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Abstract

Originally proposed as an efficient approach to computation of nonlinear dynamics in tokamak fusion research
devices, reduced magnetohydrodynamics (RMHD) has subsequently found application in studies of coronal
heating, flux tube dynamics, charged particle transport, and, in general, as an approximation to describe plasma
turbulence in space physics and astrophysics. Given the diverse set of derivations available in the literature, there
has emerged some level of discussion and alack of consensus regarding the completeness of RMHD as a
turbulence model, and its applicability in contexts such as the solar wind. Some of the key issues in this discussion
are examined here, emphasizing that RMHD is properly neither 2D nor fully 3D, being rather an incomplete
representation that enforces at least one family of extraneous conservation laws.

Key words: magnetohydrodynamics (MHD) – methods: numerical – plasmas – Sun: corona – Sun: magnetic fields
– turbulence

Supporting material: animation

1. Introduction

Reduced magnetohydrodynamics (RMHD) is an incompres-
sible fluid model of plasma behavior that is simpler than a full
MHD model. It thus has the advantage of being computation-
ally more efficient for many problems for which it is applicable.
It is therefore relevant to understand in some detail the
circumstances in which RMHD may be derived as a suitable
approximation to a full MHD model. Providing such clarifica-
tion is the goal of the present paper.

The RMHD model involves a mean (often uniform)
magnetic field B zB0 0 ˆ= that is necessarily energetically strong
compared to the fluctuating magnetic field b and the fluctuating
velocity field v. In addition, the fluctuating quantities all vary
more slowly along the mean field direction than in the
transverse directions, so that the corresponding gradients
satisfy ∣ ∣ ∣ ∣ ̂ . A third important feature is the absence
of parallel fluctuations4 with B b 00 · = and B v 00 · = . These
conditions emerge during the derivation (see Section 2) of the
RMHD equations, which may be written as
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Here ν and η are uniform constant viscosity and resistivity,
magnetic fields are written in Alfvén speed units, z¶ ¶ is the
derivative in the direction parallel to B0, and p* is the magnetic
pressure plus the incompressible fluid pressure. These
dynamical equations are supplemented by the constraints

b 0· =^ and v 0· =^ . As stated, the equations are
appropriate for cartesian (Strauss 1976, hereafter S76) or
periodic (Dahlburg et al. 1985) geometry, but can also be
formulated in curvilinear coordinates (Kadomtsev &
Pogutse 1974, hereafter KP).

Although initially developed as a simplified model for the
nonlinear evolution of tokamak plasmas with large aspect
ratios, more recent derivations of RMHD have attempted to
place the approximations in a broader context. In these, there is
a clear emphasis on the issue of elimination of high-frequency
motions, which is rather implicit in the original formulations
(KP, S76). The view of RMHD as a slow manifold limit of
MHD for the case of a strong guide field pervades the later
derivations, such as Montgomery (1982, hereafter M82),
Zank & Matthaeus (1992 hereafter ZM92), and Kinney &
McWilliams (1998). A general outline of the slow timescale
approach is given in Section 2.3.
Following on from its tokamak origins, RMHD has also

been employed in a variety of space physics and astrophysics
contexts, including coronal loop dynamics, coronal heating,
solar wind acceleration, reconnection, and particle acceleration
(e.g., Dahlburg et al. 1985; Milano et al. 1999; Oughton et al.
2001; Rappazzo et al. 2008, 2010, 2013; van Ballegooijen et al.
2011; Dalena et al. 2014). Investigations of the turbulence
properties of RMHD have also been carried out (e.g., Dahlburg
et al. 1985; Kinney & McWilliams 1997; Dmitruk et al. 2003;
Oughton et al. 2004; Rappazzo et al. 2010, 2012).
While it is manifestly clear that RMHD represents a

“reduction” of the full MHD model, what is less clear, but
still an important issue in applications, is the question of how
much physics is retained in RMHD, and what sorts of physics
is lost due to the simplifications inherent in its derivation. At
issue are even basic questions of dimensionality: does RMHD
remain close to the conditions of two-dimensionality, as
assumed, for example, in some coronal heating studies (Einaudi
et al. 1996; Dmitruk & Gómez 1997)? Or, in contrast, may it be
argued that RMHD is a suitable substitute for the full 3D
incompressible MHD equations (e.g., Perez & Boldyrev 2008;
Beresnyak 2012; Mason et al. 2012). Furthermore, with regard
to this dichotomy, if three-dimensional effects are an essential
feature of a particular MHD problem, will an investigation in
terms of RMHD reveal those effects? A sensible answer to
these questions will doubtless conclude that RMHD is, in some
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4 When the plasma beta is not large. See Section 2.5.
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sense, intermediate to two-dimensions and three, and also that
some three-dimensional effects will be captured in RMHD and
others, not.

The purpose of the present paper is to clarify in some detail
these issues, making clear which properties RMHD has in
common with either three-dimensional, or two-dimensional
MHD, and which features of each are absent in RMHD.5

Moreover, RMHD can also be seen to have some peculiar
properties present in neither strictly two-dimensional models,
nor in three-dimensional models. Table 1 provides a “quick
reference” overview of some distinctions between RMHD and
other models. A more detailed discussion of these points is
given in the remainder of the paper.

2. Review of Derivations

The persistence of questions regarding the nature and
applicability of RMHD derives at least in part from the very
different styles found in its several derivations. Sometimes
called the Strauss equations, RMHD has been derived starting
from ideal compressible 3D MHD (KP; S76). Alternative
and/or more rigorous derivations followed (M82; ZM92;
Kinney & McWilliams 1998), including Hamiltonian formula-
tions (Morrison & Hazeltine 1984) and consideration as a fluid
limit of gyrokinetics (Schekochihin et al. 2009). Becausethese
derivations are readily available, we do not repeat them in
detail here, but rather summarize several strategies that have
been employed in these developments. We then turn to a more
detailed description of the distillation of RMHD from full
MHD using timescale arguments, which we believe represents

the most physically based approach. Following this perspective
on the approximations and assumptions associated with
RMHD, we will be in a position to discuss some of its
properties in greater depth. We note that derivations of reduced
equations that extend RMHD to a weakly inhomogeneous
medium have also been developed (Bhattacharjee et al. 1998;
Kruger et al. 1998; van Ballegooijen et al. 2011), though these
will not be discussed herein.

2.1. Issues and Parameters

RMHD involves several interrelated issues, including
incompressibility, the strong mean magnetic field limit,
anisotropy of the variances (transverse fluctuations), anisotropy
of the gradients (spectral anisotropy), and anisotropy of the
system aspect ratio. Physical processes enter the considerations
through their respective timescales, and these may depend on
effects associated with turbulent Mach number, plasma beta pb ,
and wave propagation (sound speed Cs, Alfvén speed VA).
Ultimately, this results in a separation of timescales and
lengthscales, and these justify the mathematical steps that lead
to RMHD.

2.2. Primary Assumptions and Approximations

The objective of the original derivations, due to KP and S76,
was to find a simplified—but still nonlinear—set of fluid
equations relevant to the conditions present in tokamak
plasmas. In particular, they both begin with low- pb compres-
sible 3D MHD and the assumption of a strong mean magnetic
field zB0 ˆ. Here, strong means that the energy in the mean field
is much greater than that in the v and b fluctuations, i.e., the
fluctuations are of small amplitude. A strong mean field is the
fundamental assumption of RMHD.
The derivations proceed using perturbation theory based on

postulated orderings of (1) the characteristic parallel and
perpendicular lengthscales, and (2) the fluctuation amplitudes:
v̂ , v, dr, etc. In KP, the small parameter is the relative
(transverse) fluctuation amplitude,

b B 1, 3KP 0 ( )= ^

whereb̂ isthe rms amplitude of b̂ . This is distinct from the
small parameter employed in S76, namely the ratio of the
perpendicular and parallel characteristic lengthscales,

ℓ ℓ 1. 4S ( )= ^

In order to obtain the RMHD model, it is not sufficient to
simply require that one of these ò is small—additional
assumptions are needed. In particular, one needs to assume
that the two ostensibly independent ò satisfy 1S KP   , and
are thus not fully independent. The necessity of two small
parameters is not always made explicit in derivations.
Using slightly different sequences of arguments (see the

Appendix), KP and S76 reason that the fluctuations of interest
will have small components parallel to B0. Hence, the leading-
order fluctuations are v̂ and b̂ . Furthermore, these are
transversely solenoidal, (e.g., v 0· =^ ^ ), with their evol-
ution governed by Equations (1)–(2). Note that incompressi-
bility was not imposed, but has emerged as a consequence of
the assumptions made. Specific details of the S76 and KP
derivations are summarized in the Appendix.
These approaches contain the essential description of

