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Abstract

Building on results from two-dimensional magnetohydrodynamic (MHD) turbulence, the de-
velopment of anisotropic states from initially isotropic ones is investigated numerically for fully
three-dimensional incompressible MHD turbulence. It is found that when an external dc magnetic
field (By) is imposed on viscous and resistive MHD systems, excitations are preferentially trans-
ferred to modes with wavevectors perpendicular to Bg. The anisotropy increases with increasing
mechanical and magnetic Reynolds numbers, increasing wavenumber, and also increasing Bg. How-
ever, for By 2 3 the anisotropy appears to saturate. The tendency of By to inhibit development of
turbulence is also examined.

1 Introduction

Previous studies of incompressible 2D MHD turbulence with an externally imposed dc magnetic field
(By) showed that initially isotropic turbulent states evolve into anisotropic ones in a few large-scale
eddy-turnover times (Shebalin et al., 1983, hereafter SMM). Excitations were preferentially transferred
to the modes with wavevectors (k) perpendicular to By, relative to the parallel modes. Since many geo-
and astrophysical plasmas may be fruitfully treated as MHD fluids containing a large-scale magnetic
field which varies ‘slowly’ on length and time scales of dynamical importance, it is of interest to
consider approximations to such systems. Here we report on an extension of SMMs 2D results to
three dimensions.

Specifically, we performed numerical simulations of the fully 3D incompressible MHD equations with
turbulent initial conditions. For a given initial condition several runs were performed, each with a
different value of By. We take By = Byz where By is a uniform constant. The code is based on a
dealiased spectral Galerkin algorithm (Orszag & Patterson, 1972; Canuto et al., 1988). In z-space the
computational domain is a periodic cube of side 27 so that the wavevectors have integer components.
The equations solved are (where the variables have their usual meanings):

ov

E+V-Vv = —Vp*+b-Vb+Bj-Vb+ Vv, (1)
b
%—l—v-Vb = b-Vv+Bgy:-Vv+9Vb, (2)

Vv = 0, Vb = 0, (3)

Note that (v) = (b) = 0, where the angle brackets indicate spatial averaging. The electric current
density is j = V xb, the fluid vorticity w = V xv, and of course the magnetic vector potential is related
to the field by b = Vxa. The kinetic and magnetic energies per unit mass are E¥ = (v?/2), and
E’ = (b%/2), and the three rugged invariants of ideal 3D MHD-—namely, total energy, cross helicity,
and magnetic helicity—are defined as E = E* + E, H. = (v -b)/2, and H,, = (a-b)/2, respectively
(e.g., Zhou & Matthaeus, 1990). Both the bulk values of E, E", etc, and also their spectra E(k), etc
will be used. The spatial and (discrete) Fourier representations of the velocity field are related by
v(x,t) = Y v(k, t) K%, where k is the wavevector conjugate to x and having magnitude k = |k|.
Analogous expansions hold for the other fields.
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Initial conditions for all runs were such that H,, ~ 0, E = 1, and the Alfvén ratio, r4(k) =
E’(k)/E*(k), was unity for each excited mode. Each run had a resolution of 643, and v = n = ;.
Five values of By were used: 0, 0.1, 1, 3, and 8. In the following section we report on some results from
the simulations and then close with a short discussion and summary. A more complete discussion of
these results is to be found in Oughton et al. (1994).

2 Results

In this section we first present some results regarding bulk parameters of the flows and then turn to
anisotropy diagnostics. Most of the features and trends pointed out in this section were also seen
in SMMs 2D study. Time histories of the globals show qualitatively similar behaviour across runs;
however, at least three trends are evident (Figure 1). First, the energy plots show that increasing By
tends to make EY and E® more nearly equal; i.e., it better enforces r4 = 1, d la the Alfvén effect
(Kraichnan, 1965; Pouquet et al., 1976). Second, the maxima in the enstrophy, Q = (w?)/2, and
the mean square current density, J = (j?)/2, decrease as By increases, suggesting that By acts to
suppress or inhibit the turbulence (see next section). Note that Q and J are plotted using the same
vertical scaling to better emphasize their differences when By = 0 and 1, and their similarities when
By = 3. The third trend is that the time histories display more structure (or ‘fast’ fluctuations) as
By is increased, this being particularly noticable for (a?)/2 which is the lowest k-moment sum shown.
This suggests that there may be an increased wavelike/oscillatory contribution in such quantities.

