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ABSTRACT

Evolution of magnetohydrodynamic turbulence is often discussed in terms of second-order statistics like the energy
spectra, but consideration of the structure of the von Kármán–Howarth hierarchy for MHD indicates that higher-
order statistical correlations occupy an influential role. Here we show that both spectral anisotropy and energy
decay are strongly associated with higher-order statistics. Dynamical emergence of spectral anisotropy must occur
at a higher order in the statistical hierarchy, while numerical evidence suggests that strong variations in energy
decay are connected with variations in higher-order statistics.
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1. INTRODUCTION

A well-known feature of magnetohydrodynamics (MHD) is
that a mean or average magnetic field induces a preferred di-
rection that cannot be eliminated by a Galilean transformation.
For MHD turbulence, an important consequence is the dynami-
cal appearance of anisotropy in spectra and structure functions
relative to the magnetic field. First seen in laboratory plasmas
(Robinson & Rusbridge 1971; Zweben et al. 1979) and later in
the solar wind and corona (Matthaeus et al. 1990; Armstrong
et al. 1990), this spectral anisotropy is of potential importance
in a wide variety of astrophysical plasmas. For example, it has
major influences on wave particle interactions and therefore on
dissipation processes (Leamon et al. 2000) and scattering of
energetic particles (Bieber et al. 1994).

The nature of the anisotropy is such that the gradients per-
pendicular to the magnetic field are greater than those measured
parallel to it. This inequality is found whether the magnetic field
direction is computed as a global mean or as a “local mean”
(which can itself be computed in a variety of ways; Cho &
Vishniac 2000; Milano et al. 2001; Matthaeus et al. 2012). From
the point of view of energy spectra, anisotropy implies that high
wavenumber power is preferentially transferred into wavevec-
tors that are in the perpendicular direction. This has motivated
the development of dynamical models that postulate anisotropy
as a premise, but do not explain its origin—reduced MHD
(Kadomtsev & Pogutse 1974; Strauss 1976; Montgomery 1982;
Zank & Matthaeus 1992), critical balance theory (Goldreich &
Sridhar 1995), and gyrokinetics (Schekochihin et al. 2009) are
examples.

Explanations for spectral anisotropy are usually based on
arguments related to weak turbulence, in which the dynamics
are developed perturbatively beginning with propagating waves
(Shebalin et al. 1983; Bondeson 1985; Grappin 1986; Oughton
et al. 1994; Galtier et al. 2000, 2002; Schekochihin et al.
2012). While intuitively appealing, this picture addresses neither
the statistical properties of turbulence that underlie spectral
anisotropy nor its presence in strong turbulence. Here we discuss
the origin of anisotropy in MHD turbulence beginning with the
von Kármán–Howarth description, i.e., in terms of dynamical

equations for correlations. We will show that while anisotropy
has important consequences at the second-order level—e.g., for
correlation functions and spectra—its origins are necessarily to
be found in higher-order statistics. From this perspective it is
apparent that anisotropy is closely connected with the higher-
order statistics that control spectral transfer and energy decay.

Another issue related to higher-order correlations is the
possible non-universality of MHD turbulence (Mininni 2011;
Pouquet et al. 2011). Recent studies have reported strongly
different evolution from ostensibly similar initial conditions
(Lee et al. 2010). Here, we use simulations to show that this
behavior is associated with significant variations in fourth-order
correlations.

This paper is organized as follows. Orientation and phys-
ical motivation is provided in Section 2, after which we de-
scribe the origin of the von Kármán–Howarth equations in
Section 3. In Section 4 we extend the discussion to emphasize
the role a large-scale magnetic field plays in the development of
anisotropy. Section 5 focuses on the influence of fourth-order
correlations and presents some numerical examples. Conclu-
sions are presented in Section 6, after which a short Appendix
displays the full form of the equation for evolution of the third-
order correlations.

