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We report on results from direct numerical simulation of the incompressible three-
dimensional magnetohydrodynamic (MHD) equations, modified to incorporate vis-
cous dissipation via the strongly anisotropic ion-parallel viscosity term. Both linear
and nonlinear cases are considered, all with a strong background magnetic field.
It is found that spectral anisotropy develops in almost all cases, but that the con-
tribution from effects associated with the ion-parallel viscosity is relatively weak
compared to the previously reported nonlinear process. Furthermore, and in con-
trast to this earlier work, it is suggested that when By is large, the anisotropy will
develop and persist for many large-scale turnover times even for non-dissipative
runs. Resistive dissipation is found to dominate over viscous even when the re-
sistivity is several orders of magnitude smaller than the ion parallel viscosity. A
variance anisotropy effect and anisotropy dependence on the polarization of the
fluctuations are also observed.

1. Introduction and Background

Anisotropies of various kinds are frequently, even typically, observed in magneto-
hydrodynamic (MHD) systems with a large-scale magnetic field By. Examples in-
clude laboratory plasma devices, where spectral anisotropy is seen (Robinson and
Rusbridge 1971; Zweben et al. 1979; Montgomery and Turner 1981), and the solar
wind, for which observational evidence has been given for both spectral anisotropy
(Matthaeus et al. 1990; Bieber et al. 1996) and variance anisotropy (Belcher and
Davis 1971; Bavassano et al. 1982; Klein et al. 1991; Horbury et al. 1995).

On the theoretical side, Montgomery and Turner (1981) used perturbation the-
ory, expanding in powers of 1/Bp, to show that the leading-order MHD fluctuations
are perpendicular to a strong magnetic field. Numerical support for this theory was
provided by Shebalin et al. (1983) who performed simulations of the nonlinear
dissipative two-dimensional (2D) MHD equations with a uniform Bg. Their work
showed that initially isotropic states evolved into strongly anisotropic ones. Specif-
ically, they reported the development of anisotropy in the wavenumber spectra of
the fluctuations and presented an explanation for this behaviour based on weak
turbulence calculations of the leading-order nonlinear corrections to the linearized
solutions (Alfvén waves).

The work of Shebalin et al. was recently extended to the three-dimensional
(3D) case and, as they conjectured, essentially the same development of spectral
anisotropy was observed (Oughton et al. (1994, 1995); however, see Sridhar and
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Goldreich (1994) and Montgomery and Matthaeus (1995) for discussion on the rel-
evance of the weak turbulence explanation). Two points should be noted regarding
these simulations: (i) the anisotropy generation process is intrinsically nonlinear —
linear runs show no tendency to develop anisotropy when viscosity and resistivity
are equal; and (ii) dissipation (in the standard V? form) was necessary for the
anisotropy to persist after its development, at least when By & 1. Numerical work
based on an MHD shell model (Carbone and Veltri 1990) also shows the develop-
ment of spectral anisotropy, with a saturation occuring at Reynolds numbers of
order 10°.

While theory and simulations based on the incompressible MHD equations have
shown that spectral anisotropy can be dynamically generated if a large enough Byg
is present, any wvariance anisotropy which develops appears to be associated with
an excess of parallel energy. This is counter to solar wind observations, where the
perpendicular power dominates (Belcher and Davis 1971; Klein et al. 1991; Hor-
bury et al. 1995). Motivated by these observational results, Matthaeus et al. (1996)
performed a series of compressible (polytropic) MHD simulations. In addition to
spectral anisotropy very similar to that seen in the incompressible runs, variance
anisotropy was also observed to develop, and, moreover, was in qualitative agree-
ment with solar wind data.

Thus it might appear that explanations for observed spectral and var-iance an-
isotropies have been found. However, it is not clear that the anisotropies must be
generated via these mechanisms. In particular, the viscous and resistive terms were
assumed to be of the isotropic (e.g. V2v) form. Montgomery (1992) has empha-
sized that for a magnetofluid threaded by a strong large-scale magnetic field, it is
questionable whether the appropriate viscous dissipation term is the usual isotropic
Laplacian one. Instead, the standard transport coefficient calculations (Braginskii
1965; Book 1987) indicate that a term which is strongly anisotropic should be used
in its place (the resistive term remaining unchanged). Under appropriate conditions
(see Sec. 2) this term is proportional to a single scalar coefficient, the (kinematic)
ion parallel viscosity, vjon, which may be interpreted as the product of the thermal
speed and the collisional mean free path length parallel to By.

Proceeding on this basis, Montgomery showed that solutions to the linearized
equations could develop strong (spectral) anisotropy — even in the absence of spec-
tral transfer, and suggested that this mechanism might be of importance for a
variety of magnetofluids, including fusion plasmas and the solar wind.

