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ABSTRACT

Correlation anisotropy emerges dynamically in magnetohydrodynamics (MHD), producing stronger gradients
across the large-scale mean magnetic field than along it. This occurs both globally and locally, and has significant
implications in space and astrophysical plasmas, including particle scattering and transport, and theories of
turbulence. Properties of local correlation anisotropy are further documented here by showing through numerical
experiments that the effect is intensified in more localized estimates of the mean field. The mathematical formulation
of this property shows that local anisotropy mixes second-order with higher order correlations. Sensitivity of local
statistical estimates to higher order correlations can be understood in connection with the stochastic coordinate
system inherent in such formulations. We demonstrate this in specific cases, and illustrate the connection to higher
order statistics by showing the sensitivity of local anisotropy to phase randomization, after which the global measure
of anisotropy is recovered at all scales of averaging. This establishes that anisotropy of the local structure function
is not a measure of anisotropy of the energy spectrum. Evidently, the local enhancement of correlation anisotropy
is of substantial fundamental interest and must be understood in terms of higher order correlations, specifically
fourth-order and above.
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1. INTRODUCTION: CORRELATIONS
AND ANISOTROPY

Correlation and spectral anisotropy play important roles in
current studies of solar wind and astrophysical plasmas, having
a significant impact on descriptions of the turbulence cascade,
particle scattering, the nature of kinetic dissipation, and the
transport of turbulence. Evidence from experiments, numerical
simulations, theoretical arguments, and spacecraft observations
has consistently supported the conclusion that magnetohydrody-
namic (MHD) turbulence leads to states characterized by gradi-
ents that are relatively stronger when measured perpendicular to
the large-scale magnetic field and relatively weaker when mea-
sured parallel to it (Robinson & Rusbridge 1971; Zweben et al.
1979; Ren et al. 2011; Shebalin et al. 1983; Bondeson 1985;
Carbone & Veltri 1990; Oughton et al. 1994; Montgomery &
Turner 1981; Matthaeus et al. 1990; Bieber et al. 1996). This
correlation anisotropy has been quantified both globally and
locally, by varying the definition of the mean magnetic field.
The local form, being of greater magnitude, has received sub-
stantial attention in recent years (Cho & Vishniac 2000; Milano
et al. 2001; Horbury et al. 2008; Tessein et al. 2009; Podesta
2009; Luo & Wu 2010; Wicks et al. 2010, 2011; Chen et al.
2011). The present paper will focus on the relationship between
these forms of anisotropy, providing a better characterization of
the scale dependence of local anisotropy. A particular conclu-
sion will be that correlation anisotropy affects statistics at all
orders, including, but not limited to, the energy spectrum and
other second-order statistics. We also present evidence that the
enhancement of local anisotropy over the global value is due
entirely to higher order statistical effects.

The basic physics leading to this strong perpendicular spec-
tral transfer and enhancement of perpendicular anisotropy has
been elucidated in the context of incompressible homogeneous
MHD turbulence (Montgomery & Turner 1981; Shebalin et al.
1983; Bondeson 1985; Grappin 1986; Oughton et al. 1994). For
this model, all modal couplings are triadic (involving wavevec-
tors k1, k2, k3, such that k1 + k2 + k3 = 0), but in the presence
of a strong uniform DC magnetic field B0 ẑ, only those cou-
plings that have one (or all three) wavevectors perpendicular to
ẑ will proceed unattenuated by propagation effects. All other
couplings are suppressed to a progressively greater degree as B0
is strengthened. The appearance of stronger perpendicular gradi-
ents implies that spectral transfer to the perpendicular wavevec-
tors is more robust than that to the parallel wavenumbers.
This corresponds to the appearance of characteristic spectral
anisotropy, with enhancements of high k⊥ power relative to k‖
power, an effect that becomes progressively stronger at smaller
scales (Shebalin et al. 1983; Oughton et al. 1994). This organi-
zation of the spectrum is built into models such as reduced MHD
(Kadomtsev & Pogutse 1974; Strauss 1976; Montgomery 1982),
and related models such as the Goldreich & Sridhar (1995)
steady-state model and the nearly incompressible MHD model
(Zank & Matthaeus 1992). Indeed, strong anisotropy of MHD
correlations is observed in laboratory devices (Robinson &
Rusbridge 1971; Zweben et al. 1979; Ren et al. 2011), in the
solar wind (Matthaeus et al. 1990; Tu & Marsch 1995; Bieber
et al. 1996) and the corona (Armstrong et al. 1990), and is an
apparent requirement for consistency of scattering theory with
solar energetic particle observations (Bieber et al. 1994; Dröge
2005).

