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Abstract

Using direct numerical simulation results we discuss how the presence of a
dc magnetic field (Bg) in initially isotropic turbulent magnetohydrodynamic
(MHD) flows leads to anisotropy in the small-scale velocity and magnetic fields.
In such cases, the small-scale vorticity and current structures tend to elongate
and align with By.

The incompressible behaviour is also compared to weakly compressible re-
sults (sonic Mach number < 0.5). The simulations indicate that while density
and longitudinal pressure fluctuations remain isotropic for the compressible sys-
tems, the v and b fluctuations behave quite similarly to their incompressible
counterparts, exhibiting substantial anisotropies even at the modest Reynolds
numbers employed here.

1 Introduction

Numerical studies of freely decaying 2D MHD turbulence in the presence of a uni-
form and constant magnetic field, By (in the plane of the turbulence), indicated
that turbulent states which were initially isotropic quickly became anisotropic
[1]. Excitations were preferentially transferred to the modes with wavevectors (k)
perpendicular to By, relative to the parallel modes. It was conjectured in [1] that
similar trends and features would be seen in the evolution of 3D incompressible
flows. Here we use direct numerical simulation (DNS) to verify this conjecture,
and present initial results suggesting that similar behaviour also occurs in weakly
compressible 3D MHD flows.

Our results were obtained via spectral simulation of the incompressible 3D
MHD equations for the solenoidal zero-mean velocity (v) and magnetic (b) fields,
with BO == BO i,

0
a—:—kv-Vv:—Vp*+b-Vb+B0-Vb+z/V2v, (1)
b

+v-Vb=b-Vv+Bg-Vv+nV2b. (2)

at
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The variables have their usual meanings, with current density j = V xb, vorticity
w = Vxv, kinetic and magnetic energies per unit mass E¥ = (v?/2), E* =
(b%/2), total energy E = EY + E°, and cross and magnetic helicities H, =
(v-b)/2, H,, = (a-b)/2, where b = Vxa. Angle brackets denote averaging over
the spatial domain. Time is measured in large-scale eddy turnover times.

The (discrete) Fourier decompositions of these fields are also of use, e.g.,
v(x,t) = >, v(k,t) exp(ik - x), where the wavevectors k have integer compo-
nents since we solve in a periodic cube of side 27. Spectra are denoted by E”(k),
etc. The runs discussed here retain 64 Fourier modes in each Cartesian direc-
tion. Further details regarding the computational setup and the incompressible
results are given in [2].

2 Incompressible Results

We consider results from five runs. In each case the initial conditions were
identical, only the value of By being varied from run to run. The v and b
fields were generated using Gaussian random variables subject to the constraints
H,, ,H.~ 0, E =1, and equipartition of the kinetic and magnetic energy at each
excited wavenumber. Modes with wavenumbers from k£ = 1-8 were excited. The
inverse (large-scale) Reynolds numbers are v = n = 1/200. The specific values
of By used were: 0, 0.1, 1, 3, and 8. We consider first the evolution of bulk
quantities and then introduce a set of anisotropy diagnostics.

Time histories of the globals show qualitatively similar behaviour across runs;
nonetheless, several trends are observed. Figure 1(a) shows EV, E®, and E for
the By = 0 run. It is seen that an excess of E° quickly arises. As By is increased,
however, this excess is progressively reduced until approximate equipartition is
once again achieved. This can be understood in terms of the Alfvén effect [3, 4],
wherein the small-scale fluctuations are assumed to behave like Alfvén waves
which, on average, have equal amounts of kinetic and magnetic energy. A second
trend involves the decrease of the maxima of the enstrophy, 2 = (w?)/2, and
mean-square current density, J = (j?)/2, as By increases (Fig. 1(b)). Since these
quantities are a measure of the small-scale structure of the flow, this suggests
that By inhibits the development of such structures, at least in the direction
parallel to Bg. Furthermore, because the energy dissipation is proportional to
Q2+ J, increasing By also leads to decreased dissipation. At low By, J(t) > Q(t),
but as By increases they become approximately equal; this is a consequence of
the Alfvén effect holding mode by mode, since, e.g., 2J = > k?|b(k)|>.

