
On the accuracy of simulations of turbulence
M. Wan,1 S. Oughton,2 S. Servidio,3 and W. H. Matthaeus1

1Bartol Research Institute, University of Delaware, Newark, Delaware 19716, USA
2Department of Mathematics, University of Waikato, Hamilton 3420, New Zealand
3Dipartimento di Fisica, Universita’ della Calabria, I-87036 Cosenza, Italy

�Received 8 June 2010; accepted 12 July 2010; published online 24 August 2010�

The widely recognized issue of adequate spatial resolution in numerical simulations of turbulence is
studied in the context of two-dimensional magnetohydrodynamics. The familiar criterion that the
dissipation scale should be resolved enables accurate computation of the spectrum, but fails for
precise determination of higher-order statistical quantities. Examination of two straightforward
diagnostics, the maximum of the kurtosis and the scale-dependent kurtosis, enables the development
of simple tests for assessing adequacy of spatial resolution. The efficacy of the tests is confirmed by
examining a sample problem, the distribution of magnetic reconnection rates in turbulence.
Oversampling the Kolmogorov dissipation scale by a factor of 3 allows accurate computation of the
kurtosis, the scale-dependent kurtosis, and the reconnection rates. These tests may provide useful
guidance for resolution requirements in many plasma computations involving turbulence and
reconnection. © 2010 American Institute of Physics. �doi:10.1063/1.3474957�

I. INTRODUCTION

In simulations of turbulence, there are two familiar fig-
ures of merit that are used as a diagnostic of the extent to
which a simulation is well-resolved. These are as follows:
first, an examination of the behavior of the energy spectrum
at wavenumbers near the maximum resolved wavenumber,
and second, an estimate of whether the Kolmogorov dissipa-
tion wavenumber kdiss=1 /� is resolved in the simulation.
Sometimes, the condition that the dissipation wavenumber is
nearly resolved is viewed as adequate.1–3 Recent works have
discussed the need for stricter conditions on resolution,4 and
have examined specifically the resolution required to accu-
rately compute high-order statistical quantities that are of
central interest in turbulence theory.5 Herein we show that
there are alternative, easily calculable, quantities that provide
a more discerning test of the simulations well-resolvedness.
We also examine the performance of these simple tests in the
context of a magnetohydrodynamics �MHD� problem that is
very demanding in terms of spatial resolution, namely, the
determination of rates of magnetic reconnection in
turbulence.6,7

In much of the literature involving simulations of hydro-
dynamic turbulence, a numerical aim is to attain the highest
possible Reynolds numbers so that the properties of fully
developed or strong turbulence can be studied. This is often
motivated by efforts to understand natural systems that have
very high Reynolds number flows, or else to examine theo-
retical issues that pertain to the asymptotic limit of high Rey-
nolds number, where certain universal features may obtain.
In pursuit of these goals, simulators typically perform runs
which “just” resolve the smallest relevant dynamical scales,
arguing that this makes efficient use of available computing
resources. For example, this sometimes means that the phe-
nomena at the scale of about 2�, where � is the Kolmogorov
dissipation scale, are marginally resolved. As we discuss be-
low, this kind of commonly used resolution is adequate for

computing second-order quantities such as the energy spec-
trum, but underestimates high-order moments of velocity
gradients, such as the energy dissipation rate and kurtosis.8

The present perspective is directly related to a recent
study9 in which we found that �very� early time energy trans-
fer in turbulence propagates non-Gaussian statistical features
into the small scales. For any resolution, some excitation is
propagated to the numerical “wall” represented by the maxi-
mum wavenumber. If the resolution is inadequate, the exci-
tation level �Fourier amplitude� near the wall is unrealisti-
cally large even though the spectrum may “look” small there.
The conservative nonlinear couplings involving these near-
wall scales then cause phase errors and a re-Gaussianization
�or “thermalization”� of the solutions �see, e.g., Refs. 10 and
11�. This leads to a perspective in which phase errors may be
viewed as more sensitive indicators of resolution than the
spectrum itself would be. Furthermore the development and
maintenance of non-Gaussian statistics at high wavenumbers
appears to be a feature associated with adequacy of spatial
resolution. The fact that inadequate resolution is expected to
promote thermalization and therefore a reduction of non-
Gaussianity, motivates the present study, which is geared to-
ward establishing a class of simple tests that are useful in
determining whether a particular simulation is “well-
resolved.”