2. PHENOMENOLOGIES AT SECOND-ORDER

We consider MHD turbulence that evolves in the presence of
an externally supported mean magnetic field B0 ≡ B0 ẑ. It is well
known from laboratory experiments, solar wind observations,
and simulations that a strong enough B0 induces anisotropy in
the energy spectrum and alters the way in which energy decays
(e.g., Robinson & Rusbridge 1971; Zweben et al. 1979; Ren
et al. 2011; Matthaeus et al. 1990; Bieber et al. 1996; Dasso et al.
2005; Horbury et al. 2008; Podesta 2009; Shebalin et al. 1983;
Bondeson 1985; Grappin 1986; Carbone & Veltri 1990; Oughton
et al. 1994; Maron & Goldreich 2001; Bigot et al. 2008a,
2008b). This occurs because nonlinear couplings are suppressed
by Alfvén wave propagation effects, and these effects become
stronger for interactions at shorter parallel wavelengths. Only
couplings that do not change the parallel wavelengths are spared.
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Figure 1. (a) Sketch of the Fourier space region where parallel transfer is suppressed (“weak turb”), due to the short wave timescales, and the unsuppressed region
(“strong turb”), for which τNL is faster than τA. The regions are separated roughly by the equal timescale curve, i.e., where the nonlinear timescale τNL(k) ≈ 1/kuk

and the wave timescale τA = 1/|k · B0| are equal. (b) Similar sketch indicating some typical directions of energy transfer at example points. Note the dominantly
perpendicular transfer for the weak turbulence regions and the approximately isotropic transfer inside the strong turbulence region.

Thus in regions of wavevector (k) space in which propagation
effects are strong, spectral transfer in the direction parallel
to B0 (the “parallel direction”) is relatively reduced, while
perpendicular transfer is largely unchanged and thus tends to
dominate (e.g., Galtier et al. 2000, 2002). The two Fourier space
regions can be identified by comparing the nonlinear (τNL) and
wave (τA) timescales at each k-space position. Usually the faster
timescale at each point will control the dynamics; see Figure 1.

Assuming these features of suppression and anisotropic
spectral transfer, it is straightforward to build a dynamical
description for the unaffected parts of wavenumber space
based on the following scheme. We begin by adopting the
phenomenological picture that the total energy transfer rate
across a suitably defined surface in k-space may be written
in the inertial range as

ε = u2
k

τs
, (1)

where u2
k is (proportional to) the energy per unit mass in

fluctuations with scale size 1/k, and this expression serves
to define the spectral transfer timescale τs(k) at that same
lengthscale, 1/k. In view of the implied relationship between
u2

k and the omnidirectional energy spectrum E(k) [for isotropic
turbulence E(k) ∼ u2

k/k], it is apparent that if τs could be
expressed in terms of the spectrum, the problem would be closed
at the level of second-order statistics.

If we further assume, following Kraichnan (1965), that ε
should be directly proportional to the characteristic lifetime of
third-order (“triple”) correlations at scale 1/k, denoted τ3(k),
and that the only other available timescale is the Kolmogorov
nonlinear (“eddy turnover”) timescale τNL(k), then one arrives
at the relation τsτ3 = τ 2

NL (Kraichnan 1965; Pouquet et al.
1986; Matthaeus & Zhou 1989; Zhou et al. 2004), sometimes
known as the “golden rule.” In this discussion the nonlinear
time is assumed to be local in scale, but τ3, and therefore τs,
may depend on the full wavevector k (not just its magnitude)
and parametrically on other factors (e.g., B0, higher-order
correlations) that need to be examined on a case by case basis.
We write τ3(∗) to indicate this (so far) unspecified dependence.
The parameterization of the spectral transfer rate then becomes

ε = τ3(∗)
u2

k

τ 2
NL(k)

. (2)

Many choices of τ3 are possible (e.g., Zhou et al. 2004). For
example, if τ3 = τNL, then isotropic Kolmogorov theory results.
For τ3 = (kB0)−1, the Iroshnikov–Kraichnan “3/2” spectrum
is found.4 If spectral transfer is assumed to be in the direction
perpendicular to a mean magnetic field B0, then k → k⊥ and
quasi-two-dimensional or two-dimensional turbulence can be
described. When τ3 = τ3(k‖) but τNL = τNL(k⊥), then the weak
turbulence form emerges.

This appealing, albeit phenomenological, approach can also
be stated in terms of interaction of “wave packets” and is
sufficiently powerful and revealing of turbulence properties that
one can be led to believe that the problem is solved at the
level of second-order correlations. Unfortunately this is not the
case; the evolution of the spectrum5 is governed by the unclosed
hierarchy of von Kármán–Howarth equations in which all orders
of statistics appear.

