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Flat primes and thin primes are primes where the shift by±1 has a restricted
form, namely a power of 2 or that times a square free number or odd prime
respectively. They arise in the study of multi-perfect numbers. Here we show
that the flat primes have asymptotic density relative to that of the full set of
primes given by twice Artin’s constant, that more than 50% of the primes are
both lower and upper flat, and that the series of reciprocals of thin primes
converges.
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1. INTRODUCTION

Some interesting subclasses of primes have been identified and actively
considered. These include Mersenne primes, Sophie Germain primes, Fer-
mat primes, Cullen’s primes, Wieferich primes, primes of the form n2 + 1,
of the form n!± 1, etc. See for example [14, Chapter 5] and the references
in that text. For any one of these classes, determining whether or not it is
infinite has proved to be a very difficult problem.

In this article we explore two classes of primes, the so-called flat primes
and the thin primes. They have simple representations, and we are able to
get an idea of their densities relative to the full set of primes.

These primes are similar to primes of the form k · 2e + 1 considered by
Erdös and Odlyzko, Chen and Sierpiński among others [5, 6, 16]. There
the focus is mainly on the admissible values of odd integers k with k ≤ x,
rather on the density of primes themselves having that structure. Erdös
showed [5, Theorem 1] that the number N(x) of odd numbers less than or
equal to x of the form (p+ 1)/2e satisfies

c1x ≤ N(x) ≤ c2x,
1
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where c1 and c2 are positive absolute constants. In the opposite direction,
a simple modification of the derivation of Sierpinski [16] gives an infinite
number of integers n (including an infinite set of primes) such that n ·2e−1
is composite for every e = 1, 2, 3, · · · .

Definition 1.1. We say a natural number n is a flat number if
n + 1 = 2e or n + 1 = 2eq1 · · · qm where e ≥ 1 and the qi are distinct odd
primes. If a prime p is a flat number we say p is a (upper) flat prime.
Let

F (x) := #{p ≤ x : p is a flat prime}.

Then it is straight forward to show that the density of flat numbers is
the same as that of the odd square free numbers, i.e. the number of flat
numbers up to x is given by 4x/π2 +O(

√
x) [17].

Definition 1.2. We say a natural number n is a thin number if
n+ 1 = 2eq or n+ 1 = 2e where e ≥ 1 and q is an odd prime. If a prime p
is a thin number we say p is a thin prime. Let

T (x) := #{p ≤ x : n is a thin prime}.

For example, among the first 100 primes, 75 primes are flat and among
the first 1000 primes, 742 are flat. For thin primes the corresponding
numbers are 38 and 213 respectively. The first 10 flat primes are 3, 5, 7,
11, 13, 19, 23, 29, 31, and 37. The first 10 thin primes are 3, 5, 7, 11, 13,
19, 23, 31, 37 and 43.

If M(x) is the number of Mersenne primes up to x then clearly, for all
x ≥ 1:

M(x) ≤ T (x) ≤ F (x) ≤ π(x).

Figure 1 shows the ratio of F (x)/π(x) over a small range. This gives
some indication of the strength of Theorem 3.1 below - in the given range
over 70% of all primes are flat.

Figure 2 shows the ratio of the number of thin primes up to x to the
number of twin primes up to x. The relationship between thin and twin
primes comes from the method of proof of Theorem 4.1 below and there is
no known direct relationship.

These types of number arise frequently in the context of multiperfect
numbers, i.e. numbers which satisfy k · n = σ(n) where σ(n) is the sum
of the positive divisors of n. For example, when k = 3 all of the known
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FIG. 1. The ratio F (x)/π(x) for 1 ≤ x ≤ 104.
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FIG. 2. The ratio of thin primes to twin primes up to x for 1 ≤ x ≤ 104.

examples of so-called 3-perfect numbers are

c1 = 23 · 3 · 5,
c2 = 25 · 3 · 7,
c3 = 29 · 3 · 11 · 31,
c4 = 28 · 5 · 7 · 19 · 37 · 73,
c5 = 213 · 3 · 11 · 43 · 127,
c6 = 214 · 5 · 7 · 19 · 31 · 151.