Acting on this suggestion of Montgomery’s, we report here on the first results
from numerical simulations of the linear and nonlinear incompressible MHD equa-
tions modified to reflect the inclusion of the ion parallel viscosity term. In Sec. 2
we detail the approximations and equations employed and present some numerical
details. Section 3 contains the theory for the linearized equations, while Sec. 4 dis-
cusses the numerical results. The paper closes with a summary of findings and our
conclusions.

2. Equations and Approximations

In the general case, the well known Braginskii (1965) calculations for the MHD
transport coefficients yield a viscosity tensor characterised by three classes of ele-
ments. However, when w.7 > 1, where w, is the ion cyclotron frequency and 7 the
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ion collision time, the viscous dissipation is dominated by terms proportional to the
ion parallel viscosity, conventionally denoted by 79 (see e.g. Montgomery 1992).

Under the further assumptions of incompressible flow and 7y a uniform constant,
the viscous term can be shown to reduce to

—noV- {(I — 3]3]3) BB: Vv} , (2.1)

where B is the unit vector in the direction of the (total) magnetic field. Such a term
presents both analytical and computational difficulties; however, if By = Bg z, is
uniform and strong, then B~ B, = Z, which is a uniform constant. This approx-
imation will be employed throughout the remainder of the paper. Using Cartesian
coordinates, (2.1) then simplifies to

9? 0? 0?
+10 (——, — , 2— ) vy = noDwv,. (2.2)

0x0z’ 0ydz’ 022

Note that in Fourier space only the z component of D is of definite sign. The
error in the approximation B = By can be crudely estimated to be of order b/B,y,
where b is the rms magnetic fluctuation. In the simulations this ratio is initially
1/10 and decreases throughout the runs, so that the validity of the approximation
also increases with time.

Taking the mass density p to be uniform and constant, the associated kine-
matic viscosity coefficient is vjon = 70/p- Using values obtained from spacecraft
data, Montgomery (1992) estimated that in the solar wind at 1AU, for exam-
ple, vion ~ 10 cm?s™!, and w.r ~ 10%, which suggests that the above ap-
proximations may well be satisfied in this case. Using the same data, the (elec-
tron) resistivity is 7 ~ 10% cm?s~!(Book 1987). Furthermore, for a typical solar
wind velocity fluctuation (RMS) of 20 kms—!, and a velocity correlation length
of 5 x 10! cm (see e.g. Matthaeus and Goldstein 1982), the associated Reynolds
number is Re = uAcorr/Vion & 101, which is certainly computationally accessible.

Under the assumptions just discussed, the (modified) incompressible 3D MHD
equations can be written in the dimensionless form

66_: +v-Vv=-Vp*+b-Vb+Bg:Vb + vy,Dv,, (23)
b .
%_t +v-Vb=b:Vv+Bg:Vv+nV?b, (2.4)

Vov=Vb = 0, (2.5)

where v and b are the zero-mean velocity and magnetic field fluctuations, p* is

the total pressure (mechanical plus magnetic), n the resistivity, and D is defined
by (2.2). The numerical results were obtained via spectral (Galerkin) simulation of
these equations in Fourier space using dealiasing and isotropic truncation. All runs
are freely decaying. Note that because the viscous dissipation depends on gradients
of v, (not v), the pressure gradient term cannot be satisfied using only the ‘standard’
projection operator form (see e.g. Orszag 1977, Lesieur 1990). Timestepping is per-
formed using an explicit second-order Runge-Kutta method, with At = ﬁ in all
By = 10 runs. Since By is large, the timestep must be small in order to adequately
resolve the small-scale Alfvén waves. Units are such that B3 = 1 corresponds to the
fluctuations having the same initial energy as By. Further computational details
are available in Oughton et al. (1994)

Other quantities of relevance include the current density j = Vxb, vorticity
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Table 1. All runs have By = 10 and o. ~ 0 unless otherwise noted. A dot indicates the
value is the same as that listed above it. Runs 04—11 use the same initial Fourier coeffi-
cients. Similarly the run sets 15-17, and 18 and 20 use distinct initial Fourier coefficients.
The linear runs of necessity have o, = 1.

Run n Vion ki—km @ =2Bg/3kvion, Linear Comments
04 1072 0 3-8 0 v =1, ‘standard dissipation’
05 1072 0 ) )
06 0 0 . . Ideal run
07 0 10 ) 0.7-0.04
08 0 1071 : 70-4
09 1072 10 . 0.7-0.04
10 1072 10! ) 704
11 0 1072 ) 700-40
15 0 10 1-15 0.7 - 0.04 Y True linear solutions
16 1072 10 ) ) Y
17 0 1071 : 70 — 4 Y
18 0 10 9-15 0.08 — 0.04 Y
19 0 10 3-8 0.2 - 0.09 Y
20 0 10 9-15 0.08 — 0.04 Y Bo =15, At = A

4000

w = Vxv, kinetic and magnetic energies per unit mass E* = (%|v|?), E® = (|b|?),
total fluctuation energy E = E¥ + E°, and the cross helicity H. = (v - b). Angle
brackets denote averaging over the spatial domain, and the time unit is the initial
large-scale eddy-turnover time.