However, anisotropy of the energy spectrum is not the only
effect associated with correlation anisotropy and enhancement
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of perpendicular gradients.6 For example, one can discuss the
shape and orientation of structures, such as “eddies” (Cho
& Vishniac 2000) or current sheets (Dmitruk et al. 2004). It
is well known that one of the powerful nonlinear effects of
turbulence is the production of coherent structures that are
progressively smaller at small scales. This leads to intermittency
as measured by non-Gaussianity and higher order statistics, as
seen in hydrodynamic and MHD models (She & Lévêque 1994;
Politano & Pouquet 1995). Simulations show that such non-
Gaussian statistics are generated very rapidly by the cascade of
excitations to smaller scales (Wan et al. 2009). In MHD, under
a wide variety of conditions, the associated coherent structures
take the form of enhancements of electric current density in
sheets or filaments (Matthaeus & Lamkin 1986; Carbone et al.
1990; Veltri 1999). When the turbulence is anisotropic relative
to a large-scale field (e.g., Dmitruk et al. 2004), the current
structures tend to align in that direction as well. This suggests
that higher order statistical quantities (fourth-order moments,
kurtosis, etc) must also become anisotropic.

The above reasoning leads to an expectation that statistics
at all orders might be involved in correlation anisotropy, but
many “theories of MHD turbulence” discuss exclusively the
properties of the second-order statistics; that is, the energy
spectra and associated correlation and structure functions. This
emphasis follows naturally from the use of wavevector spectra
and two-point, single time correlation functions as measures of
the distribution of energy in spatial structures of varying size
(Monin & Yaglom 1971, 1975), as exemplified by the classic
Kolmogorov (1941) theory. Recognizing this background, it is
not entirely surprising that recent interest in local anisotropy
has sometimes focused on an interpretation of this effect as a
local energy spectrum (Cho & Vishniac 2000; Chen et al. 2011;
Wicks et al. 2011). The discussion below provides, in effect, a
critique of this interpretation.

To render the discussion specific, we assume a statistical
description that is homogeneous in space and stationary in
time. The brackets 〈· · ·〉 denote an ensemble average, which
by invoking a classical ergodic theorem, is approximated in
practice by a space or time average. It may be possible to
define the statistical ensemble in other ways, but here a classical
statistical framework is assumed (Monin & Yaglom 1971, 1975).
The two-point correlation function measuring the statistical
relationship between the magnetic field fluctuation at points x
and displaced position x′ = x + r is also the Fourier transform
of the wavevector energy spectrum,7Sαβ (k). The definitions are
(e.g., Monin & Yaglom 1971, 1975)

Rαβ(r) = 〈bαb′
β〉 =

∫
d3k Sαβ (k)eik·r , (1)

where we abbreviate bα = bα(x, t) and b′
β = bβ(x + r, t), and

suppress the time argument.8 Another two-point statistic is the

6 Here, we are concerned with correlation (or spectral) anisotropy, e.g.,
anisotropy of |b(k)| for varying k. Anisotropy of the variance, i.e., direction of
b(x), also occurs, see Belcher & Davis (1971), but is a distinct issue, which,
however, may become linked in certain theories, e.g., Zank & Matthaeus
(1992) and Goldreich & Sridhar (1995).
7 For three-dimensional isotropic Kolmogorov turbulence, the
omnidirectional energy spectrum is E(k) = 4πk2Sαα(k) (sum on repeated
indices), with E(k) ∼ k−5/3 in the inertial range.
8 In the solar wind (Jokipii 1973) and wind tunnels (Monin & Yaglom 1971,
1975), rapid sweeping past detectors provides a useful connection between
temporal and spatial statistics through the Taylor frozen-in flow hypothesis.
Here, we will not be concerned with time statistics.

second-order structure function

D(r) = 〈|b − b′|2〉 ≡ 2δb2 − 2R(r), (2)

which is obviously related to Rαβ . Here, δb2 = Rαα(0) is the
total variance of the fluctuations and R(r) = Rαα(r).