4 BROUGHAN AND ZHOU

Each ci − 1 is a flat number and each odd prime appearing on the right
hand side is thin.

The paper is organized as follows: In Section 2 we first show that the
asymptotic density of thin numbers up to x is the same as that of the
primes up to x. In Section 3 we show that the density of flat primes up to
x, relative to the density of all primes, is given by 2A where A is Artin’s
constant. A corollary to this is that there is a flat prime in every interval
[x, (1 + ε)x]. This is followed by a demonstration that primes which are
both lower and upper flat have density and constitute more than half of
all primes. In Section 4 we then show that the thin primes are sufficiently
sparse that the sum of their reciprocals converges. The final section is
a numerical validation of what might be expected for the density of thin
primes under the Bateman-Horn conjectures.

We use Landau’s O,o,and � notation. The symbols p, q are restricted
to be rational primes.

2. THIN AND FLAT NUMBERS

Theorem 2.1. The asymptotic density of thin numbers up to x is the
same as that of the primes up to x.

Proof. The number of thin numbers up to x is given by

N(x) =
b log x

log 2 c∑
n=1

π
( x

2n
)

+O(log x).

We will show that limx→∞N(x)/π(x) = 1. To this end first consider a
single term in the sum. By [15], there is a positive real absolute constant
α such that for x sufficiently large,

x

log x+ α
< π(x) <

x

log x− α.

Therefore, for n ∈ N such that 1 ≤ n ≤ 1
4b log x

log 2 c,

lb :=
1− α

log x

1 + α
log x − n log 2

log x

<
2nπ( x2n )
π(x)

<
1 + α

log x

1− α
log x − n log 2

log x

=: ub.
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Clearly lb and ub tend to 1 as x→∞ for fixed n. The difference between
the upper and lower bounds is

ub− lb =
1
d

( 4α
log x

− 2αn log 2
log2 x

)
≤ 4α
d log x

, where

d =
(

1− α

log x
− n log 2

log x

)(
1 +

α

log x
− n log 2

log x

)

= 1− α2

log2 x
+
n2 log2 2

log2 x
− 2n log 2

log x
≥ 1

4
so

ub− lb ≤ 16α
log x

.

for n in the given range and x sufficiently large. Hence

∣∣∣
b log x

log 2 c/4∑
n=1

π( x2n )
π(x)

− 1
∣∣∣

≤
∣∣∣
∑
n≤ log x

log log x
π( x2n )

π(x)
−
∑
n≤ log x

log log x

π(x)
2n

π(x)

∣∣∣+
∑

n> log x
log log x

1
2n

≤
∑

n≤ log x
log log x

1
2n

∣∣∣
2nπ(x)

2n

π(x)
− 1
∣∣∣+ o(1)

≤
∑

n≤ log x
log log x

16α
2n log x

+ o(1)

� log x
log x log log x

+ o(1) = o(1)

as x→∞.
For the remaining part of the summation range for N(x), note that this

corresponds to values of x and n which satisfy 1 ≤ x/2n ≤ x3/4, so, using
π(x) ≤ x/2 and

S(x) :=
b log x

log 2 c∑

n=b log x
log 2 c/4

π
( x

2n
)
� x

3
4 log x
log x

= O(x
3
4 )

it follows that S(x)/π(x)→ 0 as x→∞. Hence N(x)/π(x)→ 1.

3. FLAT PRIMES
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Theorem 3.1. For all H > 0

F (x) = 2
∏
p

(
1− 1

p(p− 1)

)
Li(x) +O

( x

logH x

)
,

i.e. the relative density of flat primes is 2A = 0.7480 · · · where A is Artin’s
constant.

Proof. We begin following the method of Mirsky [10]. Fix e ≥ 1 and
let x and y satisfy 1 < y < x and be sufficiently large. Let H > 0 be the
given positive constant. Define

Fe(x) := #{p ≤ x : p is prime and m square free such that 2em = p+ 1}.