Also of considerable use are the (discrete) Fourier decompositions of the depen-
dent variables, e.g. v(x,t) = >, v(k,t) e ¥*. As the spatial domain is a cube of
side 27 with periodic boundary conditions imposed, the wavevectors k have integer
components. Modal spectra are denoted by EV(k) etc. (see e.g. Batchelor 1970).
The runs discussed here retain 32 Fourier modes in each Cartesian direction. Table 1
contains a summary of the important run parameters.

3. Linear Theory

Linearizing (2.3)—(2.5) and seeking solutions for v and b of the form ei(kx-«?)

yields the linear dispersion relation
[w2 +ink*w — (k- B0)2] V = i 3Vjon cos” 0 (w + ink?) (k.k — k°2), (3.1)

with cosf = k - Bo. Note that the contribution from the pressure term is non-
zero. Forming the scalar product of (3.1) with v reveals that there are two cases
(polarizations) to consider. First, when v, = 0 the solution is as for the resistive
but non-viscous situation, and propagating modes only occur for k < |2Bg cos /1.
Thus near § = 90° only very long wavelength modes can propagate. Note that
smaller resistivity is associated with less restrictive propagation conditions.

The second case is where v is in the (k,Bg) plane with v, # 0, and has solution,

2w
3

= —i(n + 3Vion cos? 6 sin® 0) + \/4B§k*2 cos2 6 — (n — 3Vion c0s2 0 sin® 9)2.
(3.2)



Ton parallel viscosity and MHD anisotropy 645

1.007 1 1.007
: @ :
0.75 1 075}
0.50- 4 050}
0.25F 1 025}
0.00! ‘ | ‘ I o.00! ‘ ‘ ‘ ]
0 45 920 135 180 0 45 90 135 180
Figure 1. The left-hand side of (3.3) as a functlion of 4 for (a) B = vion/3n = 1073;
(b) B=10"".

Propagating solutions must therefore satisfy
2By

1 .
[cosd] | 3vman cos® fsin? 9| < T O (3.3)
0on ion

Montgomery (1992) obtained the = 0 limits of these equations. Thus, if 8 =
7/3Vion < 1 and « is small then (3.3) will only be satisfied for either § = 0 or 180°,
cones about the z—axis, or § =~ 90°, a wedge. On the other hand, if & > 1 then (3.3)
is essentially always satisfied, for small enough 8, and no anisotropy from this
source is expected. There are two special cases: fluctuations with k perpendicular
or parallel to Bg suffer only resistive damping. Note that the numerator of « is
intrinsically large because of the earlier approximation of large By.

When f is not much less than unity, however, the situation changes. Figure 1
displays plots of the left-hand side of (3.3) for two values of 8. It can be seen that
B # 0 introduces a spike at 8 = 90°, whose width increases as 8 does. Consequently,
the viable propagation regimes are pushed away from the 8 = 0 viable regions, so
that now only shells of § values admit propagation. As can be seen in the plots, the
effect is only significant for 3 > 1072, unless @ is extremely close to 90°. Nonetheless,
even for such small values of 8 the resistive dissipation mechanism can dominate
over the viscous one, as will be shown below.

The solenoidal nature of v means it can be decomposed using a k-dependent
coordinate system:

V(k) = elq,[}l + 62’1,[12, (34)

with e; = k x z/|k x Z|, e2 = k x e;/|k|, and similarly b(k) = eja; + ezas. We
refer to these components as the e; and e, polarizations. When k || z, e; and e
are arbitrarily taken to be x and y. Recall that By = 2.

The condition v, (k) = 0 thus requires 12 = 0, and consequently the e; polariza-
tion is completely unaffected by the viscous term. We might therefore anticipate
that the es polarization will become more anisotropic than the e; one (Montgomery
1992), even for the nonlinear runs. Furthermore, since the v, and v, components
contain e; contributions, but v, does not, we anticipate that variance anisotropy
will develop in the linear runs, with perpendicular power exceeding parallel. Both
expectations are confirmed by the simulations.

Finally in this section, (3.3) indicates that the propagation condition becomes
harder to satisfy at larger k, that is, the smaller scales are likely to be more
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anisotropic, which is in agreement with solar wind observations (see e.g. Horbury
et al. 1995). We return to this point in the discussion section.