Existence of a homogeneous statistical ensemble implies that
there exists a probability density P(Γ) that describes fully all
realizations of the turbulence, where each realization is labeled
by an index Γ. This density may be projected onto the space
of two-point statistics, arriving at a probability distribution
function (pdf) P2(b, b′) that characterizes all of the two-point
statistics of any order. Thus, one may equivalently express the
structure function in two ways as

D(r) =
∫

Γ
dΓ [|b − b′|2]ΓP(Γ) (3)

=
∫∫

d3b d3b′ |b − b′|2P2(b, b′), (4)

where [|b − b′|2]Γ is the value of the square-bracketed quantity
for realization Γ. Similar relations hold for the spectra and
two-point correlation functions. Note that the structure function
D and the correlation matrix Rαβ are “second-order statistics”
because they are explicitly written as second-order moments of
either the full density P or of the reduced two-point probability
density P2.

In general, the turbulence may not be isotropic, especially if
〈B〉 = B0 
= 0. It is then of interest to compute correlations
in directions relative to B̂0 = B0/B0 (and a perpendicular
direction n̂0). We will also consider a locally defined mean
field in which the local mean direction Ĥ = H/|H| is
itself a random variable that satisfies 〈H〉 = B0. We have
in mind several possible ways to determine H : for example,
as HV (x) = V −1

∫
V

d3r B, defined in subvolumes or “boxes”
of volume V centered on x; or as HL = L−1

∫
L

dr B, defined
in co-linear samples of length L (as used in single spacecraft
estimates in the solar wind, under Taylor’s hypothesis); or
perhaps as H r (x), defined as the average of B at x and x′,
[B(x + r) + B(x)]/2. These may be called, respectively, volume
averages, line averages, and point averages.

At this point, we recall a generalization of standard structure
functions (Milano et al. 2001) that formally coincides with D(r),

D̃(s) ≡ 〈|b(x) − b(x + s ĉ)|2〉, (5)

except that the direction ĉ is permitted to be a variable direction,
in particular a direction determined relative to the local estimates
Ĥ . For special cases, the separation can be chosen to be
either parallel to the local mean magnetic field, ĉ → Ĥ , or
else perpendicular to H : ĉ → n̂ ≡ ê × Ĥ/|ê × Ĥ| for
reference direction ê. This enables us to define the (locally)
parallel structure function D̃‖(s) = 〈|b(x) − b(x + s Ĥ)|2〉
and the local perpendicular (transverse) structure function
D̃⊥(s) = 〈|b(x) − b(x + sn̂)|2〉. Our main concern here will
be to better understand the relationship between local and
global anisotropy, and between D and D̃. We conclude that,
however appealing their similarity might be, one can anticipate
fundamental differences. Notably, since D̃ is defined in a
stochastic coordinate system, it is thus a conditional statistic.
D̃ is therefore necessarily a higher order statistical quantity.
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In contrast, D is defined in a fixed coordinate system and is
related directly to the second-order statistics, such as correlation
functions and spectra.

Milano et al. (2001) showed that structure functions defined
as above can be employed to quantify both global anisotropy and
local anisotropy. For separations s lying in the inertial range and
smaller, and for cases with nonzero B0, global anisotropy takes
the form D(sn̂0)/D(s B̂0) > 1, which is equivalent to enhanced
perpendicular anisotropy seen in spectra (Shebalin et al. 1983;
Oughton et al. 1994). Local anisotropy is typically characterized
by D̃⊥(s)/D̃‖(s) > 1, which corresponds to stronger gradients
perpendicular to a local preferred direction. Interestingly, the lo-
cal anisotropy was found to be greater than the global anisotropy
at a given scale, D̃⊥(s)/D̃‖(s) > D(sn̂0)/D(s B̂0) > 1 (Milano
et al. 2001). It is noteworthy that local anisotropy was found
even in cases that are globally isotropic, with B0 = 0. A
related study (Cho & Vishniac 2000) found similar local
anisotropy, and argued for a correspondence to anisotropic
magnetic spectra in the “reduced MHD” regime (Goldreich &
Sridhar 1995).