RMHD. In each case, the rms transverse fluctuations, v̂ and

Table 1
Similarities and Differences between MHD in Various Dimensions and

Leading-order RMHD

Feature 2D/2.5D 3D RMHD

out of plane zB0 ˆ –/✓ ✓ ✓

 coordinate ignorable general large-scale

 variances –/✓ ✓ –
a

 spectral transfer – ✓ weak

strong ⊥ transfer ✓ ✓ ✓

low-freq A waves only 0w = ✓ ✓

high-freq A waves – ✓ –

slab waves (k 0=^ ) – ✓ –

Pdissipation – ✓ –

Pshocks – ✓ –

antidynamo theorem ✓ – –

E, Hc conserved ✓ ✓ ✓

az
2á ñ conserved ✓ – –

magnetic helicity Hm – ✓ a Bz 0á ñb

1/f noise ✓ strong B0 ✓

wave eqn for W s( )¢ – – ✓

Notes.Here, 2.5D means that the vector fields have three cartesian components
that depend on the transverse coordinates x and y, but not on the parallel
coordinate z. A ✓ means thatthe property or feature can occur within that
model, a “–” meansthat it cannot or does not.
a Parallel variances are possible for large pb or if the original system is
incompressible. See Section 2.5.
b If B0 is uniform, this becomes B az0 á ñ.

5 Our discussion examines the relationship between RMHD and MHD at the
fluid level. See, e.g., Schekochihin et al. (2009) for the status of RMHD in a
kinetic perspective.
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b̂ , are assumed similarly small in energy density (compared to
the guide field energy B 20

2 ). On its own, this small-amplitude
assumption is often associated with the fluctuations being linear
(shear) Alfvén waves. However, for RMHD, the aim is to
support nonlinear effects at leading order, and in fact the above
orderings are consistent with turbulence, as becomes apparent
in subsequent derivations (see below). In particular, O(1)
perpendicular lengthscales imply that the characteristic time-
scales of advective derivatives are of leading order.

2.3. Timescale-based Derivations

Montgomery (M82) derived RMHD starting from an
incompressible model.6 Rather than adopting a certain ordering
of variables as a first step, his derivation examines a multiple-
scales expansion of 3D MHD in terms of a small parameter ò
that controls the strength of the mean magnetic field B0.
Formally, this is achieved by replacing B0 with B0  in the full
incompressible equations.7 Requirements are imposed on the
expansion of the fluctuating fields such that the timescales of
the solutions—including nonlinear effects and turbulence—
remain O(1) as 0 , i.e., as the strength of the mean field
increases without bound. Thus, the expansion is developed in a
way that eliminates fast timescales. This is the first derivation
in which the enforcement of this condition was emphasized.

From the O 1( )- equations, one immediately finds that the
parallel derivatives z of the leading-order fluctuations, v 0( ) and
b 0( ), must be O ( ) . This means that their variations with z are
“slow” compared to those in the x and y directions, and,
correspondingly that in wavevector (k) space there is spectral
anisotropy: k k ^. It follows that, to lowest order, the
transverse fluctuations are solenoidal in transverse planes:

v 00· ( ) =^ ^ and b 00· ( ) =^ ^ . Consequently, v 0( )
^ and b 0( )

^ can
be expressed in terms of potentials f and A without loss of
generality (as is also the case in KP and S76). Because of the
spectral anisotropy, high-frequency Alfvén waves and high-
frequency pseudo-Alfvén waves have been eliminated.

M82 is explicitly concerned with elimination of fast
timescale motions, but assumes incompressibility from the
outset. This leads to the same equations for v̂ and b̂ that KP
and S76 obtain. However, because fast magnetosonic modes
are never present in incompressible MHD, there is no need to
assume the parallel fluctuations are weak compared to the
perpendicular ones; that is, variance anisotropy is not a
requirement in this derivation. Indeed, M82 finds that vz and
bz enter at the same order as v̂ and b̂ , whereas they enter at
higher order in KP and S76.

The KP and S76 derivations may also be interpreted in terms of
an approximation in which the fast timescale dynamics have been
eliminated. When 1p b (as they both assume), two distinct
types of anisotropy are needed to achieve this elimination. First,
recall that fast magnetosonic modes are polarized such that vz and
bz are nonzero. Since KP and S76 assume that vz and bz are one
order of KP or S smaller than the perpendicular components, this
means that fast magnetosonic modes are not present at the leading

fluctuation order. Thus variance anisotropy is used to eliminate
fast magnetosonic modes. (In fact, this eliminates fast modes of all
frequencies.) Second, because Alfvén modes ( k VAw =  ) and
slow magnetosonic modes ( k Csw »  when 1pb < ) have
anisotropic dispersion relations, lengthscale anisotropy ( S =
ℓ ℓ 1^ ) or, equivalently, spectral anisotropy (k k ^) ensures
these modes are of low-frequency, if present.
Another derivation that emphasizes the removal of fast

timescales, this time beginning with the compressible equations,
is due to ZM92. They employ what is ostensibly a further small
parameter, the Alfvén Mach number, M u VA 0 A= (u0 is a
characteristic fluctuation speed). However, for RMHD u b0 » ^, in
Alfvén speed units, and thus M b BA 0 KP» =^  is not a distinct
expansion parameter.
Recall that the physical content of an RMHD derivation

based on timescales is that the characteristic nonlinear time-
scale, NLt , should be no slower than the wave timescales, e.g.,
for Alfvén waves with timescale At ,

. 5NL A ( )t t

When pb is O(1) or smaller, this can be achieved by imposing
restrictions on the characteristic lengthscales along and across
B0 (i.e., spectral anisotropy). Using standard definitions in
Equation (5), we have ℓ b ℓ B0d^  , and with b bd » ^ this
implies S KP  . Thus, two essential assumptions for obtain-
ing RMHD from compressible 3D MHD can be combined and
written as

ℓ

ℓ

b

B
1 or 1. 6

0
S KP ( ) 



^ ^  

For the 1pb  case, elimination of the high-frequency slow
modes and the high-frequency Alfvén modes imposes no
further restriction. The complete elimination of high-frequency

fast modes ( k V CsA
2 2w » + ), however, requires that the

fluctuations are strictly transverse, i.e., v b0z z= = (ZM92).
The ZM92 derivation is related to the development of so-

called nearly incompressible MHD (Zank & Matthaeus 1993),
but differs in that it is not based on a perturbation series but
instead employs Kreiss’s principle to eliminate fast timescales
by bounding time derivatives in the initial data (Kreiss 1980).
We refer the reader to the original paper for details of this
development, but the important conclusion is that for both

O 1p ( )b = and for 1p b the RMHD equations are as given
above in Equations (1) and (2), with no parallel fluctuations
present.

2.4. System Size and Characteristic Lengths

The relationship between the size of a physical system and
the lengthscales characteristic of RMHD dynamics is not
always straightforward. For the case of a finite size domain the
lengthscales ℓ and ℓ̂ may sometimes be associated with the
dimensions of the container (L̂ and L, say), as in Strauss’s
(S76) rectangular idealization of a tokamak. The lengthscale
ratio is then also the aspect ratio of the device. However, this
identification may not always be dynamically meaningful. For
idealized tokamaks with very strong guide fields, or similar
cases relating to solar flux tubes with certain boundary
conditions, it may be necessary to distinguish between the

6 Recall that in incompressible MHD, the two linearized wave modes of the
system are the Alfvén and pseudo-Alfvén modes, respectively, polarized in the
toroidal k B0´ and poloidal k k B0( )´ ´ directions. Clearly, the Alfvén
mode has no component in the parallel direction, whereas,in general, the
pseudo-Alfvén mode does. Fast magnetosonic modes do not exist in
incompressible MHD.
7 Montgomery’s choice of ò is equivalent to KP’s small parameter, KP , since
in Montgomery’s case b O 1( )=^ , and so b B0= ^ .
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system (L) and characteristic (ℓ) lengths.8 This may occur
when the mean magnetic field is so strong that b B0^ is smaller
than the inverse aspect ratio. It is then possible that the “non-
propagating mode” with zero  (and arbitrary ⊥ structure) is
the only surviving class of fluctuations that obeys the
conditions in Equations (5) and (6). These fluctuations, with

At  ¥ and ℓ ¥, always comply with these conditions. In
this way, one sees that the 2D modes are the core RMHD
fluctuations, as discussed in ZM92; see also Dmitruk
et al. (1998).