To quantify the degree of anisotropy associated with a flow, we introduce the generalized Shebalin
(SMM) angles, 6¢, defined by

Sk 1Q(k, ¢

SRIQUG ) @

tan? 9Q
where ki =k2+ k;, Q is any one of the vector fields ¢, v, w, a, b, j, and the summations extend over
all values of k. Physically, tan® f¢ is interpretable as the ratio of a weighted mean-square perpendicular
wavenumber to its parallel counterpart, the weighting factor being the ‘energy’ spectrum for Q. Thus,
an isotropic spectrum corresponds to g = tan~! /2 ~ 54.74°, while a spectrum having all its energy in
modes perpendicular to By has g = 90°. As a shorthand we will speak of () increasing or decreasing,
where we define the orderings as ) < v < w and a < b < j.

Figure 2 shows plots of 0g(t) for each field, each curve corresponding to a different value of By.
Fluctuations in the angles are evident, but their initial behaviour when By 2 1/2 is characterised by
a more or less steady increase with time. At later times, and when By 2 1, most of the angles attain
approximately constant values, but note that the time taken to reach the plateaus appears to depend
on both @ and By. It is also evident that the degree of anisotropy increases with By, at least for
By < 3. Further increases in By result in essentially the same anisotropy levels. A minimum value of
By below which the anisotropy does not develop is also suggested by Figure 2.

Consider the runs individually for the moment. Note the usual ordering of the angles when By 2 1/2;
namely 6, < 6, < 6, and 8, < 0, < 0;, as also noted by SMM. They attributed the trend to increased
anisotropy at higher wavenumbers. The idea is that since v has a stronger dependence on the small-
scales than 1, and w a still stronger dependence, larger anisotropies for higher wave-numbers will
tend to give the observed orderings. Stated briefly, anisotropy increases as @ does (for a given By).

The stronger dependence on small-scale structure for 6, and 6; may also explain why (for large By)
these angles reach their plateau levels faster than the lower ) ones, despite having to achieve larger
values: higher k-modes have shorter characteristic times and can thus achieve ‘equilibrium’ values
faster than lower ones. For the By = 3 and 8 runs, the v-b and w-j angles level out at ¢ ~ 4, whereas
the 1-a angles have apparently not done so by ¢ = 8. Furthermore, comparing only the rapid rise
portions of the curves, the w-j angles reach 70° in half the time it takes for the v-b angles to do so.
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Figure 1: Time histories of some bulk quantities for the By = 0,1, and 3 runs (v = n = 1/200):
(a)—(c) energies for each run, (d) mean square vector potential, (e¢) mean square current density, (f)
enstrophy. The horizontal coordinate is time.
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Figure 2: Generalized Shebalin angles as a function of time and By. Each curve corresponds to
a distinct value of By. In general stronger anisotropies correspond to larger By; however, where
ambiguity is possible (i.e., By = 0,0.1 and By = 3,8) unique linestyles are used as shown in the
legend. Angles are in degrees.
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However, we cannot be certain that such behaviour will also occur at much higher (i.e., more realistic)
Reynolds numbers.

Other runs not discussed here (see Oughton et al., 1994) suggest that the anisotropies also increase
with increasing Reynolds numbers. Note, however, that the anisotropies are not sustained if v = 1 = 0.
Dissipation is crucial to the nonlinear process which causes the anisotropies (SMM). Finally, plots (not
shown) of angles reflecting anisotropies in the the z—y plane suggest that, on average, there are none.
This is in accord with the equations of motion which do not indicate any symmetry breaking in this
plane.