We measure the anisotropy associated with a flow using the Shebalin angles,
¢ [1, 2], defined by

2k Q(k,1)2

2 _
0o = TrQ P )

where k3 = k2 + k7, Q is any one of the fields v, w, a, b, j, and the summations
extend over all wavevectors. A physical interpretation of tan? ¢ is as the ratio
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Fig. 1. Time histories for some quantities associated with the incompressible runs. The
horizontal coordinate is always time. (a) Energies for the By = 0 run; (b) mean-square
current densities; (¢)—(d) Shebalin angles as a function of By. Each curve is for a distinct
value of By. In general stronger anisotropies correspond to larger Bo. Unique linestyles
are used where ambiguity is possible. Angles are in degrees.

of a weighted mean-square perpendicular wavenumber to its parallel counter-
part, the weighting factor being the ‘energy’ spectrum for Q. It follows that an
isotropic spectrum has g = tan™! V2 ~ 54.74°, while a field with all excited
modes perpendicular to By has g = 90°.

In Fig. 1(c—d) plots of 6,(t) and 6,,(t) are shown, each curve corresponding
to a different value of By (the equivalent plots for 6 (t) and 0;(t) are very similar
[2]). Although the angles fluctuate, the overall trend is an increase with time,
initially quite a rapid one. In the range 1/2 < By < 3, the anisotropy increases
with By, with saturation occuring above this range. At low By the field is too
weak to significantly influence the flow’s natural isotropy, while at high By a
rough saturation with time is also evident, but the level may well be affected
by the strength of the turbulence since higher Reynolds numbers will lead to
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longer periods of fully developed turbulence. It is also the case that at fixed
time, 6, < 0, and 6, < 0, < 6;. This is interpreted as indicating that the
smaller scales are more anisotropic [1, 2, 5].

We stress that the development of the anisotropy is a nonlinear process.
Runs for which the nonlinear terms are set to zero have Shebalin angles that
show no significant evolution, i.e., they stay approximately isotropic. The situ-
ation considered by Moffatt [6], where v > 7, is distinct from that considered
here (v = n) for both the linearized and nonlinear dynamics. In particular, the
dispersion relation obtained from the linearized equations in the equal Reynolds
number case is isotropic. To emphasize the nonlinear nature of the process we
show in Fig. 2 contour plots of the energy spectrum, E(ki, k), at t = 0 and
1.5, for the By = 3 run. Clearly spectral transfer is (relatively) accelerated in
the perpendicular direction. Similar plots for the By = 0 run show no such
asymmetry.

It should also be noted that dissipation is crucial to the persistence of the
anisotropies [1, 2]. Initially ideal runs evolve very similarly to their dissipative
analogs; after a few turnover times, however, the anisotropy starts a slow decay
back towards isotropy. This is a consequence of the statistical mechanics of the
finite-dimensional ideal systems [7]. The features and trends mentioned in this
section were also seen in the 2D DNS study [1].

3 Compressible Results

Direct simulations of the compressible MHD equations with a polytropic equa-
tion of state (p o p%/3, p the density) have also been performed, for a range
of initial conditions. Here we consider four such runs, all having By = 1, and
v =n =1/250. Run ¢27 is the baseline incompressible run, with initial v and b
similar to those described above. Runs s01 and s02 are identical to ¢27 at t = 0,
with the addition of a uniform density field which is evolved thereafter accord-
ing to the equation of continuity. Thus, the velocity fluctuations are initially
purely solenoidal in these runs. As they also have small sonic Mach numbers
(Mg < 0.5) they are referred to as nearly incompressible (NI), in distinction
from weakly compressible (WC) initial data which also has small M, but no
restriction on the nature of the velocity fluctuations. Run s06 is a WC run with
v(t = 0) being purely longitudinal (v(k) || k).

Figure 2 shows 6, and 6, for the four runs. Clearly there is very little dif-
ference between the 6, curves, and this is also true for 6,.6p, and 6; plots.
The Shebalin angles for p and v, however, display significant differences be-
tween the runs. The figure indicates that as M, decreases, 0, for the NI runs
approaches the incompressible results from below. The anisotropy still develops
for the longitudinal initial conditions (s06), but at a reduced level relative to the
NI runs. In fact, plots of the Shebalin angles for the longitudinal and solenoidal
components of v show that the former remains approximately isotropic for all
the compressible runs, while for all four runs the solenoidal components are
anisotropic and approximately equal. Interestingly, 6, is anisotropic for the NI
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Fig.2. Top panels: Contour plots of log E(ki,kj) at t = 0 and 1.5 for the
incompressible By = 3 run. The horizontal coordinate is k,, and 8 equally spaced
contours are used. Lower panels: Some Shebalin angles for the weakly compressible
runs as a function of time. All runs have By = 1.