4. Numerical Results

The results discussed below pertain to the runs listed in Table 1, all of which have
By = 10. Additionally, each initial condition set has E?(k) = E*(k), with E = 1,
and approximately zero kinetic and magnetic helicity. The initial Fourier coefficients
are assigned so that the modal spectra are of the form EV(k) ~ 1/[1 + (k/kxnee)],
with kxnee = 4, and g chosen so that the omnidirectional spectra have a high-
wavenumber slope of the Kolmogorov value, —g. The phases for the coefficients
are determined using Gaussian random variables, and only Fourier modes with
wavenumbers in the range kp to kg are initially populated. Unfortunately, com-
putational constraints — in particular the small time-steps required to resolve the
small scale Alfvén waves — restricted us to relatively low resolution runs, with ini-
tial viscous and resistive Reynolds numbers, R, = ui;;, R,, = n7!, of at most a
few hundred. Initial conditions for the linear runs have maximal cross helicity, i.e.
v(k) = b(k), as required for consistency with the linear analysis.

Our approach has been to generate a specific set of initial data and then perform
multiple runs with it, varying only v, and 1 from run to run. As indicated in
Table 1, several such initial condition sets have been used. In the following we
consider first the temporal evolution of bulk quantities like the turbulent energy
density, and thereafter discuss the anisotropy behaviour. As will be seen, there are
important differences between the 7 zero/non-zero results, even for 7 < vion.

4.1. Bulk Properties

Figure 2(a) displays plots of the fluctuation energy E(¢) for four typical runs. Con-
sider first the n = 0 runs 07 and 08. It is apparent that as far as energy dissipation is
concerned, ion parallel viscous effects are relatively weak, when compared with the
energy decay associated with standard Laplacian viscous terms (see also Shebalin et
al. 1983; Oughton et al. 1994). Indeed, for runs with 4, < 107! plots of the globals
and other diagnostics are indistinguishable from those for ideal runs (e.g. run 06).
Thus, somewhat counter-intuitively, even low-(ion parallel) Reynolds-number tur-
bulence is associated with weak dissipation, when By is large. The apparent paradox
is resolved as follows: the equation for the energy decay is obtained in the usual
way by dotting v with (2.3), b with (2.4), adding, integrating over the domain and
using periodicity. The result is

2
‘96_’:3 — 3. / dv (%"’z) . (4.1)

Viscous dissipation therefore depends only on parallel gradients of v,. As has been
suggested previously (Shebalin et al. 1983; Carbone and Veltri 1990; Oughton et al.
1994), and will also be seen below, when By is large the nonlinear dynamics are
such that spectral transfer of v and b in the parallel direction is suppressed. The
two effects — ion parallel dissipation and reduced spectral transfer parallel to By —
thus combine to keep the right-hand side of (4.1) small.

Simulation results support these arguments as shown in Fig. 3, which displays
contour plots of log |vs(k.L,k)|[> and log|v(ky,ky)[> for run 07 (k = k - B,
k% = k? — kj}). The isotropic nature of the initial conditions is deposed in less than
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Figure 2. Time histories for some global quantities. (a) total fluctuation energy;
(b) mean-square current density. [The horizontal coordinate is time.]

a turnover time, and it is clear that parallel spectral transfer is inhibited. Note that
the k) dependence has been averaged over all orientations of wave vectors with
given k and k.

The situation is quite different when the resistivity is non-zero — even at the
N/Vion ~ 1072 level (run 09). Energy dissipation rates are then restored to values
much closer to those seen in runs with the standard Laplacian viscous and resistive
terms, such as run 04 (hereafter ‘standard dissipative’ runs) (Shebalin et al. 1983;
Oughton et al. 1994). The reason for this is clear: when 5 # 0, enhanced spectral
transfer in the perpendicular direction cannot circumvent dissipation of E? because
the resistive term is isotropic in k-space. Furthermore, Alfvén-effect activity (see
below) means that dissipation of E° is followed by a transfer of kinetic energy
into magnetic energy (to maintain equipartition), which is then subject to resistive
dissipation. Thus, this coupling leads indirectly to resistive decay of the wvelocity
fluctuations.

Analogous differences between the 7 zero and non-zero cases are observed in
the evolution of the mean-square current density, J = (3[j|*) (Fig. 2b), and the
enstrophy, Q = (3|w|?) (not shown), which behave very similarly. Zero-resistivity
runs are associated with J(¢) and Q(t) profiles which grow for a few turnover times
and then level out at an approximately constant value (which decreases as Vion
increases). This is qualitatively the same behaviour observed in ideal runs. Such
similarity suggests that absolute equilibrium predictions (Stribling and Matthaeus
1990) may be of relevance to these flows, a conjecture which is the object of further
research. By contrast, n # 0 runs show at most only slight increases in J and €,
followed by more or less monotonic decay. Again, this behaviour is very similar to
that observed in ‘standard dissipative’ runs. As far as bulk properties are concerned
it is apparent that even a small resistivity is enough to swamp the gentler v;,, decay
effects.