3. von KÁRMÁN–HOWARTH EQUATIONS

By considering homogeneous incompressible hydrodynamic
turbulence, de Kármán & Howarth (1938) showed that an
infinite hierarchy of equations describes the time evolution of
all two-point single-time correlation functions associated with
the Navier–Stokes equation. The entire hierarchy is referred
to as the von Kármán–Howarth (vKH) equations, although, a
little confusingly, the equation for the second-order correlation
is often called the vKH equation (Batchelor 1970; Monin &
Yaglom 1975).

Our focus is the MHD version of the vKH equations, again
assuming homogeneity and incompressibility (Chandrasekhar
1951a, 1951b; Smith 1981; Politano & Pouquet 1998a, 1998b;
Wan et al. 2012). As the equations are well known, we
provide below a simple sketch of their derivation. More detailed
derivations are available elsewhere (e.g., Wan et al. 2012).
Note that one can also obtain vKH equations for the structure
functions, i.e., based on increments of the fluctuations (e.g.,
Politano & Pouquet 1998b; MacBride et al. 2005, 2008; Sorriso-
Valvo et al. 2007; Carbone et al. 2009).

It is convenient to employ Elsässer variables, denoted z± =
v ± b. Here vi(x, t) and bi(x, t) are the Cartesian components

4 Note that this form for τ3 approximates k‖ as k, and thus essentially ignores
the anisotropy of the Alfvén timescale: τA = 1/k‖B0.
5 Recall that the energy spectrum and the correlation function are Fourier
transforms of each other (Batchelor 1970).
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of the solenoidal velocity and magnetic field fluctuations, the
latter in Alfvén speed units. The mass density ρ is assumed
constant and uniform. A uniform DC magnetic field B0 = B0 ẑ
is included, and this is central to the discussion. The MHD
equations take the form

∂tz
±
i = −(z∓

k ∓ B0k)∂kz
±
i − ∂iP + ν∂k∂kz

±
i , (3)

where P is the total pressure (fluid plus magnetic) and ν is
the kinematic viscosity, assumed equal to the resistivity for
simplicity.

Using Equation (3) and its partner evaluated at the displaced
position x′ = x + r , instead of x, it is straightforward to
calculate the time derivative of the second-order correlation

R±(r, t) = 〈z± · z±′〉. (4)

The angle brackets indicate ensemble averaging and homogene-
ity requires that R± is a function of r = x′ − x, but not
of x or x′.6 The shorthand notation z±′ ≡ z±(x′, t) is use-
ful. Taking the time derivative yields the vKH equations for R±:

∂tR
± = − ∂

∂rk

[Q̂±
k (r) − Q̂±

k (−r)] + 2ν
∂2R±

∂rk∂rk

. (5)

These clearly depend on the third-order correlations,

Q̂±
k (r, t) ≡ 〈z∓′

k z± · z±′〉, (6)

so that the second-order equations are not closed and thus an
evolution equation for Q̂±

k (r, t) is needed (see the Appendix).
It is in turn not closed, depending upon several fourth-order
correlations, for example, and so the hierarchy continues all the
way to infinite order.

In obtaining Equation (5) spatial homogeneity is used, which
implies 〈z∓

k z± · z±′〉 = Q̂±
k (−r, t). Similar manipulations show

that the pressure terms do not contribute at this order (Politano
& Pouquet 1998b), as is also the case for hydrodynamics (de
Kármán & Howarth 1938).

Since the R±(r) are the inverse Fourier transforms of the
Elsässer energy spectra, E±(k), it follows that the vKH equa-
tions are completely equivalent to an evolution hierarchy for the
spectra and their higher-order relatives. Thus, given the known
anisotropy of the energy spectrum, one might anticipate that
B0 would feature in Equation (5). Strikingly, it does not. So
the question is, how can an equation that is ostensibly inde-
pendent of B0 govern a correlation that shows B0-dependence?
The situation is resolved by considering the higher-order vKH
equations.