We begin with the hypothesis that stable computation of
the fourth-order moments is desirable. A more sensitive test
involving scale-dependent kurtosis is also found to be indica-
tive. To understand the utility of these ideas we examine a
test problem in which the quantity of interest is the distribu-
tion of magnetic reconnection rates in MHD turbulence.
Since many reconnection sites occur, we are particularly in-
terested in the conditions on spatial resolution that must be
attained to accurately compute the tail of this distribution,
because this tail measures the likelihood of the highest rates
of reconnection. We find that the same conditions for accu-
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rately computing the fourth-order moments also give rise to
accurate computation of reconnection rates.

The two-dimensional �2D� MHD model that we employ
in the following analysis is chosen because it remains of
importance in space physics and various applications of
plasma physics.12,13 It also permits many computational runs
to be carried out at widely varying spatial resolutions. As is
well-known, 2D MHD exhibits a direct cascade of energy
and produces more small-scale structure than 2D hydrody-
namics. In these ways, it is closer to three-dimensional �3D�
MHD turbulence than 2D hydrodynamics is to its 3D
counterpart.14

The remainder of the paper is structured as follows. In
Sec. II, we give details of the equations solved and the nu-
merical approach. Section III considers code accuracy issues
for a set of runs with fixed resolution but varying the Rey-
nolds number. The complementary situation of runs with
fixed Reynolds numbers but varying resolution is examined
in Sec. IV. Several accuracy criteria are proposed there, and
then their usefulness in an example application—
reconnection rates—is considered in Sec. V. Section VI
closes the paper.

II. EQUATIONS AND NUMERICAL METHOD

The equations of incompressible 2D MHD can be writ-
ten in terms of the vorticity �= ���v� · ẑ and the vector
potential a,

��

�t
= � · �bj − v�� + ��2� , �1�

�a

�t
= − v · �a + ��2a . �2�

Here, v is the fluid velocity, b=�a� ẑ is the magnetic field,
and j=−�2a is the electric current density; these are func-
tions of the Cartesian coordinates x and y, and time t. The
components of v and b lie in the �x ,y� plane. The viscous
and resistive dissipation coefficients are, respectively, � and
�, and are equivalent to reciprocal Reynolds numbers with
the normalization employed.

We solve the Fourier-space version of these equations
via a Galerkin spectral method, with N Fourier modes in
each Cartesian direction.15 Time advancement occurs via a
second-order Runge–Kutta algorithm. All runs are performed
with �=� and are unforced.

Several important parameters are relevant to our study.
The runs are dealiased, using either 2/3-rule dealiasing with
the maximum retained dynamical wavenumber kmax=N /3
�runs in Table I�, or the Orszag–Patterson approach16 with
kmax=�2N /3 and phase-shift dealiasing �runs in Table II�.
Another dealiasing scheme �results not shown� provides a
smooth truncation intermediate to the two cases shown
here.17

Since �=� herein, the dissipation wavenumber �recipro-
cal of the Kolmogorov scale �� is defined as

kdiss�t� = � �

�3�1/4
	


�2 + j2�1/4

��
, �3�

where 
¯ � denotes spatial averaging and � is the average
rate of energy dissipation. The ratio r�t�	kmax /kdiss�t�
	kmax� can be interpreted as a measure of adequate reso-
lution of the dissipation scale with larger values indicating
better resolution. Below, we make regular use of r�t� as an
organizing parameter for the simulations, evaluating it at
several distinct times. A closely related measure of resolution
is the ratio �x /�,5 where �x	2	 /N is the grid scale.

The initial spectra for the runs are taken to be propor-
tional to 1 / �1+ �k /k0�8/3�, where only Fourier modes within a
restricted band of wavenumbers k= �k� are excited. Gaussian
random numbers �mean of zero, variance unity� are used to
assign the phases of the Fourier modes. The particular bands
and values of k0 employed are given in the captions of the
two tables below. The total kinetic energy and the total mag-
netic energy are both equal to 0.5 at t=0. In all runs, the
normalized cross helicity, 
c=2
v ·b� / 
v2+b2�, is initially
small and remains so throughout the runs. We would like to
emphasize that the codes are well-tested and conserve ex-
tremely well all the “rugged invariants,” namely, total en-
ergy, cross helicity, and 
a2�. The ideal conservation of qua-

TABLE I. Parameters for simulation set 1 �fixed resolution, varying ��. Here
kdiss means the maximum value of kdiss�t�. The initially excited Fourier
modes have wavenumbers k� �3,8� and use k0=5 in the spectral shape
function. The time step is 1/5000. Note that runs 4–7 are definitely under-
resolved.