2. RESULTS

Milano et al. (2001) also suggested that there was evidence
for progressively greater anisotropy as the mean field is com-
puted more locally. However, the available bandwidth of the
simulations limited the strength of that conclusion. We present
a new result here that demonstrates this effect with higher reso-
lution simulations, employing (dealiased) incompressible three-
dimensional MHD spectral method simulations at a spatial res-
olution of 5123. Thus, the maximum retained wavenumber is
kmax = 170 (k = 1 corresponds to the longest allowed wave-
length in the periodic box). The runs are initial value prob-
lems, decaying turbulence with initially excited wavenumbers
of k = 1–6, and initial fluctuation energy normalized such
that 〈b · b〉 = 〈v · v〉 = 1. The resistivity μ and viscosity
ν, are selected to ensure good spatial resolution, meaning that
kmax/kdiss > 3 at all times (Wan et al. 2010). The dissipation
wavenumber is defined as kdiss = 1/λdiss = (ε/ν3)1/4, where ε
is the rate of (total) energy dissipation. Initial Reynolds numbers
are R = 1/ν = Rm = 1/μ = 2000.

We report on two runs, one with B0 = 0 and another with
B0 = 1. Broadband energy spectra develop and the data are
analyzed near the time of maximum dissipation. We examined
the anisotropy relative to local mean fields determined variously
as volume, line and point averages. Corresponding estimates
of D̃‖(s) and D̃⊥(s) were computed in the same way. For
volume averages, or line averages with V 1/3 ∼ L � λc, the
correlation scale of the fluctuations, we expect that HV provides
increasingly refined estimates of B0. (Note that for globally
anisotropic turbulence, the perpendicular correlation scale λ⊥

c ,
and parallel correlation scale λ

‖
c may differ.) Indeed, for a

one-dimensional random process, the classical ergodic theorem
(Monin & Yaglom 1971, 1975) guarantees that limL→∞ HL =
〈B〉 = B0.9

To assess the degree of local anisotropy, the local struc-
ture functions are computed in locally determined mean-field-
aligned axisymmetric coordinate systems. That is, estimates of

9 For line averages, this statistical limit is guaranteed when the traced
correlation function tends to zero at large lags |r| → ∞ fast enough so that∫ ∞

0 dx xR(x, 0, 0) is bounded for any choice of Cartesian axis x.
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Figure 1. Anisotropy ratio D̃⊥(s)/D̃‖(s) vs. scale s at inertial range and
larger scales. Point and line average estimates of local mean field H are used
(“AB” averages the two points x, x′, “lag dependent” integrates from x to x′.)
Perpendicular fluctuations are relatively enhanced, except for scales s � 1
where isotropy holds (note that energy-containing eddies remain isotropic).
(a) B0 = 0 simulation (λc = 0.34, λdiss = 0.021). More localized estimates
of H (e.g., shorter line averages) produce greater anisotropy. Randomizing
phases produces isotropy for all averaging methods and at all lags. (b) B0 = 1
simulation (λ⊥

c = 0.34, λ‖
c = 0.43, λdiss = 0.022). Global anisotropy is relative

to the globally determined B0. All methods based on local mean field show
further enhancement of anisotropy. Phase randomization removes the enhanced
local anisotropy, but global anisotropy remains.

D̃‖(s) and D̃⊥(s) are accumulated and averaged. Several meth-
ods are used to determine the local mean field–volume, line,
and point averaging, as described above. Figure 1 shows the
ratio D̃⊥(s)/D̃‖(s) which provides a measure of the variation
of anisotropy with lag s, for several different determinations of
the local mean field. Also shown is the anisotropy ratio relative
to the global mean magnetic field. It is clear that (1) the degree
of anisotropy is greater at smaller lags; and (2) that anisotropy
is more pronounced when the mean magnetic field is computed
over a smaller region. This was found by Milano et al. (2001) and
Cho & Vishniac (2000) and confirmed in numerous other stud-
ies. As has been reported previously, local anisotropy is present
not only for the nonzero B0 case (Figure 1(b)), but also for zero
global mean field (Figure 1(a)). We thus confirm that stronger
gradients are produced perpendicular to the magnetic field, and
also that local anisotropy is stronger than global anisotropy.