[NB: In the published verson of the paper, the top right figure was actually
for ¢t = 2, rather than ¢ = 1.5. The figure is correct here. Jan 2003]

runs but isotropic for the longitudinal run. Taken together with the isotropic
character of the longitudinal portion of the velocity fluctuations, this suggests
that the density fluctuations are predominantly associated with pseudosound
disturbances [8, 9] in the NI runs, while in the WC run they are dominated by
genuine acoustic fluctuations.

4 Summary and Discussion

Our results indicate that a dc magnetic field imposed on 3D MHD turbulent flows
induces anisotropic spectral transfer, with a relative enhancement for modes
perpendicular to By. Measured in terms of ratios of L and || correlation lengths,
the anisotropies tend to increase with (a) By, (b) wavenumber, (c¢) Reynolds
numbers, (d) time, and (e) decreasing | H./ E|, with saturations occuring for large
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enough By and t. This behaviour is in complete qualitative agreement with the
earlier 2D results [1]. Quantitatively, the value of By above which saturation of
the anisotropy occurs is slightly larger for the 3D case, presumably because of
the extra (perpendicular) degree of freedom associated with this geometry.

A physically appealing explanation for the development of the (incompress-
ible) anisotropy, based on a weak turbulence analysis of (1-2), was given in [1].
By computing the first-order nonlinear corrections to the solutions of the lin-
earized equations, they showed that two excited Fourier modes (k; & ko) will
resonate effectively with a third, initially unexcited mode, only if (i) the excited
modes are oppositely propagating, and (ii) either k; or ks is perpendicular to
By. Since also k3 = ki + ks, modes with increased perpendicular components
(relative to k; and ko) can be excited, but not those with increased parallel
components. Clearly, such excitations will transfer energy perpendicular to By
in k-space, but not parallel to it. The argument readily generalizes to the 3D
geometry. Recently, however, its relevance has been questioned in a formal per-
turbation theory approach [10, 11] that entirely ignores the 2D component of
the fluctuations [12], and therefore excludes the essential physics of the above
model for anisotropic spectral transfer [1].

A similar investigation of the 3D incompressible equations has been per-
formed using a shell model based on the DIA equations [5]. Therein it is shown
that the anisotropy of the inertial range energy saturates at Reynolds numbers
~ 10°, and thus so does the total anisotropy since at large Reynolds numbers the
inertial range contribution dominates. Their large Reynolds numbers saturation
level is some 5° below the saturation level we find at fixed (and low) Reynolds
number but large By (our definition of the anisotropy angle differs from theirs but
this has been taken into account). Because of the different initial conditions used
and our much lower Reynolds numbers it is difficult to make direct comparisons
between the two sets of results. Nonetheless, their initial data has a significant
value of the cross helicity and in [2] it is reported that increasing |H.|/E reduces
the anisotropy levels, so that in this sense there is no inconsistency between the
DNS and shell model results.

In another 2D study [13] it was noted that a sufficiently strong By is asso-
ciated with suppressed development of small-scale structures in that direction.
Nonetheless, it does not follow that the turbulence will be completely suppressed
for large enough Bg. The initially 3D MHD turbulence could be reduced to
weakly coupled planes of 2D MHD turbulence, oriented perpendicular to Byg.
Our results are consistent with such behaviour (e.g., isotropy in the L plane,
parallel correlation lengths > than L ones). Furthermore, analytic work on NI
MHD [14] shows that in the limit of strong Bg, the compressible 3D MHD
equations reduce to incompressible 2D equations. Given the ramifications and
simplifications associated with such a reduction, elucidation of the development
and role of anisotropy in turbulent MHD flows remains a high research priority.

Finally, as regards the NI results, their convergence towards the incompress-
ible ones is encouraging, pointing to the relevance of the incompressible dynamics
when the velocity fluctuations are only weakly non-solenoidal. Thus, if the Mach
number is low and magnetoacoustic waves are strongly damped (as is believed
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to be the case in the outer solar corona and in the solar wind, for example [15]),
the v and b fluctuations will quickly become NI. The leading order solutions for
such systems are the incompressible ones [16], and as these are better understood
than the fully compressible solutions, we anticipate that the application of these
results to the evolution of solar wind fluctuations will prove fruitful.
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