Run Grid Re kmax kdiss

kmax

kdiss

1 10242 600 341 98 3.5

2 10242 800 341 118 2.9

3 10242 1000 341 136 2.5

4 10242 1500 341 179 1.9

5 10242 2000 341 217 1.6

6 10242 3000 341 287 1.2

7 10242 3600 341 325 1.05

8 10242 � 341 ¯ ¯

TABLE II. Parameters for simulation set 2, which all have �=�=1 /2000.
The initially excited Fourier modes have 5� �k��30 with k0=10. Again,
kdiss means the maximum value of kdiss�t�. Runs 1–3 are definitely under-
resolved.

Run Grid Re kmax kdiss

kmax

kdiss

1 1282 2000 60 221 0.27

2 2562 2000 120 242 0.50

3 5122 2000 241 250 0.96

4 10242 2000 482 251 1.9

5 15362 2000 724 251 2.9

6 20482 2000 965 251 3.9

7 40962 2000 1930 251 7.7

8 81922 2000 3861 251 15.4
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dratic quantities is another important requirement for
simulations of turbulence, and a high level of accuracy can
be attained with the dealiased spectral method simulations
employed here. For example, for the ideal 10242 run in Table
I, the rugged invariants are conserved to better than 0.02% at
t1.

III. FIXED RESOLUTION, VARYING REYNOLDS
NUMBER

To illustrate the basic physics of the system for changing
adequacy of resolution, we examine a set of simulations with
the code resolution fixed at Nx=Ny =N=1024. The Reynolds
numbers of the runs are varied by employing the following
values of 1 /� :600, 800, 1000, 1500, 2000, 3000, and 3600.
We also carry out a nondissipative run, which formally has
1 /�=�, although, of course, this is not equivalent to the
Re→� limit. The main run parameters are listed in Table I.

A. Globals and kurtosis

Figure 1 shows the evolution of several global quanti-
ties, including the kurtosis of j and �, for two of the N
=1024 runs. Using the familiar standard criterion that kdiss

kmax, one would judge the �=1 /1000 run �thick lines� to
be well-resolved, and similarly for the �=1 /2000 run, al-
though less so. The behavior of the globals shows the ex-
pected tendencies as one moves toward higher Reynolds
number. For example, the mean-square vorticity �enstrophy�
and mean-square current density attain higher maximum val-
ues in the higher Reynolds number case, because the small-
est dynamically relevant length scale is smaller, as indicated
by the decreased �=1 /kdiss �Table I�.

The behavior of the energies in the two runs is similar
enough that it would be difficult to decide which, if any, of
the simulations was under-resolved. The situation is essen-
tially the same for the other quantities shown, with the two
runs showing qualitatively similar behavior, although with

significant quantitative differences. The kurtosis � j

= 
j4� / 
j2�2 of j is one measure of a field’s degree of depar-
ture from Gaussianity; Gaussian distributed quantities neces-
sarily have �=3. As is well-known for decaying 2D MHD
turbulence, � j first increases to a relatively sharply peaked
maximum, and then decreases before plateauing at a roughly
constant �non-Gaussian� value, as seen in Fig. 1. The higher
values of kurtosis for higher Reynolds number runs indicate
the presence of sharper concentrations in x-space, that is,
coherent structures of finer scale. Below, we will use the
maximum of � j and the time it occurs as diagnostics.

Figure 2 shows how the maximum value of � �for both j
and �� varies as a function of r=kmax /kdiss as � varies. The
maximum kurtosis increases smoothly as � �and thus r� de-
creases, reaching its maximum in the ideal ��=0� run. Un-
fortunately, it seems that the diagnostic value of this behavior
is limited. A particular issue is that the time variation of � in
ideal runs and well-resolved dissipative runs can be similar,
but for quite different reasons �see Ref. 9�. Therefore simply
examining the behavior of maximum kurtosis at fixed reso-
lution is not a sensitive diagnostic.