Clearly, the local structure functions are of great interest, and
we now discuss their formal nature. It is convenient to introduce
the generalization D̃(s‖, s⊥) = 〈|b(x) − b(x + s‖ Ĥ + s⊥n̂)|2〉,
which makes explicit the possibility of arbitrary separations,
both parallel (s‖) and perpendicular (s⊥) to the local mean
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magnetic field. Evidently, D̃‖(s) = D̃(s, 0) and D̃⊥(s) =
D̃(0, s).

The quantity D̃ can be formally obtained from the expression
for D(r) in Equation (2) by the replacement r → s‖ Ĥ + s⊥n̂ in
Equation (4). However, some care is required in interpreting this
procedure due to the new stochastic variables that appear in the
arguments. (For example, the implication is that the differential
d3b′ becomes stochastic.) To avoid complications we choose to
write the defining relation in terms of the full probability density
of realizations, that is,

D̃(s‖, s⊥) =
∫

Γ
dΓ[|b(x + s‖ Ĥ + s⊥n̂) − b(x)|2]ΓP(Γ). (6)

This new expression is not a simple coordinate transformation
of Equation (4) because the coordinate unit vectors Ĥ and n̂
are themselves random variables, dependent upon Γ. However,
the new independent variables s‖ and s⊥ are non-random
coordinates in the stochastically rotated reference frame of
the local systems. It is clear that D̃(s‖, s⊥) remains a second-
order statistical quantity only if the coordinate system is fixed
and Ĥ and n̂ become fixed vectors, or if the probability
distributions are insensitive to directions. The former case is
obtained asymptotically as B0 → ∞, and the mean field
direction becomes statistically sharp. The latter case is obtained
for highly symmetric cases such as isotropic turbulence. In
general, unless the density P is invariant under the stochastic
changes of H , the statistical nature of D̃ becomes higher order.

The latter point and its consequences can be made more
explicit by considering special cases. For small separations
purely in the parallel direction (s⊥ = 0 and small s‖), and
considering the decomposition H ≡ B0 + h, we may expand

D̃(s, 0) =
〈
|s Ĥ · ∇b(x) +

s2

2
Ĥ i Ĥj∇i∇j b(x) + O(s3)|2

〉

= s2〈| ̂(B0 + h) · ∇b|2〉 + O(s3). (7)

Suppose that |b|/B0 � 1 is small enough to justify an ad-
ditional expansion in that parameter. This yields D̃(s, 0) =
s2 B̂0i B̂0j 〈(∇ibk)(∇j bk)〉 + O(hbb/B0). The first term is a
second-order moment. The remaining terms include third-,
fourth-, and higher-order moments. Only in the asymptotic limit,
in which H → B0, is a second-order moment recovered.

As a second special case, suppose that (1) B0 = 0, so the
global anisotropy may be zero, and (2) that the local mean field
estimate is completely localized so that H = h = b. Then,
once again beginning with the small s expansion Equation (7),
we find that D̃(s, 0) = s2〈|b·∇b|2/|b|2〉+O(s3), which involves
moments higher than second-order. Even in the very special case
that the magnetic field fluctuation is “arc polarized” and has
constant magnitude σ , this still only reduces to a fourth-order
quantity D̃(s, 0) ≈ (s2/σ 2)〈|b · ∇b|2〉.

Observing that the relationship between the structure func-
tion D(r) and the local field aligned structure function D̃
is somewhat analogous in form to the relationship between
Eulerian and Lagrangian correlation functions, one might be
tempted to seek similar approximations to connect them. One
possibility, based on the ideas underlying Corrsin’s hypoth-
esis of independence (see, e.g., McComb 1990) is to treat
the distribution of the magnetic field fluctuations as indepen-
dent of the distribution of the mean magnetic field directions.