4. STRUCTURE OF THE vKH EQUATIONS
AND THE INFLUENCE OF B0

As we have just noted, B0 does not feature explicitly in
Equation (5), even though it is present in the MHD equation (3),
in Equation (A1), and indeed all higher-order vKH equations.
The second-order vKH equation is anomalous: it is the same
for any value of B0—including zero! This seems inconsistent
with the well-established B0-induced anisotropy of R±, and
also with the rate of energy decay being B0-dependent (e.g.,
Shebalin et al. 1983; Grappin 1986; Carbone & Veltri 1990;

6 This is also true for all other homogeneous correlations.

Oughton et al. 1994; Bigot et al. 2008a, 2008b). In fact, there
is no inconsistency because the third-order correlations Q̂±

k do
depend on B0, albeit implicitly. We now discuss the situation in
detail.

Structurally, the equation for Q±
k contains several different

types of terms (see the Appendix). Writing it and the second-
order vKH equation, Equation (5), schematically for a generic
fluctuation u, we have

∂t 〈uu′〉 = 〈uu′u′〉 + ν〈uu′〉, (7)

∂t 〈uu′u′〉 = 〈uuu′u′〉 + B0j 〈uu′∂ju
′〉 + 〈Puu′〉 + ν〈uu′u′〉, (8)

∂t 〈uuu′u′〉 = 〈uuu′u′u′〉 + B0j 〈uuu′∂ju
′〉 + . . . , (9)

where for most terms spatial derivatives are not indicated.
This skeletal form helps emphasize that the evolution of the
third-order correlation depends explicitly on B0 (direction and
magnitude), and hence so does its timescale τ3(k, B0). In other
words, these two quantities will be anisotropic with respect to the
direction of B0, even if they were initially isotropic. Recall that
the B0-dependence of τ3 is a key feature in phenomenologies for
the energy spectrum in MHD turbulence (e.g., Iroshnikov 1963;
Kraichnan 1965; Montgomery 1982; Matthaeus & Zhou 1989;
Zhou & Matthaeus 2005; Goldreich & Sridhar 1995; Boldyrev
2006; Gogoberidze 2007).

In fact, the B0-dependence of Q̂± ∼ 〈uu′u′〉 is deeper than
this. Since the fourth-order vKH equations depend explicitly
on B0, the 〈uuu′u′〉 will have implicit B0-dependence, which
will impact the evolution of 〈uu′u′〉. The structure is the same at
higher orders so that the vKH hierarchy involves an infinite chain
of such explicit/implicit B0 couplings. Note that the implicit
effects of B0 are present at all orders, but in a subtle way since
they “cascade in” from infinite order.

As far as anisotropy at second-order is concerned, there
are several steps to the argument. The vKH equations man-
date that it cannot begin at that order, since B0 does not ap-
pear in Equation (7). Thus, to generate anisotropy at second-
order, it must be that the third-order moment 〈uu′u′〉 is (or
becomes) anisotropic. The discussion following Equation (9)
shows that this will indeed be the case when B0 �= 0. The
anisotropy of 〈uu′u′〉 then feeds into Equation (7), engendering
B0-dependence in 〈uu′〉. This is the origin of anisotropy in the
second-order correlations (including energy spectra).

The above discussion makes it clear that the lifetime of
the triple correlations comes to depend upon B0, and this
dependence influences the second-order correlations. Therefore,
the entire influence of the mean magnetic field on the energy
distribution—and upon spectral transfer—must proceed through
its influence on the solutions of Equation (A1). We are led then
to consider in greater detail the impact on turbulence structure
and dynamics of the higher-order statistics, which we illustrate
further in the following section.

5. FOURTH-ORDER CORRELATIONS

At this point it is instructive to present some numerical
examples. These provide evidence of (1) how the initial values
of fourth-order correlations are associated with distinct energy
dynamics, even when B0 = 0, and (2) how fourth-order
correlations respond in runs with the same initial condition but
different values of B0.
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Σvω
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Figure 2. Some time histories from four B0 = 0 runs with distinct initial conditions (see the main text). Each column corresponds to a different run. Top row: total,
magnetic, and kinetic energies. Bottom row: normalized fourth-order moments of Equation (10).

(A color version of this figure is available in the online journal.)

The focus is on three normalized fourth-order quantities,

Σvω = 〈(v · ω)2〉
〈v2〉〈ω2〉 , Σjb = 〈( j · b)2〉

〈 j2〉〈b2〉 , Σvb = 〈(v · b)2〉
〈v2〉〈b2〉 ,

(10)

where ω = ∇ × v and j = ∇ × b. Note that unlike the
correlation functions considered in the previous sections, these
are one-point correlations. Although there are many such, these
ones are of particular interest because of their close relationship
to local alignment properties of the three nonlinear terms in
the “primitive” MHD equations: ∂tv ∼ v × ω + j × b and
∂t b ∼ ∇ × (v × b) (Servidio et al. 2008; Matthaeus et al. 2008).
Consequently, one may interpret the Σs as a measure of the
degree to which the appropriate fields are (locally) Beltrami,
force-free, or Alfvénic, respectively.