2.5. Role of pb

It is evident that the size of pb impacts on the RMHD
approximation. The key point is that, at leading order,
Equations (1)–(2) for the transverse fluctuations are valid for
all pb , whereas most derivations find that parallel fluctuations
are absent at 1pb  , but may be present for large pb . Below,
we provide some expanded discussion on RMHD in these
different pb regimes.

KP’s derivation ignores mechanical pressure and thus
assumes 0pb  . While this simplifies the physical picture in
some ways, it complicates the approach to incompressibility,
since only magnetic pressure is present to enforce the condition

v 0
t
( · ) =¶

¶
. In S76, the mechanical pressure is retained, at

O S
2( ) , and since B O 10 ( )= , one has Op S

2( )b =  . Both of
these approaches are low pb , and the fluctuations have strictly
transverse polarizations.9

In the M82 derivation, incompressibility is assumed from the
outset and pb is not discussed. Presumably, this (incompres-
sible) model applies to plasma with low Mach number and high

pb . However, under these conditions the approach to
incompressibility does not require a collapse of dimensionality,
and one can recover an intrinsically isotropic MHD fluid model
(Zank & Matthaeus 1993). A strong magnetic field is still
imposed, but not strong enough to violate the assumption of
high pb . That is,we must maintain V CsA  . In this case, the
strong magnetic field expansion does not impose variance
anisotropy, and the presence of parallel variances—vz and bz—
does not violate the assumption that dynamical speed remain
slow compared to the acoustic (or fast magnetosonic) wave
speeds. Nevertheless the mismatch between advective or
turbulence timescales and much faster high-k Alfvén speeds
does induce a wavevector anisotropy, as described by Shebalin
et al. (1983; see also Bondeson 1985; Grappin 1986; Oughton
et al. 1994).

It follows that an RMHD limit can be achieved at high pb ,
but it necessarily involves two distinct stages: the first involves
a reduction to the incompressible limit, usually attained by
imposing a low Mach number ordering, together with bounded
compressible fluctuations in initial data or forcing (see, e.g.,
Klainerman & Majda 1982; Matthaeus & Brown 1988).
Second, the strong but intermediate valued mean magnetic
field (v b V C, sA ^ ^ ) mandates that one also requires
k k ^ spectral anisotropy, in order to restrict time variations
to be at advective or turbulence timescales, such as ℓ v^ ^.

Schekochihin et al. (2009) found that parallel variances
(and density fluctuations) are part of RMHD for all values of

pb . One reason for this is their assumption that all fluctuations

enter at order k k 1= ^ , whereas in KP and S76 the
parallel fluctuations are an order smaller (as are the density
and pressure fluctuations). Moreover, although fast mode
timescales are set aside in their development, it is not clear
that their absence can be maintained since the fast mode
polarization involves parallel variances and these are allowed
under the Schekochihin et al. (2009) ordering. They suggest
strong collisionless damping of fast modes and weak transfer
of their energy to high-frequency Alfvén modes as factors
supporting the irrelevance of such modes. However, since
these processes depend on pb it is unclear whether it is
consistent to retain parallel fluctuations (at leading order) for
all pb .
Summarizing, the major role that pb plays in RMHD is

determining whether or not parallel variances are present (at
leading order). The transverse components of the fluctuations
obey Equations (1)–(2) for all values of pb . For systems with

1p b or 1pb » , the RMHD approximation does not have
parallel fluctuations (KP, S76, ZM92). However, when the
initial system is incompressible, or when 1p b , the RMHD
approximation can include vz and bz fluctuations at the same
order as the v̂ and b̂ ones. These parallel fluctuations obey
“passive” linear equations (M82; Kinney & McWilliams 1998).
See Kinney & McWilliams (1997) andKruger et al. (1998) for
analogous discussions of the role and dynamics of parallel
variances in other formulations that are related to RMHD.
Note that in contrast to this pb -dependent aspect of variance

anisotropy, spectral anisotropy is an inherent requirement for
RMHD—whatever the value of pb —since otherwise high-
frequency Alfvénic motions could arise.

3. Structure of the RMHD Equations

The above review of derivations highlights that there are two
small parameters of importance in RMHD— KP and S —and
suggests that a comprehensive derivation of the RMHD
equations can be achieved using a multiple-scales analysis
that is based on both of these.10 Thus, let us define a slowly
varying parallel coordinate s zS¢ =  and a fast time coordinate

t KPt¢ =  , and treat all fluctuations as functions of these and
the original coordinates, e.g., b x y z s t, , , , ,( )t¢ ¢ . The fields
themselves are assumed to beof the form

B b
z

b b
B

70
0

KP
KP 1

ˆ ( )+ =
¢

+ ¢ + ¢ + ¼




v v v . 8KP 1 ( )= ¢ + ¢ + ¼

A prime superscript (′) denotes rescaled quantities (with
magnitudes of order unity), sometimes referred to as being in
code units for RMHD. The unprimed variables on the LHSs are
in physical or laboratory units. Density and pressure are
expanded in similar ways, though it is necessary to consider pb
in their expansions (Zank & Matthaeus 1992, 1993). The x, y,
and t coordinates are left unscaled. This O 1( ) scaling of the
“main” coordinates, along with the leading-order fluctuations
also being O 1( ), is a convenient property of the chosen
ordering scheme, particularly for turbulence applications.
Substituting into the compressible 3D MHD equations,one

then demands that time derivatives are O(1)—i.e., that
0t¶ ¶ ¢ = —so that all high-frequency fluctuations are

8 This is certainly the case for homogeneous turbulence.
9 See Strauss (1977) for a demonstration that in the Op S( )b =  case parallel
variances can be taken equal to zero.

10 Multiple-scalesapproaches were employed in M82 and Kruger et al.
(1998), but in each case werebased on only one of KP or S .
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eliminated.11 One finds that at leading order, v¢ and b¢ are
transverse to B0¢ and also solenoidal. Thus, v 0· ¢ =^ and
v B 00·¢ ¢ = , for example, where x yx yˆ ˆ = ¶ + ¶^ . Moreover,
although the fluctuations depend upon all three spatial
coordinates, the leading-order dependence on the parallel
coordinate is intrinsically weak (in other words,slowly
varying); that is, v¢ and b¢ are functions of s¢ but not of z.
Thus RMHD has a restricted 3D dependence, rather than a
“fully 3D” dependence (see Section 5).

It is helpful to express the RMHD equations in terms of
transverse12 Elsasser variables, z v bx y s t, , , 4( ) pr¢ = ¢  ¢ ,
where the mass density ρ is taken to be uniform. One obtains

z
z z z

z

t

V

s

p O O , 9

A

KP
S

2
KP S

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠ ·

( ) ( ) ( )

 

n

¶
¶

¢ ¶
¶ ¢

= - 

-  +  + +




^


^ ^





 *

with V B 4A 0 pr¢ = ¢ and p* the mechanical plus magnetic
pressure.13 For simplicity, viscosity ν and resistivity η are
assumed equal.

A key feature of RMHD—the lack of high-frequency Alfvén
waves—is associated with the second term on the LHS of
Equation (9). Physically, the bracketed pieces in this “wave
term” correspond to the actual (very large) mean Alfvén speed
and the actual (very weak) gradient operator in the parallel
direction. The RMHD approximation is such that these offset
each other to produce an, at most,O(1) variation. Hence there
are no high-frequency Alfvén waves in RMHD. Low-
frequency Alfvén waves typically arepresent.

The “wave term” is usually written as zV sA¶ ¶ ¢ , where14

V V V 10A A
S

KP
A

NL

A
( )t

t
 = ¢ = ¢



is the mean Alfvén speed in rescaled (code) units—not physical
units (see Section 3.5). Bywriting it with the S KP  ratio
explicit, we are emphasizing how the two small parameters
interact (M82; Oughton et al. 2004). Interestingly,

b B ℓ ℓKP S 0( )( )= ^ ^  is formally the same as the Kubo
(1963) number, K; see Section 3.4.

As is wellknown, the gradient operator in Equation (9) is the
transverse one, acting only on the x and y coordinates. Notably,
there is no parallel dissipation in RMHD (M82). This is an
important difference from 3D MHD and its ramifications are
considered in Section 4.1. At leading-order, parallel gradients,

s¶ ¶ ¢, appear only in the wave operator.
As is usual for incompressible flows, the pressure is

determined from a Poisson equation, obtained from the
(transverse) divergence of Equation (9):

z zp . 112 · ( · ) ( ) =- ^ ^ ^ ^
*

The pressure gradient force can be viewed as a projection
operator that enforces incompressibility. In doing so, the
pressure couples the x and y components of z, thereby
enabling transfer of energy between them. Indeed, in the
simpler case of incompressible Navier–Stokes turbulence, the
pressure acts to isotropize the energy in the cartesian
components of the velocity (Batchelor 1970). The extent to
which this tendency toward variance isotropy occurs in (R)
MHD is an interesting question.