B. Spectra

Another approach to evaluating the quality of the spatial
resolution is to view the wavenumber spectra for the total
�kinetic plus magnetic� energy. Figure 3 shows energy spec-
tra from the simulations listed in Table I. In all cases, the
spectra are from the time closest to that of the run’s maxi-
mum kurtosis, whether it is later or earlier.18

As Fig. 3 indicates, these simulations yield reasonable
looking spectra. Indeed, they all overlay each other at low
enough k. It is also quite possible to obtain what looks like a
clean power-law inertial range. The differences at high k are
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FIG. 1. �Color online� Time histories for energies, kdiss, and variances and
kurtoses of j and � for two N=1024 runs. Thick curves: �=1 /1000 �osten-
sibly adequately resolved�. Thin curves: �=1 /2000 �under-resolved�. Except
in the kdiss panel, quantities based on the magnetic �velocity� field are shown
using solid �dashed� lines.
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FIG. 2. �Color online� Maximum kurtosis of j �triangles� and � �crosses� as
a function of kmax /kdiss, for the fixed resolution run set. From right to left, the
symbols correspond to the run with 1 /�=600, 800, 1000, 1500, 2000, 3000,
3600, and �	 ideal�. Here, kdiss is evaluated at the time of maximum � j. The
two larger symbols identify the 1 /�=1000 run, which is close to being
well-resolved.
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expected, and there is no significant “build-up” of energy
near the resolution limit, at this early time in the runs, except
perhaps for the ideal run.

C. Scale-dependent kurtosis

In some ways, an even more revealing quantity is the
scale-dependent �or filtered� kurtosis, � j

��kc�, defined as the
kurtosis of the high-pass filtered j�x�. In other words, the
Fourier components of j with wavenumbers kkc are ze-
roed, and then the kurtosis of the resulting field is calculated.
This quantity measures a characteristic that is very close to
what Frisch19 discussed as the defining property of spatial
intermittency. In addition, we have recently shown9 that
���kc� provides a direct measure of the thermalization of the
phases, which occurs due to conservative interactions with
the modes near the Fourier space cutoff at kmax.

In Fig. 4, we plot the high-pass filtered kurtosis for simu-
lation set 1. It is clear that for each run ���kc� increases with
the cutoff kc, indicating some generation of coherent struc-
tures, or “intermittency.”20 What is interesting in the present
context is that the higher Reynolds number cases do not
attain greater maxima at high cutoff wavenumber. �Note that
as kc→kmax, the number of modes in the kurtosis calculation
decreases toward a small limiting integer, implying a sharp
decrease of ���kc� to values near 1.� This may lead us to
suspect that the runs in Table I with the highest Reynolds
numbers may have impending problems with resolution that
have not yet had an impact on diagnostics such as the spec-
trum. In summary, although everything we have examined so
far seems to behave reasonably, we have not yet identified
any clear indicators of how well-resolved each of these runs
is.

IV. A STUDY OF THE QUALITY OF RESOLUTION

Having seen in Sec. III that simulations at fixed reso-
lution and varying Reynolds number did not provide any
obvious means of identifying how well-resolved the runs

were, we now investigate the complementary problem. That
is, we consider a new series of runs �Table II� in which the
initial physical parameters—including the Reynolds
numbers—are fixed, and the numerical resolution is varied.
Using this set of runs, we will examine conditions for well-
resolvedness, and then, in Sec. V, test the ideas by study of
an ostensibly unrelated physical property, the rate of mag-
netic reconnection.

