynamics does not allow substantial spectral
transfer past kf, since assumptions in the RMHD derivation [10] amount
to the condition that k| < kL always. Thus, for the RMHD modes also,
perpendicular spectral transfer is enhanced.

Using the above arguments one obtains an equation [1, 2] which pre-
dicts the degree of anisotropy as a function of 6B/B and initial condition
parameters for % S % < 1, namely cos?8 = m(6B/B)? + ¢, where B is
the total field magnitude, m and ¢ depend on the turbulence parameters,
and 0 is the angle between a mean wavenumber and By. This linear scaling
with (6B/B)? is supported by simulation results for a wide range of flows,
including compressible, incompressible, decaying, and driven systems [1, 2].

Spectral anisotropy can also be produced in other ways. When By is
strong, for example, the viscosity is no longer isotropic, so that even linear
dynamics can lead to pronounced anisotropy. Some consequences of this
have been examined elsewhere [12, 13].

We anticipate that the above model for the development of spectral
anisotropy in MHD turbulence will be useful in understanding the be-
haviour of many astrophysical and space physics systems. In particular,
observations of the solar wind at length-scales of 10>-107 km indicate that
the MHD turbulence displays both spectral and variance anisotropy, [14,
15, 16]. Observations also indicate that, usually, 0B/By ~ 1, so that the
solar wind plasma is often in the interesting scaling regime. Cosmic ray
measurements and theory [17, 18] also suggest that the solar wind consists
of two coupled components, namely 2D turbulence and Alfvén waves. The
former has been observed [18] to account for as much as 80% of the fluc-
tuation energy, consistent with dynamic evolution of the plasma towards a
quasi-2D state as a consequence of anisotropic spectral transfer.

Anisotropy is likely to influence the solar wind plasma in many ways,
including spatial transport of turbulence, cosmic ray scattering, and tur-
bulent heating. An example is a simple transport theory [19], employing a
local Taylor Karman decay phenomenology appropriate for quasi-2D MHD,
that accounts reasonably well for the radial distribution of turbulent en-
ergy from 1 to 40 AU in the low-latitude solar wind. Nevertheless, as noted
above, observations seem also to require an additional ingredient, conve-
niently identified with nearly parallel propagating Alfvén waves. We sug-
gest that a two component dynamical model of energy decay and spectral
transfer [14], constrained by decay rates [20] and anisotropy scalings [1, 2]
from numerical simulations, may serve as a useful improvement to existing
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phenomenologies for solar wind and coronal physics problems.
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