3.1. Fourier Space

When investigating the linear and nonlinear features of
RMHD turbulence, it can be helpful to work in Fourier space.
If k k B0

ˆ
k= + ¢^ is the Fourier wavevector, then the Fourier

transform of Equation (9) is

z k z p q z q p q

k k z k

t
i V i d d

i p k , 12

A

2

⎜ ⎟⎛
⎝

⎞
⎠ ( ) ( ) · ( )

( ) ( ) ( )

 
òk

n

¶
¶

¢  =-

- -


^



^ ^
*

where the integration is subject to the wavevector triad
constraint k p q= + . Note that the parallel component of k
is written k¢ (not k) as a reminder that this is a slowly varying
coordinate, Fourier conjugate to s¢. The symbol k is reserved
for the 3D MHD situation where no rescaling of coordinates is
performed.

3.2. Slab Modes

Fourier modes with k B0 (i.e., k 0=^ ) are often referred to
as slab modes, since they have no transverse structuring. From
Equation (12), one can show that these obey linear equations.
This follows because the first term on the RHS can be rewritten
as proportional to k̂ , using q k p= -^ ^ ^. So when k 0=^ , all
terms on the RHS vanish leaving only linear (and undamped!)
evolution of the slab modes. The linearity also means that such
modes cannot be dynamically generated in RMHD.
The question remains, however, of whether slab modes are

allowable in RMHD initial conditions. Formally, each slab
mode has a (modal) nonlinear time thatis infinite, and thus the
RMHD timescale restriction, Equation (5), cannot be satisfied
for slab modes. On the other hand, one might consider
comparing a slab mode’s Alfvén time, A ( )t k¢ to the nonlinear
time associated with all modes on the k-space shell k∣ ∣ k= ¢:

k ku1 kNL ( ) ( )t » , where uk is the rms speed for fluctuations
with scales of k1~ . However,in this case, NL A( ) ( )t k t k¢ ¢
is equivalent to B u0 k¢ which violates the fundamental strong
mean field assumption of RMHD. Thus, slab modes are absent
in RMHD.

3.3. Connection with Toroidal and Poloidal Polarizations

RMHD’s transverse incompressibility, k z k 0· ( ) =^
 ,

means that the fluctuations are polarized perpendicular to k̂ .
Moreover, since the (leading-order) fluctuations have no
parallel components, z k( ) must be parallel to k B0

ˆ´^ , which
is the toroidal direction. Thus RMHD fluctuations are
toroidally polarized. This is perhaps most easily seen in
Fourier space, as shown below.
Recall that for each wavevector k, there are two linearly

independent basis vectors that span the plane with k as a normal
vector. A physically motivated choice of unit basis vectors is the

11 Operationally, one can take earlier derivations such as KP, S76, or ZM92,
and replace all occurrences of z¶ ¶ with sS KP( )¶ ¶ ¢  .
12 As discussed in Section 2.5, if 1p b ,then parallel components of the
fluctuations may also be present at the same order (M82; Kinney &
McWilliams 1997; Schekochihin et al. 2009). However, they obey linear
equations and are of less interest here.
13 For numerical solutions, other forms of the RMHD equations are more
efficient. These typically solve for the (parallel) components of the vector
potential and vorticity. See Equations (19)–(20).
14 The double primes on VA serve as a reminder that (a) both small parameters
enter into its definition, and (b) it is a rescaled quantity.
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toroidal and poloidal decomposition, e k k B kT 0( ) ˆ= ´ ^ and
e k k eP T( ) ˆ= ´ .15 As is well known, these unit vectors coincide
with the polarization directions for the linearized wave modes of
incompressible 3D MHD: eT for the shear Alfvén wave and eP for
the pseudo-Alfvén wave. The incompressible MHD equations are
readily analyzed in terms of this basis as has been frequently
discussed (e.g., Craya 1958; Herring 1974; Krause & Rädler
1980; Schmidtmann et al. 1998; Howes 2015).

Taking the dot product of Equation (12) with e kT ( ) and
writing k e k z kz Trmhd( ) ( ) · ( )=  yields

k k

z p q z q e k p q

t
i V z k z

i d d . 13T

A rmhd
2

rmhd⎜ ⎟⎛
⎝

⎞
⎠ ( ) ( )

( ) · ( ) · ( ) ( )

 

ò

k n
¶
¶

¢  = -

-


^



^


The pressure gradient term has dropped out since it acts parallel
to k̂ , and k e k 0T· ( ) =^ .

Of course, incompressible 3D MHD can also be written in
terms of poloidal and toroidal components, and it is of interest
to understand its relationship to RMHD. As the above
discussion suggests, the primary distinction hinges on the
presence or absence of poloidal fluctuations, though the
dissipation terms also differ. Working with the full 3D Elsasser
variables z k t,3D( ) —so that the parallel coordinate is not
restricted to large-scale variations—and writing now
k k k k, ,x y( )= ,

z k e k k e k kz z 14T T P P3D( ) ( ) ( ) ( ) ( ) ( )= +  

z k z k , 15T P( ) ( ) ( )= + 

one can employ this form with the equations of incompressible
3D MHD given a mean magnetic field with associated Alfvén
speed VA

3D. Note that no rescaling of coordinates or fields
occurs. Setting all kz 0P ( ) = then yields

k k

z p q z q e k p q

t
ik V z k z

i d d , 16

T T

T T T

A
3D 2⎜ ⎟⎛

⎝
⎞
⎠ ( ) ( )

( ) · ( ) · ( ) ( )

 

ò

n
¶
¶

= -

-

 

^


where the integration is again subject to the triad con-
straints k p q= + .

Comparing Equations (13) and (16), it is clear that the
incompressible 3D MHD equations with all poloidal fluctua-
tions set to zero are formally equivalent to the RMHD
equations—except for their retention of parallel dissipation,
i.e., the dissipation terms are proportional to k2 (versus the k2

^ of
RMHD). The absence of parallel dissipation in RMHD has
important consequences for spectral transfer in the parallel
direction; see Section 4.1.

However, this formal (near) equivalence masks the inherent
anisotropy of RMHD. In RMHD, s¢ and k¢are large-scale
coordinates, compared to the transverse ones, and VA is a
rescaled quantity. No such restrictions are made in obtaining
Equation (16). In particular, k1  is not required to be a large
scale, and VA

3D is of arbitrary strength (i.e., it need not be
strong). Indeed, it is well known from numerical experiments
(Dmitruk et al. 2005; Oughton et al. 2016) that, for b B 10d ~ ,
dynamical evolution beginning with a “toroidal-only” (or
transverse) initial condition, will lead to significant O(1)

parallel (poloidal) fluctuations in just an eddy turnover time.
Therefore, in general terms, the toroidal-only formulation is
grossly unstable unless the RMHD requirements are met.

3.4. Kubo Number

In his investigation of stochastic Liouville equations, Kubo
(1963) introduced a dimensionless parameter measuring the
strength of perturbations in such systems, subsequently referred
to as the Kubo number, K. For field-line transport in frozen
magnetic turbulence it can be written as K b B ℓ ℓ0( )( )d= ^
where B0 is the average field, bd is the rms fluctuating field, and
ℓ (ℓ̂ ) is the correlation length parallel (perpendicular) to B0.
For RMHD, field-line transport depends only upon K (Snodin
et al. 2013; Servidio et al. 2014). In the RMHD context (where
b bd = ^),one also has K KP S=   , which is the ratio of two
small parameters and so its size may not be immediately
apparent.16

When the RMHD approximation is valid, KP and S must
both be small, and they must satisfy Equation (6). Rearranging
the latter one obtains

K
ℓ

ℓ
1 . 17( ) 

^


Thus, in a system obeying the RMHD equations, the Kubo
number is constrained to lie between roughly unity and about a
tenth of ℓ ℓ ^. The latter condition, however, is automatically
satisfied if the approximations leading to RMHD are also
satisfied, (i.e., KP , 1S  ), so that the relevant restriction
is K 1 .
The only place the Kubo number appears in the RMHD

equations is in the “wave term”; see Equation (9). However,
this appearance is usually hidden via use of Equation (10):

z zV

K s
V

s
. 18A

A ( )
¢ ¶
¶ ¢

=  ¶
¶ ¢

 

Here, VA is the Alfvén speed associated with the mean
magnetic field, in code units (see the next section).