Thus, symbolically one might attempt an approximation such as
P3(b, b′, Ĥ) → P2(b, b′)PH (Ĥ), from which it would follow
that D̃(s‖, s⊥) = ∫

dΩH C(s‖ Ĥ + s⊥n̂)PH (Ĥ), where PH (Ĥ) is
the distribution of mean field directions and dΩH the differen-
tial of solid angles associated with those directions. However,
such an approximation must fail, as can be readily seen: sup-
pose that C(r) has a strong perpendicular anisotropy, then the
random distribution of mean field directions PH will dull the
sharpness of the anisotropy by averaging parallel separations
with perpendicular separations. This independence hypothesis
would thus produce local anisotropy that is weaker than the
global anisotropy. This is inconsistent with both simulation re-
sults and solar wind results and therefore this approximation is
invalid for the turbulence of interest.

Finally, we have also demonstrated the dependence of
D̃(s‖, s⊥) on higher order correlations by examining numeri-
cally the effect of a Gaussianization or phase-randomization
process. This procedure was carried out for the same simulation
data set described above. In particular, for both the B0 = 0
and B0 = 1 cases, we modified the Fourier coefficients by
randomizing their phases while keeping their magnitudes un-
changed. The effect of phase randomization is to produce a sig-
nal that is Gaussian, lacking coherency associated with phase
correlations. However, this process does not modify the energy
spectrum. Employing the phase randomized signal, we again
compute the locally defined structure functions using the same
set of methods for determining the local mean field that was de-
scribed earlier. The scaling of the anisotropy with lag is shown in
Figure 1, where it is compared with the original simulation data
for which phase coherency, if present, was maintained. The
phase randomization has a dramatic effect in both cases: when
there is global isotropy, the phase randomization completely
destroys the local anisotropy; when there is global anisotropy
the phase randomization completely eliminates the local
enhancement of anisotropy. In all cases we examined (including
additional runs, not shown), there is a recovery of the global
field measure of anisotropy when the magnetic fluctuations are
phase randomized.

3. DISCUSSION

The issues described above appear to have immediate rel-
evance to a number of analysis procedures that rely on local
accumulation of data. For example, the discussions presented
here are pertinent to studies that, for various reasons, employ
short data sets to define a “mean” magnetic field and simi-
larly local correlation or structure functions.10 Invariably, use of
short intervals (less than λc, or its temporal equivalent) leads to
poorly determined global statistics, although an interpretation
in terms of local conditional statistics may still be meaning-
ful (e.g., Sahraoui et al. 2009, 2010; Alexandrova et al. 2011).
However, the connection to various orders of statistics needs to
be established.

Another popular approach is to employ wavelet techniques
to determine “local spectra” as well as measures of local
anisotropy analogous to D̃ (e.g., Horbury et al. 2008; Wicks
et al. 2010, 2011; Chen et al. 2011). This approach is also based
on conditional statistics, since it determines a local mean field
at each scale and then accumulates data relative to the direction
of that local mean field. It follows that such wavelet spectra will

10 This may be motivated by interest in local fluid physics, local kinetic
physics, or simply lack of available high-cadence data.
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also be higher (than second) order statistical quantities, and thus
are distinct from the actual spectra.

In conclusion, an examination of structure functions com-
puted relative to locally determined mean magnetic field
directions reveals that such quantities involve higher than
second-order moments of the underlying probability distribu-
tions. This property emerges because the local mean field direc-
tion becomes a random variable. Consequently, these structure
functions are computed in a stochastic coordinate system, and
involve averaging over the magnetic field at two positions, b,
and b′, and also the mean magnetic field direction Ĥ . Observ-
ing that the energy spectrum and related structure function are
second-order moments, the fact that the locally oriented struc-
ture functions involve higher order moments implies that the
information they contain is not identical to that of the energy
spectrum. The additional random degree of freedom does not
appear to be amenable to an adaptation of the Corrsin inde-
pendence hypothesis, given that the local anisotropy is stronger
than the global anisotropy. Gaussianization (phase randomiza-
tion) of a turbulent field eliminates the enhancement of the
local anisotropy, confirming its sensitivity not just to higher or-
der correlations, but in particular to higher order non-Gaussian
correlations. Evidently, the phenomenon of locally enhanced
anisotropy involves fundamental physics that is embedded in
the higher order statistics, as is the case for intermittency and
coherent structures generated by turbulence. This information
is beyond the scope of what can properly be described with just
the energy spectrum.
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