A. Spectra

Energy spectra for the runs listed in Table II are dis-
played in Fig. 5. For each run, the spectrum is computed at
�or very near� the time of maximum � j. Panel �a� shows that
all the spectra agree well. Indeed, although the spectra cutoff
at different wavenumbers �because of the different run reso-
lutions�, the curves nearly overlay each other over the full
range of overlapping k, with only small discrepancies in the
lower resolution runs near their maximum retained wave-
number. Panel �b� is a zoom of panel �a� for the lower k
values, revealing that to a good approximation all the reso-
lutions used—including cases that will be argued below to be
under-resolved—provide an accurate energy spectrum near
the time of maximum � j, at low enough k. The importance of
this comparison is that an examination of the “quality” of an
energy spectrum is a frequently encountered approach to

FIG. 3. �Color online� Total energy spectra at or near the time of maximum
kurtosis for the runs in Table I �fixed resolution, varying ��. The curves are
in order of run number with run 1 the lowest curve.
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FIG. 4. �Color online� High-pass filtered kurtosis of vorticity �top� and of
current density �bottom� for the runs of simulation set 1 �see Table I�. kc is
the cutoff wavenumber for the high-pass filter.
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heuristically evaluate the quality of spatial resolution. How-
ever we now show that spectra can be reasonably accurate
even when other quantities are not.

B. Kurtosis

The runs listed in Table II exhibit an interesting range of
behavior in terms of their fourth-order statistics. Below we
will show that this behavior is a useful tool for ascertaining
the quality of the spatial resolution of the simulations.

We plot in Fig. 6 the time dependence of the kurtosis of
the current density, � j, for the simulations of Table II. For all

runs except the 1282 one, � j first increases to maximum, and
then decreases before plateauing at a roughly constant �non-
Gaussian� value, similar to the results in Fig. 1. It would
seem that accurate �i.e., resolution independent� behavior oc-
curs once N�1536.

In Fig. 7, we plot the maximum kurtosis as a function of
r=kmax /kdiss �evaluated when kdiss takes its maximum�. For
the lower resolution runs, the maximum kurtosis increases
rapidly with r, with max�� j� increasing by about a factor of 3
as the resolution goes from 2562 to 10242. Obviously in this
range of resolutions, the solution is not very well-determined
in terms of fourth-order statistics, even though the spectra are
very nearly identical �Fig. 5�. However, a clear saturation
occurs once r becomes large enough. For the fixed value of �
used in these runs, resolution of N=2048 is more than ad-
equate. In fact, at N=1536 �1024�, the kurtosis of j is only
0.65% �6.5%� lower than in the fully resolved cases. Either
of these resolutions may represent an acceptable level of ac-
curacy, depending upon the application.

Note that although the effect is qualitatively the same for
both max�� j� and max����, it is much more pronounced for
the former. Presumably because j is the more singular �that
is, more strongly non-Gaussian� quantity in incompressible
2D MHD.

Very similar behavior is seen if the �normalized� sixth
moment is used in place of the kurtosis �not shown�. This
suggests that in many cases of interest, a necessary condition
for a well-resolved simulation is that it produces an accurate
value for the maximum kurtosis of j, since the current den-
sity j is often the “most singular” fourth-order quantity for
decaying 2D MHD.

C. Scale-dependent kurtosis

A moment’s consideration reveals that the final state-
ment of Sec. IV B cannot be strictly correct, even though it
may be useful in a practical sense. This is due to the fact that,
at high Reynolds numbers, the most singular structures in the
system will always require the finest resolution. The lack of
complete resolution of such a rare structure will cause some
very high order moments to be inaccurately computed from a
simulation. Here we show, using the simple technique of
evaluation of the scale-dependent kurtosis, that the very high
wavenumber structures become increasingly coherent �or
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“intermittent”� even if they possess almost no energy. There-
fore adequate resolution of moments of very high order may
admit further challenges.4,5

In Fig. 8, we plot the high-pass filtered kurtosis of the
electric current density and the vorticity for the Table II
simulation set �fixed viscosity�. The monotonic increase for
all dynamically relevant wavenumbers is a signal of intermit-
tency �see Ref. 19�. Note that according to this basic defini-
tion of intermittency, the 1282 run—obviously having inad-
equate resolution—is flat and therefore lacks intermittency
almost completely. For the better resolved runs, ���kc� is
large at high kc; however, in terms of the full �unfiltered�
field, this will only affect its very high-order moments.