3.5. Units, Numerics, and Rescaling of V
sA
¶
¶ ¢

The distinction between physical units and code units can
induce some confusion when using the RMHD equations,
including determining correct physical values for b BKP 0= ^ .
A point to keep firmly in mind is that, physically, KP must be
small, since this is a necessary condition for validity of the
RMHD approximation.
Suppose that one wishes to solve the RMHD equations

numerically. A first step is to decide whether to employ the
equations written in physical17 units or those written in rescaled
“code” units. Denoting the rms amplitudes of the (transverse)
fluctuations by bd and vd , the former case has b v B, 0d d ,and
ℓ ℓ ^ . In the case of code units, it is often convenient to
choose both b v, 1d d » and V 1A » . Naively, the later choice
would appear to involve b V 1Ad  » (where V BA 0 º ), but this
is an incorrect interpretation sinceVA is a rescaled quantity (see
Equations (9), (10), and (18)).

15 When k B0 one can take e xT ˆ= and e yP ˆ= .

16 In non-RMHD contexts, K might not involve small parameters.
17 Here, physical means a standard dimensionless form of the equations, but
with no small parameters identified.
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Examination of the wave term in the RMHD equations,
Equations (9)–(10), reveals that it has a rescaling symmetry:
allowing V VA Aa   and

s s

1
a

¶
¶ ¢

¶
¶ ¢

leaves the wave term
invariant. In other words, increasing the mean field strength by
a factor of α while simultaneously scaling the parallel
coordinate by the same factor leaves the equations unchanged
(e.g., Beresnyak 2012).

Computationally, this means that a single simulation
corresponds to (infinitely) many physical systems, each with
a different strong VA. For example, a numerical setup might
employ V 1A = and Nz (uniformly spaced) gridpoints in the B0
direction. At any time during the simulation, the parallel
correlation length may be calculated. Suppose it is determined
to be ℓ cor

 = L in nondimensional code units. This can be
interpreted as corresponding to a physical system with VA a=
and ℓ cor

 a= L , for each 1a (where α must be large so that
the assumptions on which RMHD is based are satisfied).
Rescalings of this kind do not alter the Kubo number.

The form of the dissipation operators is also influenced by
the choice of physical units or numerical units. In code units,
standard scalar dissipation (viscous and resistive) involves the
perpendicular Laplacian, 2^, not the 3D Laplacian. Use of the
later would correspond to a very large parallel viscosity. See
the final paragraph of Section 4.1.

Finally, in this section, we note that when solving the
RMHD equations numerically, it is often advantageous to
express them as evolution equations for the parallel compo-
nents of the magnetic vector potential, a az º , and the fluid
vorticity z vˆ ·w =  ´^ (e.g., S76, M82). In our notation,
these equations are

v
a

t
a V

s
a, 19A

2· ( )f
h

¶
¶

+  =  ¶
¶ ¢

+ ^ ^

v b
t

V
j

s
j , 20A

2· · ( )w
w n w

¶
¶

+  =  ¶
¶ ¢

+  + ^ ^ ^

where the electric current density j a2= -^ and f is the
stream function satisfying 2w f= -^ . These are of course
equivalent to the “primitive” variable forms, Equations (1)–(2).
They do, however, afford considerable gains in numerical
efficiency since there are only two equations to solve as
opposed to the four equations of the primitive variable case. In
addition, there is no need to solve for the pressure.

3.6. Boundary Conditions

Often in RMHD applications (e.g., coronal loops), the
system is not periodic in the B0 direction. Consequently, the
boundary conditions (BCs) on the outer surfaces of the system
(in the B0 direction), say, s 0¢ = and s L¢ = , need to be of a
more general type. The possibility that these BCs induce
boundary layers adjacent to the end surfaces then needs to be
considered (Scheper & Hassam 1999). In particular, one would
like to know whether the RMHD model remains valid in these
putative boundary layers, or whether they are associated with
structure in s¢ that is of such small scale that the RMHD
lengthscale inequality ℓ ℓ 1^ is violated (see Equation (4)).

A class of BCs relevant to coronal applications is the line-
tied ones, meaning that the normal component of the magnetic
field is continuous across the boundary(s), and that it moves
with the transverse flow at the boundary. When line-tied BCs
are employed, and the system is alsoquasistatic, Scheper &

Hassam (1999) report that boundary layers do form, but that the
transverse v and b are essentially unaffected with their s¢
dependence still satisfying the RMHD assumptions. There is,
however, a correction to the parallel magnetic field that has

ℓ1z¶ ~ ^ and this needs to be taken into account.
Line-tied BCs are also of interest in turbulence (i.e., non-

quasistatic) RMHD studies, where the velocity fluctuations
obey a dynamical equation. Results in Rappazzo et al. (2008)
suggest that the RMHD model remains valid in these situations,
with all quantities being slowly varying with respect to the
parallel coordinate z. We are not aware of any reports on the
development of boundary layers given these BCs.
Other types of BC were investigated by Dmitruk et al.

(2001), where Dirichlet and Neumann conditions were imposed
on the velocity stream function and magnetic potential.18 Here
too, there was no indication of boundary layers forming. Thus
we conclude, that at least for physically consistent BCs, the
RMHD model remains valid for many different types of BCs.

4. Dynamical Issues

4.1. Parallel Spectral Transfer and Dissipation

Energy does spread in the k direction in RMHD (Kinney &
McWilliams 1998; Oughton et al. 2004; Dmitruk et al. 2005).
However, because of the inherent lengthscale anisotropy of
RMHD, and because of the lack of parallel variance of the
fluctuations, this parallel spectral transfer is weak. There are, in
fact,no “parallel nonlinearity” terms like bb  in the
equations; the absence of poloidal (i.e., non-Alfvénic) fluctua-
tions ensures that such terms cannot appear. Thus, even though
there are triadic couplings that transfer energy to greater k∣ ∣, the
speedup in characteristic timescales that occurs as the cascade
process continues (essentially as in the Kolmogorov picture) is
almost entirely due to transfer to higher k̂ , not higher k¢. In this
sense, one may view that all parallel spectral transfer in RMHD
is “kinematic.”
Furthermore, since there is no parallel dissipation (see below),

there is no drain at high k¢ to pull energy in that direction. The
loss of energy moving toward higher k¢ is mainly due to the
progressive transfer of energy toward higher k̂ , which does
ultimately lead to dissipation. This idea motivated Montgomery
(1989) to argue that the reduced spectrum in the (global) parallel
direction, E dk dk E k k, ,x y x y∬( ) ( ) k k¢ = ¢ , will have an expo-
nential “survival probability” form (the integrand is the modal
energy spectrum). Simulation results support the argument
(Kinney & McWilliams 1997; Oughton et al. 2004). An
alternative suggestionby Beresnyak (2015)is that the parallel
spectrum calculated along field lines is really the Lagrangian
frequency spectrum in disguise, and hence should be k 2

~ - .
It is clear from the derivations outlined above that, in terms

of the unscaled spatial coordinates, RMHD has   ^ , so
that 2 2  ^ when introducing simple scalar viscous or
resistive dissipation. For these unscaled derivatives, this makes
little difference because 2 2

S
2 2

 =  + ^  , and,although the
parallel dissipation is present, it is very small. However, when
the rescaled coordinates are employed—as is often the case for
numerical simulations—it is incorrect to include viscous
dissipation in the form v2n with a scalar ν, because this, in
effect, introduces a large viscosity acting on parallel gradients.
While, in certain approximations (e.g., Montgomery 1992), this

18 More accurately, on the sum and difference of these: the Elsasser potentials.
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might correspond to a real plasma physics effect, there is no
basis for including it in a purely collisional MHD context. In
the rescaled case, the dissipation operators in RMHD should
involve 2^, and not 2 .

4.2. RMHD with Isotropic Energy-containing Scales?

As the above derivations with b B 10 d have shown, for
RMHD to be valid at all scales one requires also that the large
scales be anisotropic with ℓ ℓ ^ . Conversely, if MHD is
(lengthscale) isotropic at energy-containing scales, still with
b B 10 d , then one has A NLt t for those scales and
RMHD will not be a good approximation for them. None-
theless, in such situations it is possible that perpendicular
spectral transfer might quickly populate smaller scale modes
for which RMHD is “locally” valid (meaning k kNL A( ) ( )t t< ).
Indeed, it has been suggested that RMHD is a good
approximation for inertial range fluctuations, even when the
large scales do not obey the RMHD equations (e.g., Perez &
Boldyrev 2008; Beresnyak 2012). However, it is unclear how
to join together two such different models—consisting, say, of
full MHD at the larger scales and RMHD at the smaller inertial
range of scales.