For n = 0 runs the kinetic energy is, to a good approximation, equal to the
magnetic, as would be expected on the basis of the Alfvén effect (Kraichnan 1965;
Pouquet et al. 1976). This postulates that in the presence of a strong large-scale
magnetic field, v and b fluctuations behave like Alfvén waves, and thus involve an
inherent equipartition of kinetic and magnetic energy, on average. The approximate
equality of J and {2 is an immediate consequence of the Alfvén effect holding mode
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Figure 3. Contour plots for the logarithms of |vs(kyi,k)|> (left-hand side) and
|v: (kL. ky)> (right-hand side). Data are for run 07 at ¢ = 0 (top row) and ¢t = 1.4
(bottom row). The spectra for the x and z components appear significantly different along
the k1 = 0 axis only because of the way the incompressibility constraint, k - v(k) = 0,
and the &k , k” decomposition interact. [The horizontal axis is k1 and the vertical k:”.]

by mode. The resistive runs, however, evolve to give an excess of kinetic energy
(ra = EY/E® ~ 1.2 at t = 4). We suggest that this is a consequence of the isotropic
resistive dissipation being stronger than the anisotropic viscous decay. While v and
b are manifestly coupled, there is evidently a lag in transferring excitations from
the kinetic to the magnetic components. The effect is also present in the linear
runs and we are investigating the dynamics of this case in an effort to improve
understanding of the process.

Linear runs have E, J, and § profiles which are of course strictly monotonic
decreasing (not shown). In the case of run 17, the decrease is so slow that it is
graphically undetectable. This lack of any significant evolution is characteristic of
all the linear runs performed with n = 0 and vjo, S 1071,

4.2. Spectral Anisotropy

Spectral anisotropy concerns the ‘energy’ distribution as a function of wave vec-
tor, as distinct from wavenumber. A useful way of quantifying it was introduced by
Shebalin et al. (1983); see also Carbone and Veltri (1990) and Oughton et al.(1994).
Given a field Q(x,t) with Fourier transform Q(k,¢), the anisotropy angle 8¢ is
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defined by
a2 — S Q0D w2

T EZQk, )’

where the sums are over all retained wavevectors k. Here we concentrate on Qs such
as v, w, b, j, and the ey, ey polarizations of v and b. Examination of (4.2) indicates
that tan 6g is interpretable as the ratio of (weighted) RMS wavenumbers computed
parallel and perpendicular to Bg. It is straightforward to show that an isotropic
spectrum has g = tan—1 /2 ~ 55°, while 2D spectra (meaning ones where the
excited modes have k L Bg) have g = 90°.

Plots of 6, and 8, for five representative runs are displayed in Fig. 4. Although
the angles fluctuate slightly, the overall trend is a monotonic increase with time,
initially quite a rapid one. In fact, these two angles increase with time for all the
nonlinear (and most of the linear) runs listed in table 1, but the level attained
depends on the specific run parameters. In general, the anisotropy increases as Vion
increases, although the effect is rather weak. This is at least partially a consequence
of @ = 2By/3kvjey, being greater than unity for most of the runs (Table 1). As shown
in Sec. 3, anisotropy associated with v, only develops (linearly) if o < 1. The
simulation results are in accord with this prediction, and also with the prediction
of increasing anisotropy with decreasing a. Discussion of the anisotropy results for
linear runs is deferred to Sec. 4.2.1.

The anisotropy angles for the ideal run (06) are almost identical to those of run 08,
with 7 = 0, vjon = 107!, indicating that the bulk of the anisotropy is generated
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by the nonlinear process first discussed in connection with ‘standard dissipation’
runs (Shebalin et al. 1983; Oughton et al. 1994). However, n = 0 runs with a < 1
produce spectral anisotropies which are slightly enhanced with respect to the ideal
run values. We return to this point below.

The angles 6, and 6; generally behave very similarly to their velocity counter-
parts. In particular, when n = 0, 6, and 6, are essentially identical, and likewise
0, and ;. For nn # 0, we typically observe §, > 65, and 6, > ; after t ~ 1, with
the margin being 3°—4°. We believe that this, like the excess of kinetic energy, is a
consequence of the resistive dissipation being stronger than the viscous: resistivity
reduces the level of magnetic excitation everywhere in k-space, whereas v;o, effects
are weaker and also directionally selective. As a result the v—v nonlinear couplings
are likely to be the strongest, leading to stronger anisotropies in v compared with
b.