Significantly, we see that ���kc� saturates to a stable
value at the lower kc values ��15.6 for current and �6.9 for
vorticity�, as resolution is increased. The lowest k-filtered
kurtosis for the 1282 runs is almost at the Gaussian value of
3. In contrast, for example, the filtered kurtosis at kc=100
becomes very accurate for resolutions greater than 10242.
For resolution of 20482 the filtered kurtosis of both the cur-
rent density and the vorticity are accurate up to wavenum-
bers of at least kc=500. This implies that the filtered kurtosis

at the dissipation wavenumber �kdiss�251� becomes deter-
mined accurately somewhere between the resolutions of
10242 and 20482. If we compare these values with the accu-
racy of resolution results deduced from Fig. 7, we see that
this is also the range of resolutions that places the computed
solutions securely on the plateau of stable values of maxi-
mum �unfiltered� kurtosis. �Note that the saturation of values
in Fig. 7 is essentially the same as the saturation at kc=1 in
Fig. 8.�

Based on this line of reasoning, we propose that an ef-
fective test of adequate resolution of a turbulence simulation
is to ascertain that the maximum kurtosis has attained its
stable plateau value, as described above in connection with
Fig. 7. This should ensure that most moments of interest are
well-determined, and that the kurtosis of fluctuations at the
dissipation scale �and somewhat beyond� is known accu-
rately. It is worthwhile pointing out that calculation of ���kc�
is considerably more expensive than that of max���.

V. A TEST CASE: RECONNECTION RATES

As we have seen above, the adequacy of spatial reso-
lution directly influences computation of quantities related to
intermittency. In such cases, one would typically expect
simulationists to take care to meet the requirements outlined
above. However the subtleties of assessing sufficient numeri-
cal resolution are also relevant to computation of other
physical quantities of importance. As a test case, we consider
here the familiar and physically important phenomenon of
magnetic reconnection �see, e.g., Refs. 13 and 21�.

In reconnection, regions of oppositely directed magnetic
field interact with one another in a thin boundary layer, giv-
ing rise to changes in magnetic topology, and conversion of
magnetic energy into flows and heat.22,23 In plasma physics
the small-scale phenomena near a reconnection layer �or
“site”� are expected to depart from a simple MHD descrip-
tion. However, even in MHD the reconnection layers are
small �thin� and represent a kind of coherent structure sup-
ported by nonlinear couplings across a wide range of length
scales. A particularly delicate issue is the computation of the
rate of reconnection, identified with the electric field at the
X-type neutral point within the reconnection layer. Here we
will adopt the study of reconnection rates in turbulence as a
test case for application of the measures of spatial resolution
considered in Sec. IV.

A recent investigation computed reconnection rates at
large numbers of X-points in incompressible 2D MHD
turbulence.6,7 We employ techniques similar to those devel-
oped in these earlier studies, to evaluate quantitatively the
impact of varying spatial resolution on the probability distri-
bution of reconnection rates. As is standard, we use the ter-
minology magnetic island to mean a region where the con-
tours of the magnetic potential a�x ,y� are closed.

To find the magnetic reconnection sites in the turbulent
system, we need to examine the topography of the magnetic
potential a�x ,y�. In particular we need to identify the neutral
points—points where �a=0—and their nature. A useful tool
in this regard is the Hessian matrix of a, defined as
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FIG. 8. �Color online� High-pass filtered kurtosis of vorticity �top� and of
current density �bottom�, for the simulation set listed in Table II, computed
at the time of max�� j�. Note that this scale-dependent kurtosis increases
monotonically for all wavenumbers that have significant energy, and that are
also well-separated from the highest resolved wavenumber kmax. The rapid
decrease near kmax is associated with the absence of couplings to scales with
k�kmax, which is itself an artifact of the Fourier space truncation. The
anomalous behavior at very high k in the highest resolution case is caused
by issues of numerical precision as there is very little energy in that part of
the spectrum �see Fig. 5�.
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Hij
a �x� =

�2a

�xi � xj
. �4�

At each neutral point, we calculate the eigenvalues of Hij
a �x�.

If both eigenvalues are positive �negative�, the point is a
local minimum �maximum� of a, with both cases generically
referred to as O-points. If the eigenvalues are of mixed signs,
it is a saddle point, also termed an X-point. As a technical
point, note that for each run the a�x ,y� is first interpolated
onto a standard grid with a resolution of N=8192, and it is
this a that is used for determining the positions and natures
of the critical points. This enhances the validity of compari-
sons between the different resolution runs.