3 Summary and Discussion

We have found that a dc magnetic field (By) imposed on 3D MHD turbulent flows induces enhanced
transfer of excitations to perpendicular modes, relative to parallel ones. This anisotropy, as measured
by ratios of correlation lengths, tends to increase with

(i) By (saturation occurring for a value 2 3),

(ii) wavenumber (power of k in @),

(iii) Reynolds numbers, and

(iv) time (with a saturation depending on @ and the Reynolds numbers).
This behaviour is in almost complete qualitative agreement with the 2D results of SMM. The slight
discrepancy concerns the value of By at which anisotropy saturation occurs. While this ‘critical’ value
is not determined precisely in either investigation, the 3D value is almost certainly greater than the
2D one. Given that there is an additional perpendicular degree of freedom in the 3D geometry, this
seems quite reasonable.

SMM gave a physically appealing explanation for the development of the anisotropy based on a
weak turbulence analysis of the dynamical equations (i.e., they computed the first order nonlinear
corrections to the solutions of the linearized equations). Briefly, they showed that two excited Fourier
modes (k; & ko) will resonate effectively with a third, initially unexcited mode, only if the excited
modes are oppositely propagating and satisfy certain matching conditions. The matching conditions
require that either ky or ko is completely perpendicular to Bg. It follows that the wavevector for the
newly excited mode can have an increased perpendicular component (relative to k; and ks), but not
an increased parallel component. Hence such excitations may readily transfer energy perpendicular
to By in k-space, but not parallel to it. The argument readily generalises to the 3D case.

The reasons for the anisotropy saturations with By and time are unclear to us. The latter may be a
consequence of the low Reynolds numbers used here. For example, if the flows were fully turbulent for
say 20 characteristic times instead of & 3, saturation with time might occur at both a later time and a
higher level. In other words, the lack of sustained turbulence in the flows may be prematurely curtailing
the degree of anisotropy which develops. The saturation with By is perhaps more fundamental, and
may be related to the relatively decreased strength of the nonlinear couplings at high By. Note that
the weak turbulence explanation for the anisotropy does not depend on the strength of By (provided
it is strong enough to validate the approximation in the first place).

Obviously the factors considered above are not the only ones which can influence development of
anisotropy. Space does not permit decent discussion regarding other factors (e.g., Alfvén ratio, various
helicities), but in general non-zero values of quantities which reduce the strength of the nonlinear
couplings (e.g., cross and kinetic helicity) can be expected to also reduce the level of anisotropy
relative to the baseline flows of the kind discussed here (Oughton et al., 1994).

The applied By also affects the level of turbulence in the flows, by reducing the relative strength
of the nonlinear couplings. The maxima of the enstrophy, €2, and the mean square current density,
J, decrease essentially monotonically as By increases (cf. Figure 1). Since growth of Q and J is an
indicator of the degree of turbulence developed in the flow, the decreasing maxima suggest that a
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dc magnetic field suppresses turbulence ever more strongly as its strength increases. In fact, naive
examination of the equations of motion indicates that when By is large the linear terms dominate the
nonlinear ones, leading to the well known result that v and b obey wave equations. However, this is
not the whole story since the approximation fails to correctly account for the different perpendicular
and parallel correlation lengths induced by By.

Frisch et al. noted that a sufficiently strong Bg leads to suppressed development of small-scale struc-
tures in that direction. They conjectured that this was a consequence of the lack of X-type neutral
points in such flows, such sites being associated with intense generation of small-scale structures (e.g.,
w and j). Whatever the reason, it does not follow that complete suppression of the turbulence ensues
for large enough By. By analogy with neutral fluid flows, where strong rotation can induce two-
dimensionality of the flow (with respect to the rotation axis), it is physically plausible that an applied
By might do likewise for magnetofluids (e.g., Cowling, 1958). In other words, the initially 3D MHD
turbulence could be reduced to largely decoupled planes of 2D MHD turbulence, oriented perpendic-
ular to Bg. Our results are consistent with such behaviour (e.g., isotropy in the L plane, parallel
correlation lengths > than | ones). We should also note that recent work on nearly incompressible
MHD (Zank & Matthaeus, 1992a,b, 1993) shows that in the limit of strong By, the compressible
3D MHD equations reduce to incompressible 2D equations similar to those just discussed. Thus, (a)
physically based arguments, (b) mathematical theorems and results, and (¢) numerical simulations all
indicate or suggest the same behaviour. Just how important By’s suppression of turbulence is in high
Reynolds number flows (forced and unforced) remains to be determined.
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