Figure 4 also contains information about the scale dependence of the anisotropy.
At any fixed time, each run is such that 8, < 8, < 6, and 6, < 0, < 6;, with
1 and a respectively the velocity stream function and magnetic vector potential.
The same behaviour was observed in simulations of the ‘standard dissipation’ MHD
equations (Shebalin et al. 1983; Oughton et al. 1994). Since v depends more strongly
on the small scales than v, and w even more so, the # behaviour is interpreted as
evidence for spectral anisotropy being stronger at smaller scales. Note, however,
that shell-model work (Carbone and Veltri 1990) indicates spectral anisotropy is
approximately uniform throughout a well-developed inertial range. Unfortunately,
direct numerical simulation of 3D MHD flows with a substantial inertial range is
not yet routinely feasible.

4.2.1. Polarization effects. We turn now to connections between the fluctuation po-
larizations and spectral anisotropy, considering first the linear runs. As shown in
Sec. 3, only the e, polarization is (directly) affected by the value of vion, and the
spectral anisotropy should increase only for this polarization. Figure 5 shows plots
of the anisotropy angles and energies for the two polarization components of v
and b. In agreement with the theory for n = 0 runs, only the e; components of
run 15 show any evolution: decay for the energies and growth for the angles. The
magnetic quantities are graphically indistinguishable from their kinetic counter-
parts, although small differences do in fact exist between the es components. This
behaviour is in complete accord with the linear theory (Oughton 1996).

Resistive runs behave somewhat differently. Both polarization components of
the energies decay, and the magnetic behaviour is now clearly distinct from the
kinetic. Specifically, the e; and e, components of E® decay faster than those of
E", but in each case the e; component decays more. The magnetic energy decays
faster because the resistive dissipation is isotropic and considerably stronger than
the viscous dissipation. The situation is even more interesting for the anisotropy
angles. The e; and e, angles for v both increase, whereas those for b decrease
slightly. Moreover, the growth of the v angles is significantly greater than that seen
in run 15 (figure 5). An explanation of this behaviour is given in the next paragraph.

It can be shown (Oughton 1996) from the linear equations that components of
the e; energy spectra obey the following equations

%le (k)|? = —2(k - Bg)*Hjy, (4.3)
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Figure 5. Time histories in terms of the e; and ey polarization components of v and
b for the linear runs 15 and 16. Top: kinetic and magnetic energies. Bottom: anisotropy
angles. Thick (thin) curves represent velocity (magnetic) field quantities.

d

T
where Hi o« Im{t}a;} is non-negative and oscillates with decreasing amplitude.
The decay of |11 (k)|? is therefore anisotropic with parallel wavevector modes being
more strongly damped. Hence the associated anisotropy angle will be quasi-2D, as
shown in Fig. 5. For the magnetic energy there is an equal and opposite effect (plus
resistive damping), leading to an enhancement of energy in parallel modes and a
consequent decrease of §°,. A similar situations holds for the e> components but
with the addition of v;on dissipation effects. While the physical nature of H; and H»
is not completely understood, they are related to the ‘helicity of the electric field’
(Zhou and Matthaeus 1990).

The nonlinear results parallel the linear ones, provided the much stronger nonlin-
ear anisotropy generation process is taken into account (Fig. 6). In all cases, the e,
polarization is more anisotropic than the e; one for a given field. When v;,, < 10,
however, the difference is often less than a degree. Table 1 shows that a > 1 for such
runs, and thus the propagation condition (3.3) is satisfied for all retained wavenum-
bers. Consequently no anisotropy can develop via this mechanism. Of course, for
large enough wavenumbers, « is always less than unity and ion parallel anisotropy
is expected to develop at these scales. Simulations covering a larger range of scales
are clearly called for.

Figure 6 also shows that the e; and es polarizations of v both decay at approx-

(K)|* = 2(k-Bo)*Hy — 2k* |a: (k)|?, (4.4)
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Figure 6. Same as Fig. 5, except for the nonlinear runs 07 and 09.

imately the same rate for a given nonlinear run. Since for the 7 = 0 runs only
the es polarization has a direct dissipative channel, nonlinear couplings must be
inducing a fairly rapid transfer of excitation between the two polarizations. This is
easily confirmed by substituting (3.4) and its magnetic counterpart into the Fourier
transform of (2.3)—(2.5) and forming scalar products with e; and es.

Shell model work using ‘standard dissipation’ terms (Carbone and Veltri 1990)
reveals a small polarization dependence in the anisotropy angles, suggesting that
the nonlinear anisotropy generation mechanism also has a weak polarization de-
pendence. While we do not observe such an effect in runs 04 and 06, this may be
because the Reynolds numbers employed are too small to achieve sustained strong
turbulence. Assuming that the polarization dependence is not an artifact of the
shell model itself, this compounds the difficulty of estimating the polarization de-
pendence of the anisotropy angles as a function of vign.