Having obtained details on all the critical points in the
domain, the reconnection rate of two islands can be deter-
mined by computing the electric field at the X-point between
the islands. This is related to the fact that the magnetic flux
through a closed 2D island is equal to the integral of the
component of magnetic field normal to any contour connect-
ing the central O-point with any other specified point.
Choosing that point to be an X-point bounding the island, we
find that the flux in the island is just a�O-point�
−a�X-point�. Magnetic flux is always lost at the O-point in a
dissipative system so the time rate of change of the magnetic
flux due to activity at the X-point is −�a�X-point� /�t
=Ez�X-point�. The latter step follows from the Ohm’s law
expression for the electric field

E = − v � b + R�
−1j , �5�

which in 2D gives only an out-of-plane component, Ez. At an
X-type neutral point b is zero so that Ez�X-point�=R�

−1jz.
Here, R��1 /� is the magnetic Reynolds number. Below we
denote the reconnection rate at the ith X-point as EX,i

	Ez�X-point�.
To carry out these tests we use the sequence of runs

listed in Table II and examine the resolution dependence of
several reconnection-related quantities. First, using the above
methods, we compute the total number of X-points found in
each run at �or very near� the time of maximum � j, denoting
the total as CX. Figure 9 displays these counts as a function
of kmax /kdiss. We see, as was reported elsewhere,7 that under-

resolved runs include many additional X-points that are not
found in the well-resolved cases. Evidently the phase errors
caused by under-resolution imply a lack of intermittency �as
discussed in Secs. I and IV�, and also a spurious increase in
the number of X-points present, due to Gaussianization of
the fluctuations �for a fixed spectrum�, as was also reported
earlier.7 However, a clear saturation in CX occurs once
kmax /kdiss becomes large enough. For example, although the
10242 run is under-resolved according to the criteria consid-
ered in Sec. IV, it nonetheless has almost the same number of
X-points as the runs with higher resolutions.

Another important feature is the distribution of recon-
nection rates, i.e., the probability distribution function �PDF�
of the electric field at the X-points This distribution of EX

values is quite broad and peaked around EX=0. In Fig. 10,
the PDFs of EX and �EX� are shown. Comparing the results
from different runs, one observes that the PDFs for the
under-resolved 1282 and 2562 runs have much shorter tails.
As the resolution increases, the tails become broader until
saturation occurs at about 20482. To quantify these differ-
ences in the distribution tails, we have calculated various
p-norms of EX, defined24 as ��1 /CX��i=1

CX EX,i
p �1/p, and plotted

these as a function of kmax /kdiss �Fig. 11�. We see that these
p-norms all saturate with increasing resolution, with those
with larger p saturating a little slower, as one would expect.
After achieving a resolution of 15362 or greater, the 2-norm
is very well-determined, and it appears that the p=4, 6, and
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kmax /kdiss for runs listed in Table II �left to right: 2562, 5122, 10242, 15362,
20482, and 40962�. For each run, the number of sites is calculated at �or very
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8 p-norms of EX are accurate to better than 1%. This degree
of accuracy corresponds to kmax /kdiss�3.

As is evident from Figs. 9 and 10, under-resolving the
Kolmogorov scale implies the appearance of many additional
reconnection sites, with lower reconnection rates. These spu-
rious X-points generally correspond to fictitious secondary
islands that arise from the Gaussian noise/phase errors in-
duced by the under-resolution.

VI. DISCUSSION

We have reexamined the issue of spatial resolution in
simulations of turbulence in the specific context of incom-
pressible 2D MHD spectral method computations. By com-
paring simulations carried out at varying resolution and at
varying Reynolds numbers, we were able to draw several
firm conclusions.

�1� The energy spectrum may be well-behaved and repro-
ducible at the larger scales even when kmax�1.

�2� Attaining spectral resolution such that kmax�=1 is not
sufficient to ensure the accuracy of higher-order quanti-
ties and measures of intermittency.

�3� The maximum of the kurtosis of both the electric current
density and the vorticity is underestimated when reso-
lution is inadequate. However, for runs which satisfy
kmax��3, both max�� j� and max���� are very stable
and accurately determined.

�4� The scale-dependent kurtosis of current and vorticity are
sharply increasing functions of the high-pass cutoff
wavenumber when a run is well-resolved. When a run is
under-resolved, these scale-dependent kurtoses are
weakly peaked or flat.