If one considers full MHD with b B O 10 ( )d = and spectral
isotropy at the largest scales, then potential use of an RMHD
approximation also encounters difficulty. On the plus side, the
nonlinear and Alfvén timescales evaluated at the largest scales will
not be grossly misordered, in contrast to the b B 10 d with
ℓ ℓ»^ case of the previous paragraph. However, almost always,
parallel variances will quickly be generated, and the RMHD
restriction to the transverse (toroidal) modes will be violated
(Dmitruk et al. 2005). In such circumstances, the details of which
vary with plasma beta (Franci et al. 2015a, 2015b; Oughton
et al. 2016; Parashar et al. 2016), RMHD will not remain a good
approximation to MHD for times much longer than a single large-
scale nonlinear time.

What about using RMHD to describe sub-volumes of these
b B0d » , ℓ ℓ»^ systems? For a small enough sub-volume, the
local mean field B largeá ñ , obtained by averaging over the large
scales, could have a well-defined direction and also be strong,
motivating theuse of RMHD in this region. However, B largeá ñ
will change in direction (and magnitude) on the global
nonlinear timescale, NLt , presumably limiting the length of
time such a model would be valid to t NLt . There are also
“open boundary” issues associated with such an approach.
First, the large eddies will sweep “external” fluctuations into
the sub-volume, and also sweep some “original” fluctuations
out of it.19 Second, Alfvén waves will propagate in and out of
the region, typically in directions that differ from those of the
sweeping. To account for these influences, some sort of
boundary forcing would probably be needed. Collectively,
these aspects limit the usefulness of such sub-volume models,
perhaps to just statistical information.

4.3. Perpendicular Spectral Transfer and Phenomenology

For RMHD, with anisotropic large-scale energy-containing
eddies, and b B 10 d , spectral transfer is dominantly in the
perpendicular direction. Since k k>^ at all scales, the
nonlinear timescale is mainly determined by the perpendicular
wavenumber, i.e., k kNL NL( ) ( )t t» ^ . Furthermore, since

nonlinear decorrelation is never slower than global Alfvénic
decorrelation for this RMHD ordering, the Kolmogorov
phenomenology is appropriate (seeMatthaeus & Zhou 1989;
Zhou & Matthaeus 2005) and one arrives at an inertial range
spectral density (integrated over k and azimuthal angle) of the
form E k k 5 3( ) ~^ ^

- . Note that for the purely 2D case,
essentially the same argument follows, as discussed by Fyfe
et al. (1977). A variant argument can be constructed in which
the large-scale fluctuating magnetic field in the perpendicular
plane becomes strong enough so that the perpendicular Alfvén
time becomes smaller than kNL ( )t ^ . This may lead to a k 3 2

^
-

Kraichnan spectral law instead of the Kolmogorov 5 3-
behavior (Grappin et al. 1982, 1983).

4.4. Relation to Critical Balance

RMHD and phenomenologies based on the critical balance
assumption (Goldreich & Sridhar 1995), share a reliance on the
equal timescale curve, k kNL A( ) ( )t t» . However, this curve
enters into these models in distinct ways, as we now discuss.
RMHD is a subset of compressible MHD that lacks all fast

timescales, meaning those that approach zero as the applied
magnetic field B0 tendsto infinity (e.g., M82). This requires
that the dynamically active modes have Alfvén timescales that
remain of theorder of the nonlinear timescale NLt , or larger, as
B0  ¥. These restrictions lead to the condition expressed in
Equation (5), from which one readily arrives at the RMHD
spectral anisotropy constraint, k k ^. Any mode k satisfying

k kNL A( ) ( )t t< will clearly satisfy all the conditions for
inclusion in the region of wavenumber space relevant to
RMHD. The outer extent of this region is estimated by the
equal timescale curve, k kNL A( ) ( )t t» .
Intriguingly, this same (approximate) equality of the time-

scales is obtained through the assumptions leading to critical
balance theory (Goldreich & Sridhar 1995). Critical balance
and RMHD share other properties as well, such as the
dominance of perpendicular transfer and the lack of fluctuation
variances parallel to B0. However, there are also fundamental
differences between these models—notably in the dynamical
scenarios leading to their respective reduced dynamical
descriptions. Roughly speaking, RMHD emerges from the
interaction of low (including zero) frequency Fourier modes,
whereas critical balance is established via interaction of higher
frequency Alfvén waves. Both chains of reasoning lead to the
condition k kNL A( ) ( )t t , but in essence this is arrived at from
the high-frequency side in critical balance theory and from the
low-frequency side in RMHD. In addition, critical balance is
usually interpreted more strongly, requiring (approximate)
timescale equality, not just the above inequality.
We will not delve further into this and other technical aspects

of the relationship here, except to emphasize that, while the
equal timescale condition is conceptually relevant in both
models, RMHD and critical balance are quite distinct. We will
examine this relationship in greater detail in a forthcoming
paper.

5. Dimensionality Questions and Issues

As noted in the Introduction, the extent to which RMHD
encompasses the physics of 3D MHD and/or 2D MHD is an
important question. Since RMHD is an approximation to the
compressible 3D MHD equations, it is unlikely to have retained
all of the physics of the original system. For example,19 To mitigate this effect, a Lagrangian RMHD model might be considered.
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compressible activity is always absent in RMHD, and typically
so too are parallel fluctuations. Recall that RMHD is inherently
incompressible while the 2D, 2.5D, and 3D cases might be
compressible or incompressible. Of the numerous comparisons
that can be made between RMHD and either 2D or 3D MHD,
some are more subtle than these examples. We have therefore
found it useful to assemble a summary of whether or not
various features are present, or relevant, in several guises of
MHD (Table 1). Some of the listed features have already been
discussed, some are obvious, and some are considered more
fully below.

At least one issue is essentially semantic. RMHD has
sometimes been described as “fully 3D”—presumably meaning
that it depends on three spatial coordinates (e.g., Perez &
Boldyrev 2008; Beresnyak 2012; Mason et al. 2012;
Howes 2015). However, such a description is somewhat
misleading and might easily be misinterpreted. The key issue is
that the parallel coordinate, which appears in the RMHD
equations and their solutions, s zS¢ =  , is necessarily large-
scale. This is because of the spectral anisotropy required to
eliminate high-frequency Alfvén waves in a system with a
strong mean field, as is evident in the RMHD derivations.
Thus, it is more accurate to say RMHD has a restricted 3D
dependence, or, that RMHD is 3D but with the parallel
coordinate restricted to be large-scale. In addition, “fully 3D”
might suggest to the unwary reader that all functional degrees
of freedom are present, but, as noted in Section 3.3, poloidal
polarization is exactly absent in RMHD.

Another category of comparisons is that of conservation laws.
In this regard, RMHD in some sense falls between (incompres-
sible) 2D/2.5D MHD and 3DMHD. In each of these systems, the
total fluctuation energy (per unit mass), v bE 2 22 2∣ ∣ ∣ ∣= á ñ + á ñ
and the cross helicity, v bHc ·= á ñ, are conserved. (The brackets
denote an ensemble or volume average with appropriate boundary
conditions.) For 3D MHD with B 00 = , the fluctuation magnetic
helicity a bHm ·= á ñ is also an invariant; here b a=  ´ with
a the vector potential for the magnetic fluctuations. When
B 00 ¹ , Hm is no longer an invariant so that one might suspect
this would also be the case in RMHD. However, in the usual
RMHD with v b 0z z= = , one has a zaz ˆ= and thus H 0m = . In
a trivial sense, this is also a conserved quantity, though clearly not
a very useful one. One can define a total magnetic helicity,

a BH a Bm z
tot

0·= á + ¼ñ = á + ¼ñ, based on B B b0= +

(Montgomery 1981). In the common situation, where B0 is
uniform, this becomes B az0 á ñ, essentially just the average of az.
The number of (quadratic) invariants and their positive definite-
ness (or not) are important determinants of the Gibbsian “absolute
equilibrium” statistical mechanics of the non-dissipative systems,
and of associated expectations for cascade behavior in dissipative
cases (Kraichnan 1973; Montgomery 1981; Stribling &
Matthaeus 1990).
Features that rely on strict two-dimensionality will not be

present in RMHD. For example, in 2D MHD, there is ideal
conservation of mean-square vector potential az

2á ñ, and an
antidynamo theorem (Pouquet 1978), but these do not hold in
RMHD. It is interesting that conservation of az