A few comments regarding the temporal persistence of the anisotropy are ap-
posite. Simulations employing ‘standard dissipative’ terms (Shebalin et al. 1983;
Oughton et al. 1994) and By & 1 revealed that the anisotropy angles 8 first grow
and then level out. On the other hand, non-dissipative runs using the same ini-
tial conditions produce essentially identical #s for the first few turnover times, but
thereafter decay back towards the isotropic value on a much longer timescale (see
Fig. 10 of Shebalin et al. 1983). This was argued to be a consequence of the sta-
tistical mechanics appropriate for such absolute equilibrium flows (Kraichnan and
Montgomery 1980; Stribling and Matthaeus 1990), where the energy attempts to
equipartition itself amongst all retained wave-vector modes. Here, however, we find
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Figure 7. Time histories of the velocity field variances for two linear runs. Solid (vZ2),
dashed (v7), dotted (v?).

no such ideal decay of the fs, even though the ideal run 06 has been followed out
to t ~ 40. The anisotropy angles remain roughly constant for ¢ 2 5.

In order for the absolute equilibrium predictions to be relevant, enough time must
have passed for all modes to equilibrate. The large scales will be the slowest to do
so, taking several spectral transfer times, 7. In the Kraichnan (1965) approach
Ts = Tap/Ta = koBo/(kourms)? which is approximately 10 turnover times in our
case (Tnr and 74 are respectively the nonlinear and Alfvén timescales). On the
basis of this argument we therefore expect to see evidence for the fs returning
to the isotropic value by ¢t =~ 40. It appears that large By causes the spectral
anisotropy to persist long after absolute equilibrium theory (with just E and H,
as invariants) predicts its demise. One might speculate that the small but non-
zero magnetic helicity is inducing back-transfer of excitations (Frisch et al. 1975;
Stribling and Matthaeus 1990) and somehow thwarting the return to isotropy.

4.8. Variance Anisotropy

We denote the variance of the x components of v(x) and b(x) by (vZ) and (b2),
and similarly for the other components. It will often be convenient to work with
the relative variances, (v2)/(v?), etc., where the z-variance is always used as the

T z
normalising factor.

4.8.1. Linear runs. Recall that the linear theory of Sec. 3 indicated that for n = 0,
Vion 7 0 runs, the z components should decay faster than the others, since the for-
mer are purely es-polarized while the latter (in general) also include e; components,
and these are immune to the viscous decay. The left-hand panel of Fig. 7 shows
that this is indeed the case for the velocity variances of run 15 (magnetic variances
behave almost identically). The associated relative variances increase approximately
linearly with time from unity to about 1.2 at ¢ = 4. All linear runs with o < 1 and
1 = 0 display similar behaviour, with the effect becoming stronger as « decreases.

For runs with n = 1072, however, the resistive decay dominates and all three
components of the variances decay much faster than in the analogous n = 0 case
(Fig. 7). While at first sight the decay rates look roughly the same, closer exami-
nation reveals that the relative magnetic variances still tend to increase with time,
but the velocity ones actually decrease. Recall that for such runs E® decays faster
than EY, and we have argued that this is due to the stronger (and isotropic) nature

Corrected the
exponent er-
ror which ap-
pears in
the published
version.
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Figure 8. Variance time histories for three nonlinear runs. (a, b) Velocity variances; solid
(v3), dashed (v;), dotted {v2). (c) Relative velocity variances; solid (v2)/(v?), dashed
(vg)/(v?). (d) Same as (c) except for the relative magnetic variances.

of the resistive dissipation (cf. Fig. 5). Evidently, however, ion parallel effects are
preserving (v?), relatively speaking, but not (b2).

4.8.2. Nonlinear runs. Figure 8(a) shows plots of the velocity variances for the
non-dissipative run 06 (magnetic variance profiles are very similar). Clearly when
nonlinear interactions are present, the ‘natural’ state of the relative variances is
significantly less than unity, due to transfer of energy from the x and y components
to the z component.

The preferential decay of the z components for runs with 7 = 0 and vjon # 0
reduces the dominance of (v?) and (b2), causing the relative variances to increase
above the ‘natural’ levels but still remain less than unity (Fig. 8b). One objective
of this work was to determine if ion parallel viscosity effects could produce excess
power in the perpendicular directions, as observed in the solar wind (Klein et al.
1991; Horbury et al. 1995). While no nonlinear simulations have been performed
where the relative variances evolve to levels significantly above unity, it seems pos-
sible that this will occur for sufficiently small a, as in the linear runs.

Inclusion of the resistive term has little effect on the relative velocity vari-
ances, but tends to further increase the magnetic ones above their ‘natural’ levels
(Figs 8c¢,d). This is similar to the behaviour of the analogous linear runs, and an-
alytic work on the linear dynamics is being undertaken in an attempt to improve
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understanding here. At present we do not have adequate explanations for several
of the variance anisotropy features as a function of the dissipation coefficients.