�5� Under-resolved values of scale-dependent kurtosis at
large scales are lower, and closer to Gaussian, than they
should be. As resolution is increased, successively
higher ranges of scale-dependent kurtosis become satu-
rated at stable values.

�6� The issues raised above in points �1�–�5� are crucial in
numerical studies of structure formation and reconnec-
tion that involve phase-sensitive physics.

On the basis of these observations, we propose three
criteria for assessing adequate spatial resolution in a spectral

method in an incompressible 2D MHD turbulence simula-
tion:

• First, that kmax��3;
• second, that the maximum of the kurtosis of current den-

sity and vorticity have attained stable “plateau” values;
• third, that the scale-dependent kurtosis at the dissipation

scale � has attained its stable value.

These conditions are easily translated into practical tests
of adequate resolution. The first condition can be evaluated
from a single run, using standard estimates of the dissipation
scale.25 Note that it means that there is half a decade �or
more� of wavenumbers above kdiss. The condition has been
proposed and used before in the literature �e.g., Refs. 5 and
26�, but its connection to the accuracy of the kurtosis, for
example, has apparently not been explicitly noted. The latter
two conditions can be used as a test by comparing two runs
with identical parameters and initial data, except the second
is done with either higher or lower resolution. An example
would be halving the resolution, although it would usually be
preferable to double it, if this was feasible.

We also have shown that the above ideas work well in
the context of a real research problem, namely, the accurate
determination of the distribution of rates of reconnection in
2D MHD turbulence. Here we find that when the above ac-
curacy conditions are satisfied, the distribution of reconnec-
tion rates is also well-determined. The reconnection rates are
a much more time-consuming calculation so the implemen-
tation of the above tests provides a more efficient way to
assess the likely accuracy of the results.

It is worthwhile also remarking on the recently improved
understanding of the nature of the errors that enter in mar-
ginally resolved cases or under-resolved cases, and how they
can spoil the quality of results such as reconnection rates. In
a recent study,9 the focus was on understanding the early-
time ideal couplings that spread excitation rapidly to higher
wavenumbers in an initially band-limited cascade of MHD
turbulence. We found that the initial spectral transfer to
higher k is highly non-Gaussian, and obviously favors dy-
namical production of the scale-dependent kurtosis that is
expected in intermittent turbulence. However, for ideal simu-
lations, this rapid transfer of excitation to high k soon en-
counters the wall at kmax, and for a spectral code the excita-
tion conservatively “reflects” off the wall. Interestingly,
errors in the higher-order statistics, which can be thought of
as “phase errors,” propagate much more rapidly to the wall
and back into the solution than do errors in the energy spec-
trum. This rapidly propagating phase information spoils the
higher-order statistics in some cases, while leaving the en-
ergy spectrum seemingly well-resolved.

The above description appears to be applicable to the
present study as well. Rapidly propagating phase information
is more sensitive than the spectrum to the adequacy of spatial
resolution. If kmax� is not large enough, the higher-order sta-
tistics acquire significant errors. Unfortunately, examination
of the spectrum is not sufficient to detect this. The study of
the distribution of reconnection rates shows explicitly that
these issues can greatly affect physical results. In particular,
reconnection rates are properties of the thinnest current
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sheets, and presumably the largest rates are associated with
the strongest and most intermittent current structures. As
such, this problem requires more than just resolution of the
spectrum, it also requires accuracy of the higher-order statis-
tics that describe the coherent current �and vorticity� struc-
tures. In this way, the criteria and tests that we propose may
well be useful in computational problems of this type.

Finally we remark that the present study is complemen-
tary to the recent study by Donzis et al.5 who were con-
cerned mainly with accuracy of higher-order statistics in hy-
drodynamic turbulence. The present work can be viewed as
applying some of those ideas to MHD in two dimensions,
and developing practical tests to be used in 2D MHD appli-
cations. What remains unclear at present is how the details of
either Donzis et al.5 or the present study extrapolate to 3D
MHD, or other systems such as 2D hydrodynamics, Hall
MHD, etc., including compressible cases. However, we ex-
pect that the basic picture discussed above will remain a
requirement for accurately computing coherent structures in
various fluid systems, and, in particular, that runs would
likely need to satisfy kmax��3. This, and the other main
conclusions of this study, do not appear to depend on details
of the method, such as the kind of dealiasing that was
employed.16,17
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