5.1. Runs with Different Initial b and Σvb

The relationship between higher-order correlations and
anisotropy is a major emphasis of this work. In this subsec-
tion, however, we consider four freely decaying B0 = 0 runs,
for which no global anisotropy is anticipated. Nonetheless,
Equations (8)–(9) make it clear that τ3 is still influenced by
higher-order correlations, and it is this aspect that we highlight
here. In this subsection we also establish a context for the ex-
amination of the nonzero B0 case that follows in Section 5.2.

The chosen runs each use a different initial condition (IC).
Three of them start with the same (large-scale) Taylor–Green
velocity field, but with distinct initial b fields. They are precisely
the ICs used in Lee et al. (2010), where they are referred to
as the “insulating,” “conducting,” and “alternative” runs. They
are a convenient set to investigate in this context because Σvb

differs for each IC, but Σvω and Σjb are always initially zero.
For each IC, the total energy is E = 0.25, equally split between
the kinetic (Ev) and magnetic (Eb) components, and the cross
helicity and magnetic helicity are zero. The excited wavevectors
are k ∼ ±(1, 1, 1) or k ∼ ±(2, 2, 2).

Summarizing, the Lee et al. runs each have a distinct b
and Σvb, but most other familiar parameters are identical or
very similar. Their evolution is compared with a fourth run,
which starts from a broadband state with Gaussian random
phase fluctuations in the wavenumber range 3 � k � 6.
The initial energies match those of the Lee et al. (2010) runs:

Ev = Eb = 0.125. The magnetic helicity and cross helicity are
both small for this run.

On the numerical details side, a Fourier pseudospectral code
with second-order Runge–Kutta timestepping is employed. The
resolution is 5123, with ν = 1.1 × 10−3 (equal to the resis-
tivity). This combination ensures that the cutoff wavenumber
(kwall = N/2 = 256) is at least triple the maximum Kolmogorov
dissipation wavenumber, a criterion that is important for obtain-
ing accurate higher-order statistics, like the Σs (e.g., Wan et al.
2010; Donzis et al. 2008).

Figure 2 displays the evolution of the energies for each run.
This is as reported in Lee et al. (2010), where implications
for non-universality of MHD turbulence are discussed. As
they remarked, the “conducting” run is anomalous compared
to the others, in that Ev exceeds Eb. The other three runs
have qualitatively similar behaviors, with the magnetic energy
predominant, and (not shown) the enstrophy 〈ω2〉, 〈 j2〉, and
kurtoses having a single peak, with the magnetic quantities
being larger. There are, however, some significant quantitative
differences (cf. the spectra plots in Lee et al. 2010). Specifically,
the decay rates and the Ev/Eb ratio vary markedly across
the runs, prompting concerns over the universality of MHD
turbulence (e.g., Lee et al. 2010; Mininni 2011; Pouquet et al.
2011).

The Σ time histories are also shown in Figure 2. Clearly
there are similarities and differences between the runs, and one
should be careful about drawing conclusions from such a small
set of examples. Still, each Σ tends to grow, although often
not monotonically. There is also an indication that extrema of
the Σs are correlated with peaks in familiar quantities like the
mean-square current and the enstrophy (not shown; cf. Oughton
et al. 2013). It may prove to be difficult to elicit details of
how higher-order correlations like the Σs influence the flow
dynamics. Nonetheless, these examples suggest that the Σs may
well be parameters of importance to the dynamics and long-time
states.7

5.2. Influence of B0 on the Σ

For this investigation, we performed three 5123 runs with
ν = 2.4 × 10−4 and the same IC, constructed using Gaussian
random phases for Fourier modes with 3 � k � 8. The value of

7 See Wan et al. (2012) for a discussion connecting universality in MHD
turbulence and the Σs.
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Figure 3. Time histories for energies (top row) and three normalized fourth-order moments (bottom row), for three runs with identical initial conditions but different
mean field strengths, B0. Each column corresponds to a different run.