2á ñ in 2D appears
to be related to the presence of so-called 1/f noise (Dmitruk
et al. 2011); issues related to this in RMHD are discussed in
Section 5.1.
Similarly, aspects that require full three-dimensionality are

not likely to be present in RMHD. For example, a mean field
with fluctuations that are strictly transverse means that the
following are all absent in RMHD: magnetic loops, magnetic
nulls, null interchange reconnection, and reversals of magnetic
field lines. Their absence may limit the relevance of RMHD
studies of the acceleration and transport of energetic particles.
On the other hand, the Jokipii theorem (Jokipii et al. 1993;
Jones et al. 1998) that constrains transport in systems with an
ignorable coordinate does not pertain to RMHD, and in this
way it is a more realistic model than strictly 2D turbulence
(Shalchi & Hussein 2014).
Spectral transfer in RMHD is also peculiar, being neither

strictly 2D nor fully 3D. RMHD transfer is dominantly in the
perpendicular planes, with much weaker transfer in the B0
direction (Kinney & McWilliams 1998; Oughton et al. 2004;
Dmitruk et al. 2005). In this way, it is very similar to 3D MHD
with strong, or even moderate, mean fields (e.g., Montgomery
& Turner 1981; Shebalin et al. 1983; Oughton et al. 1994;
Matthaeus et al. 1996; Goldreich & Sridhar 1995; Maron &
Goldreich 2001; Cho & Vishniac 2000; Cho et al. 2002; Cho &
Lazarian 2003; Müller et al. 2003; Boldyrev 2006; Bigot
et al. 2008; Grappin & Müller 2010; Alexakis 2011; Mason
et al. 2012). Of course,in the 3D case, there are poloidal field
couplings that can contribute to parallel transfer, and even if
they are weak in 3D, they are completely absent in RMHD. The
approximate two-dimensionality of RMHD spectral transfer

Table 2
Some Ways in which RMHD is “Like” and “Not Like” 2D MHD and 3D MHD

2D 3D

Transverse No ignorable coordinate, so avoids issue of Jokipii et al. (1993) theorem
Like Low-frequency (no high k VA·w = modes) No 2D antidynamo theorem (Pouquet 1978)

Dominated by perp spectral transfer Some parallel spectral transfer
Propagating Alfvén waves, at low frequencies (with k 0¹^ ).

Strict transversality of RMHD fluctuations mandates
—no reversals, no loops, no magnetic nulls, no null interchange

az
2á ñ not conserved —no magnetic helicity (aside from the “cheat” helicity, a Bz 0á ñ).

Not No antidynamo theorem Lengthscale inequality  ̂ and spectral anisotropy mean

Like No ignorable coordinate —no parallel dissipation
Not exactly “zero frequency” —no parallel shocks
Some parallel spectral transfer —no slab waves

—lack of power at high k: problematic for energetic particle scattering

—often large-scale structures cannot be expected to be highly
anisotropic in this sense

9

The Astrophysical Journal, 839:2 (13pp), 2017 April 10 Oughton, Matthaeus, & Dmitruk



may be considered, crudely, as both “like 2D MHD” and “like
3D MHD.”

Table 2 presents, in list form, a summary of ways in which
RMHD is like, and also not like, both 2D and 3D MHD.

5.1. Quasi-Invariance and 1/f Noise

As a particular example of the RMHD model’s intermediate
nature, we document here the presence of a 1/f signal in long-
time driven RMHD. Previously Dmitruk et al. (2011) have
investigated the emergence of 1/f noise at low frequencies in
fluid systems that have more than one quadratic invariant
(Kraichnan & Montgomery 1980). Such systems can exhibit
inverse cascade behavior when driven at intermediate lengths-
cales. As stated above, 3D incompressible MHD with a mean
DC magnetic field B0 (and no cross helicity) admits only one
quadratic invariant, the energy. However, for strong B0 and
when driven, this system becomes anisotropic and begins to
two-dimensionalize. The mean-square magnetic potential az

2á ñ
never becomes fully conserved, but is “quasi-conserved” in
random epochs, sometimes for hundreds of characteristic times.

In this scenario, 1/f noise appears without a second strict ideal
conservation law. We also find this property in RMHD, as we
document in Figures 1 and 2. As RMHD is a special case of the
strong mean field limit of 3D MHD this is perhaps not
surprising.
For this demonstration, a periodic Fourier spectral method

RMHD code was employed with aresolution of 256 322 ´
and amean field of B 80 = . A forced and dissipative
simulation was carried out for 1000 large-scale nonlinear
times, with forcing in the (low) wavenumber modes

k1 4∣ ∣< < . A range of f1 behavior can be seen in the
Eulerian frequency spectrum for xb t,x 0( ), where x0 is an
arbitrary fixed position (Figure 1). This appears at frequencies
between f 0.1» and f 0.001» , extending to frequencies much
lower than the reciprocal of the large-scale eddy turnover time,
f 1 1c NLt= » . This is the same kind of low-frequency
behavior seen in other systems that are of the inverse cascade
type or of the quasi-invariant type (Dmitruk et al. 2011).20

Two familiar features of 1/f systems can be seen in Figure 2:
(1) that the time series show long periods of nearly stationary
behavior punctuated by level changesand (2) that much of the
energy condenses into a small subset of modes. In the RMHD
case, the condensed modes are the 2D ones ( 0k¢ = ) with
the shortest perpendicular wavenumbers, i.e., k 1, 0( )=^ and
(0, 1). Further physical interpretation of these properties may
be found in the references (Dmitruk et al. 2011).

6. Energy Wave Equation

RMHD contains an interesting dynamical feature that is not
present in either 2D, 2.5D, or 3D MHD. Consider a coordinate
space plane s const.¢ = that is oriented perpendicular to the
mean magnetic field B0. Denote the Elsasser energies in each
such plane as

zW s t x y s t dxdy,
1

2
, , , . 212( ) ∣ ( )∣ ( )ò¢ = ¢ 

Remarkably, these physically interesting quantities obey linear
wave equations, even when strong nonlinear turbulence is
present. To obtain this result, dot z with Equations (9) and
then sum over the perpendicular coordinates, with appropriate
transverse boundary conditions (Dmitruk et al. 2001). Ignoring
dissipative effects yields

t
V

s
W s t, 0. 22A⎜ ⎟⎛

⎝
⎞
⎠ ( ) ( )¶

¶
 ¶
¶ ¢

¢ =

A similar equation is obtained by van Ballegooijen et al. (2011,
Appendix C), when considering a variant of RMHD applied to
inhomogeneous flux tubes.
An example illustrating this linear wave behavior is shown

in Figure 3, which uses data from a (periodic) spectral method
simulation of the ideal RMHD equations. The initial state is a
(finite) Fourier series approximation to all the energy being in
the single plane s 100¢ = . Energy and cross-helicity are well
conserved throughout the run. The left-hand panel is a surface
plot of W s t,( )¢- for several crossing times of the periodic

Figure 1. Eulerian frequency spectrum from a forced RMHD simulation. The
approximate 1/f spectrum is found in a frequency range much lower than the
reciprocal of the large-scale eddy turnover time f 1 1c NLt= » . In this low-
frequency range, there is a great excess of power relative to a system that
becomes uncorrelated at frequencies well below fc.

Figure 2. Energy (kinetic plus magnetic) in condensed modes as a fraction of
the energy in the 2D modesvs. time. In this run, the 2D energy varies in time
as 15%–65% of the total energy. Time is in units of nonlinear time evaluated
for total energy at the longest wavelength modes. Inset: total energy vs. time.
Data is from the same simulation as inFigure 1.

20 We note that, as usual, at very low frequencies it is difficult to obtain precise
power-law behavior because of the enormous simulation time needed to
achieve statistical convergence. However, the important point is that, in the
“1/f” range, there is far more power at very low frequencies than would be
expected for a system that became stationary and uncorrelated at frequencies
much lower than the reciprocal large-scale turnover time.
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domain. Finite numerical resolution21 leads to some jitter in the
amplitudes of W, but the overall invariance of the planar
energies is evident. Figure 4 is a still from an animation
included with the online version of this paper, showing the time
evolution of the W s t,( )¢ and the vector potential a x y,( ) and
vorticity x y,( )w in the planes where W have their largest
values. W+ and W- are seen to propagate through each other
multiple times with only minor (numerical) distortion. More-
over, one can also see that, although the propagating energies
W are (essentially) constant, the nonlinear dynamics within
the transverse planes can be active and strong without violating
the linearity of the wave equation.

Why does this wave equation for the “plane energies”
holdfor RMHD, but not for 3D MHD? The key feature is the
transverse nature of the fluctuations: for incompressible 3D
MHD, the RHS of Equation (22) is not zero but rather

z
dxdy z p z

z

2
, 23

2⎛
⎝⎜

⎞
⎠⎟ ( ) ò-

¶
¶

++ - +*

where s¢ has been replaced by z since the parallel coordinate is not
rescaled in 3D MHD. Similarly, on the LHS, V Vs zA A

3D¶  ¶¢ .
Here, p* is the fluid plus magnetic pressure (see Section 3).