5. Summary and Conclusions

The results presented above indicate that when B is much larger than the energy
in the fluctuations, nonlinear 3D MHD flows are associated with anisotropic spectral
transfer, with a suppression of transfer for wave-vector modes quasi-parallel to By.
Measured in terms of anisotropy angles, or equivalently ratios of perpendicular and
parallel correlation lengths, the anisotropies tend to increase with both wavenumber
and time. This dynamic evolution towards weakly coupled planes of two-dimensional
turbulence (with their normals parallel to Bg) was also seen in nonlinear simulation
studies employing ‘standard dissipation’ terms (Shebalin et al. 1983; Oughton et al.
1994). Linear runs are also associated with increasing spectral anisotropy when
a = 2By /3kvion < 1, with a strong polarization dependence when n = 0, only the
e, polarizations of v and b being affected. The polarization dependence is much
weaker when 7 # 0 and also in the nonlinear runs, for which the two polarizations
no longer evolve independently.

Perhaps the most important conclusion to be drawn from this work is that even
when the resistivity is vastly smaller than the ion parallel viscosity, it can still
provide the dominant method of dissipation and significantly affect the spectral and
variance anisotropy levels. This stands as a further warning regarding the neglect
of ‘small’ terms that involve spatial gradients.

In the nonlinear case the spectral anisotropy appears to be a composite of be-
haviour due to two distinct processes: (1) anisotropy generation by the nonlinear
couplings, which is ideal in the sense that dissipation is required only for the persis-
tence of the anisotropy, not the development, and is already well reported (Shebalin
et al. 1983; Oughton et al. 1994); and (2) anisotropy associated with the (linear) ion
parallel viscosity dissipation. Since the latter process is linear and weak compared
to the former, we might expect the two effects to be roughly additive. Indeed, we
find that 697 ~ 696 + 05 — 55°, where the superscripts denote run numbers. Of
course, this is just one example and if higher wavenumber modes are excited, the
ion parallel viscosity effect will become more important in determining the net
anisotropy. In such cases it seems less likely that the effects will be additive. Both
processes require a strong background magnetic field, but whereas the nonlinear
mechanism appears to saturate when By 2 3 (Shebalin et al. 1983; Oughton et al.
1994), the ion parallel mechanism gets weaker as By is increased, and in fact turns
off for a > 1.

Variance anisotropy is also subject to vjon effects. As a decreases below unity the
z and y components of the kinetic and magnetic energies become more substantial
compared to the z components. In the linear runs the former become dominant,
largely because of the preferential decay of the latter. In nonlinear runs it is the z
components which are predominant, but less and less so as a decreases. Indeed, it is
possible that at small enough « (e.g. large enough k), the z and y components will
become dominant.

For both spectral and variance anisotropy there is a strong similarity between
the results discussed here and those reported in 2D and 3D simulation studies
using ‘standard dissipation’ terms (Shebalin et al. 1983; Carbone and Veltri 1990;
Oughton et al. 1994). When analysing observational data, such as that obtained
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from spacecraft measurements in the solar wind, this similarity is likely to make it
difficult to extract information regarding the relative importance of the nonlinear
and ion parallel anisotropy generation processes.

This work was originally motivated by its possible relevance to interplanetary
fluctuations. However, the solar wind is an almost collisionless plasma, so that there
are questions as to the relevance of the Braginskii transport coefficients (Mont-
gomery 1992). Furthermore, it is rare to find intervals of solar wind data where
the mean magnetic field is much greater than the fluctuating one. In fact, often
E%/By > 1 over the solar poles (Horbury et al. 1995), so that the simulations dis-
cussed here are for a different parameter regime. Nonetheless, they may be relevant
for small enough scales in the solar wind, since the fluctuation energy at these scales
will indeed be much less than that in the mean field. In particular, observed rela-
tive variance anisotropies (Klein et al. 1991; Horbury et al. 1995) are greater than
unity and increase with decreasing scale. This is in qualitative agreement with the
linear theory and simulations. Unfortunately, nonlinear couplings tend to swamp
or perhaps even destroy the linear effects so that their relevance is questionable
given the prevailing belief that solar wind fluctuations are turbulent. On the other
hand, these simulations have a limited range of scales excited, and it may be that
the linear effects re-emerge at smaller scales.

We close by noting that the anisotropy levels reported here show significant
dependence on the (modest) Reynolds numbers, or in other words are affected by
the strength of the turbulence. Since higher Reynolds numbers will lead to longer
periods of fully developed turbulence it is expected that the anisotropy levels will
rise with increasing Reynolds numbers (Shebalin et al. 1983; Oughton et al. 1994),
perhaps saturating at very large Reynolds numbers (Carbone and Veltri 1990).
Higher resolution simulations will allow investigation of these conjectures.
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