(A color version of this figure is available in the online journal.)

ν (equal to the resistivity) is again chosen to ensure the runs are
well resolved. The only initial quantity that differs for the runs
is the value of B0 = 0, 1, 3.

The well-known reduction of the energy decay rate is in ev-
idence (Figure 3, top row), and similarly the stronger equipar-
titioning of the kinetic and magnetic energy with increasing B0
(e.g., Oughton et al. 1994; Bigot et al. 2008b). The new result
is that B0 acts to strongly curtail the growth of Σjb, and to a
lesser extent, the growth of Σvb. This suggests that it is suppres-
sion of these fourth-order correlations that is associated with
the development of anisotropy. For the B0 �= 0 cases, there may
also be a connection with the non-conservation of magnetic he-
licity (e.g., Matthaeus & Goldstein 1982; Stribling et al. 1994;
Blackman & Field 2000; Cho et al. 2009). At least for these ICs,
the non-magnetic Σvω is not strongly affected by the strength
of B0.

6. CONCLUSIONS

We have highlighted how the absence of the DC magnetic
field from the second-order vKH equation is really only an
apparent absence since the unclosed nature of the equation
supports an implicit dependence on B0 through the third-order
correlations. From the structure of the hierarchy of equations for
incompressible homogeneous MHD turbulence, it is evident that
anisotropy arises solely due to higher-order statistical effects,
and that the appearance of anisotropy in second-order statistical
quantities such as spectra and associated correlation functions
depends entirely on mean magnetic field effects that occur in
these higher-order equations.

The B0-dependence of the energy spectrum has been used in
physical phenomenologies of the spectrum for many decades,
starting with the Iroshnikov (1963) and Kraichnan (1965)
models. However, the formal mathematical arguments justifying
it do not appear to be well known, as many theoretical works
rely on either one-point closure arguments or weak turbulence
arguments, and in these approaches the point we emphasize here
is not treated prominently. The origin of anisotropy becomes
clearer from consideration of the vKH hierarchy and its unclosed
nature.

Furthermore, recognition of the origin of anisotropy in higher-
order statistics sheds light on the well-documented enhance-
ments of anisotropy that are seen in local statistics (which are
necessarily of higher order; Matthaeus et al. 2012). Such con-
siderations motivate additional study of non-Gaussian effects
and intermittency that influences the structure of the fourth- and
higher-order statistical quantities in the vKH hierarchy.

We have also presented here several numerical examples re-
vealing the correspondence between different (kinetic and mag-
netic) energy decay rates and several fourth-order correlations.
In this regard, the details of cause and effect remain to be deter-
mined, as do the connections between fourth-order correlations
and the seeming non-universality of MHD turbulence.

This research is supported in part by the NSF Solar Terrestrial
Program Grant AGS-1063439 and SHINE grant AGS-1156094,
NASA Heliophysics Theory Program, NNX11AJ44G, POR
Calabria FSE-2007/2013, and by the EU Turboplasmas project.

APPENDIX

THE THIRD-ORDER EVOLUTION EQUATION

For Q±
k (r, t), this takes the form,

∂t Q̂
±
k = ∂

∂rm

〈z∓
mz∓′

k z± · z±′〉 − 〈z∓′
k ∂ ′

m(z∓′
m z± · z±′)〉

− 〈z± · z±′∂ ′
m(z±′

m z∓′
k )〉 ∓ 2B0m〈z± · z±′∂ ′

mz∓′
k 〉

+
∂

∂ri

〈Pz±′
i z∓′

k 〉 − 〈z∓′
k ∂ ′

i (P
′z±

i )〉 − 〈z± · z±′∂ ′
kP

′〉

+ ν
∂2

∂r2
m

〈z∓′
k z± · z±′〉 + ν〈z∓′

k ∂ ′
m∂ ′

m(z± · z±′)〉

+ ν〈z± · z±′∂ ′
m∂ ′

mz∓′
k 〉, (A1)

with ∂ ′
m = ∂/∂x ′

m. The first three terms are all fourth-order
correlations, in which B0 does not appear (explicitly). There is
precisely one term with B0 in it, contracted with a third-order
correlation. The remaining terms are third-order correlations
involving the pressure, and three further third-order correlations
multiplied by the viscosity.
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