There are several ways that Equation (23) can be zero or
small.

1. It is exactly zero for strictly transverse fluctuations.
2. It is 0» if the parallel amplitudes are small compared to

the transverse ones.
3. It is 0» if Oz ( )¶ =  and V O 1A

3D ( )=  , for some
1 . TheVA

3D ordering is needed so that theV zA
3D¶ wave

term in Equation (22) remains O 1( ). Clearly, this is
closely related to RMHD.

Regarding the first case, we note that in both incompressible
and compressible 3D MHD, parallel fluctuations are generated
immediately even if they are not present initially, though the
level can be rather low depending upon the plasma beta and
other parameters (Oughton et al. 2016). Thus, the first case is
unlikely to be stable, but may transition quickly to the second,
small parallel amplitudes, case.

Focusing again on the case in which the linear wave equation
for W s t,( )¢ , Equation (22), does hold, we emphasize the
following point regarding the generality and applicability of the
RMHD model. The (summed) wave energy in toroidal modes
is conserved at every value of the parallel coordinate s¢ for the

continuum ideal RMHD model. This implies an infinite number
of pointwise invariant quantities in RMHD—all of which are
absent in the 3D MHD model. So, although RMHD is a
reduced model that necessarily lacks properties of the full
MHD framework, it nonetheless also possesses this infinite
class of invariants that are irrelevant in MHD, except perhaps
as quasi-invariants in special circumstances.
Strongly related to this class of invariants, is the fact that

W s t, n∣ ( )∣á ¢ ñ are continuum ideal invariants for all integers
n 1 , where á ñ indicates averaging over s¢. This is readily
shown using Equation (22). For numerical solutions, however,
spatial discretization22 means that only the n=1 case remains
an invariant for the numerical method, since the other cases
involve quantities that are of higher order than quadratic
(Ghosh et al. 1993). This is clear in the right-hand panel of
Figure 3, which shows that Wá ñ- is very well conserved, but for
n 1> the W n∣ ∣á ñ- are increasingly less well conserved.

7. Conclusions

We have presented a discussion of the assumptions and
approximations involved in RMHD, clarifying the distinction
between those that are primary or fundamental and those that
are consequences. Points of stress have been the subtle
aspects in the different derivations and the relationship among
the several available approaches to these derivations. Our
discussion of the structure of the RMHD equations is
intentionally detailed, though we would not claim it is
exhaustive. An emphasis has been a consideration of the
complex relationship that exists between RMHD and other
MHD models, mainly 2D MHD and 3D MHD, for both the
incompressible and compressible cases. There are similarities
and dissimilarities relative to each of these models. On
balance, we would conclude that RMHD is neither 2D not 3D,
though it is unambiguously incompressible. Guidance for
proper application of RMHD may be found in the details of
the derivations, and also by examining the desirability, in a
specific application, of adopting in RMHD a model that
resembles 2D and 3Dand differs from them in the many ways
listed in Tables 1 and 2 and discussed in Section 5.

Figure 3. Left: surface plot of W s t,( )¢- showing its wave behavior. Right:
averages over s¢ of W s t, n∣ ( )∣¢- for n 1, ,5= ¼ . Data is from an ideal
( 0n h= = ) RMHD spectral simulation with resolution 128 2562 ´ . Results
for W+ are similar.

Figure 4. Initial frame from thempeg movie available in the online version of
this article. This shows the time evolution of W s t,( )¢ and the vector potential
a and vorticity ω in the s¢ planes with maximum W.

(An animation of this figure is available.)

21 Specifically, the proper representation of a s( )d ¢ function requires infinitely
many Fourier modes.

22 Or equivalently in the case of spectral methods, the finite number of Fourier
modes employed.
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Application of RMHD beyond the asymptotic parameters
range for which it can be derived should be done with caution,
as its special properties (and perhaps, in particular, the infinite
class of ideal wave energy invariants) may cause RMHD
solutions to depart from full MHD solutions in impor-
tant ways.

Appendix
Review of KP and S76 Derivations

Section 2.2 gave rather terse overviews of the two classic
derivations of RMHD (KP, S76). Here we outline these in more
detail.

Kadomtsev and Pogutse (KP) presented the classical
derivation for tokamak plasmas. It begins with the assumptions
that the mean magnetic field zB0 ˆ is much stronger than the
fluctuations transverse to it, b̂ , and that the mechanical
pressure is negligible compared to magnetic pressure, i.e., the
plasma beta, pb , is formally zero. Everything else is ordered
relative to the associated small parameter,

b B 1, 24KP 0 ( )= ^

where b̂ is the rms amplitude of the transverse magnetic
fluctuation. The derivation specializes to the fluctuations of
greatest interest, which are those that vary slowly along the
mean field direction ẑ, and for which the plasma motion is
purely transverse to ẑ. Correspondingly, for any fluctuation
field, one takes its parallel spatial derivative z to be
suppressed by a factor KP relative to the ̂ gradients, while
also assuming that the parallel velocity fluctuation v vz KP~ ^
is down by the same factor relative to the perpendicular
velocity v̂ .

An additional assumption is made immediatelythat the
parallel magnetic fluctuation is small b b ;z  ^ specifically
b Bz KP

2
0~  . From the momentum equation, using the small-

ness of z and b Bz 0, one shows that the assumption that vz= 0
at leading order is consistent, because there are no forces in that
direction. One then proceeds to estimate the divergence of the
fluctuation velocity v from the magnetic induction equation,
finding that v O KP

2· ( ) =  . (Or O KP
3( ) if it transpires that

the time derivatives are O KP( ) . Although KP do not explicitly
note that t¶ scales this way, it is consistent with their results.)
Furthermore b O KP

2· ( ) =^ ^  . One concludes that at leading
order the motion is incompressible and transverse to B0, and
that v zx y z, ,( ) ˆf=  ´^ ^ and b zA x y z, ,( ) ˆ=  ´^ ^ vary
slowly in the parallel direction and may be determined from the
scalar potentials f and A respectively. (Because 0pb = in this
derivation, bz plays the role of an incompressible pressure: the
perpendicular divergence of the equation of motion yields a
Poisson equation for bz.)

A well-known and closely related derivation also given in
the context of tokamak plasmas is that due to Strauss (S76).
The starting point is the small inverse aspect ratio of the
toroidal plasma (minor radius/major radius). With the mean
magnetic field in the axial direction ẑ, it is argued that the
characteristic scales in the perpendicular and axial directions
are also in this ratio. Denoting these as ℓ̂ and ℓ, respectively,
we have a distinct small parameter

ℓ ℓ 1, 25S ( )= ^
and this is employed as the expansion parameter for the S76
derivation, rather than KP .

S76 postulates an ordering in which O 1( ) =^ , while
O S( ) =  , b b O,x y S( )=  , with B B bz z0= + , B O 10 ( )= ,

and b Oz S
2( )=  , all of which are equivalent to assumptions

made by KP. Time derivatives are assumed to be O S( ) . The
plasma beta is assumed small (whereas KP set 0pb = ) so that
there is a fluctuating pressure, taken to be p O S

2( )=  . A series
of arguments is then developed that lead quickly to the RMHD
Equations(1)–(2).
First, due to the slowly varying parallel derivative, it is found

that the transverse magnetic field is solenoidal up to O S
3( ) .

Next, examining the momentum equation (as in the KP
derivation), one finds a vanishing parallel force, so that v 0z =
at the leading order. However,upon inserting this result into
the equation for the advancement of the magnetic vector
potential, one finds that v zx y z, ,( ) ˆf=  ´ and thus the
velocity fluctuation lies in planes perpendicular to the mean
field, and the flow is incompressible. The assumption of an
initial uniform constant density then makes this property valid
at all times. Having established the forms of the magnetic and
velocity fluctuations—both of which are transverse to ẑ,
solenoidal in the perpendicular planes, and slowly varying in
the z direction—one readily arrives at the form of the RMHD
equations given in Equations (1) and (2).
The approximations and arguments given in the KP and S76

derivations are similar. In particular, they both adopt orderings
that eliminate magnetosonic modes, thus rendering the full
MHD system at least temporarily devoid of fast timescale
compressible motions. This underlies the importance of
attaining an incompressible state as a precursor to arriving at
RMHD equations. The KP and S76 approaches also contain
similar ambiguities. For example, in neither case is the
relationship between KP and S emphasized. In effect, each
work assumes that S KP=  (see Appendix A of Oughton
et al. 2004).
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