Then, if µ2(m) is the characteristic function of the square free numbers,

Fe(x) =
∑

p≤x
p+1=2em

µ2(m) =
∑

p≤x
{

∑

a:a≥1
a2b2e=p+1

µ(a)}

= Σ1 + Σ2, where

Σ1 :=
∑

p≤x
{

∑

a:1≤a≤y
a2b2e=p+1

µ(a)}, and

Σ2 :=
∑

p≤x
{

∑
a>y

a2b2e=p+1

µ(a)}.

Now using the Bombieri-Vinogradov theorem [4, Section 28] for the num-
ber of primes in an arithmetic progression, which is valid with a uniform
error bound for the values of e which will be needed:

Σ1 =
∑

a≤y
µ(a)

∑

p:p≤x
p≡−1 mod 2ea2

1

=
∑

a≤y
µ(a)

( Li(x)
φ(2ea2)

+O
( x

log2H+1 x

))

=
(∑

a≥1

µ(a)
φ(2ea2

)
)

Li(x) +O
( x

log x

∑
a>y

1
φ(2ea2)

)
+O

( xy

log2H+1 x

)
.
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Note that the function g(n) := 21−eφ(2en2) is multiplicative, so the
coefficient of Li(x) may be rewritten

1
2e−1

∑

a≥1

2e−1µ(a)
φ(2ea2)

=
1

2e−1

∏
p

(
1− 2e−1

φ(2ep2)

)

=
1

2e−1

3
4

∏

p odd

(
1− 1

p2 − p
)

=
3A
2e
.

Now consider the sum in the first error term:

∑
a>y

1
φ(2ea2)

≤
∑
a>y

1
2eφ(a2)

� 1
2e
∑
a>y

log log a
a2

.

Therefore

O
( x

log x

∑
a>y

1
φ(2ea2)

)
= O

(x log log y
2ey log x

)
.

For the second sum:

|Σ2| ≤
∑
p<x

{
∑
a>y

p+1=2ea2b

1} ≤
∑
a>y

2ea2b≤x

1 = O
( x

2ey

)
,

and therefore

Fe(x) =
3A
2e

Li(x) +O
(x log log y

2ey log x

)
+O

( x

2ey

)
+O

( xy

log2H+1 x

)
.

If we choose y = logH x, then

Fe(x) =
3A
2e

Li(x) +O
( x

logH+1 x

)
.

Now let

De(x) := #{p ≤ x : p is prime, p+ 1 = 2em, with m square free and odd}.

By, [10, Theorem 2], D1(x) = A ·Li(x)+O
(

x
logH+1 x

)
. Considering the even

and odd cases, for all e ≥ 1, we have Fe(x) = De(x) +De+1(x) so

F1(x) + F2(x) + · · · = D1(x) + 2(D2(x) +D3(x) + · · · )

and therefore
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Then

F (x) =

log x
log 2∑
e=1

De(x) +O(log x)

=
1
2

(D1(x) + F1(x) + F2(x) + · · · ) +O(log x)

=
A

2
(1 +

3
21

+
3
22

+ · · · )Li(x) +O
( x

logH+1 x

)

= 2ALi(x) +O
( x

logH x

)

and this completes the proof.

Note that if we call primes with the shape p = 2ep1 · · · pm + 1 lower
flat, their density is the same as that of the flat primes, so more than
20% of all primes are both flat and lower flat. However, this figure very
significantly underestimates the proportion of such primes - see Theorem
3.2 and its corollary below. By analogy, flat primes are also called upper
flat primes.

Corollary 3.1. For all ε > 0 and x ≥ xε there exists a flat prime in
the interval [x, (1 + ε)x].

Note also that it would be possible to adapt the method of Adleman,
Pomerance and Rumley [1, Proposition 9] to count flat primes in arithmetic
progressions.

Theorem 3.2. Let the constant H > 0 and the real variable x be suf-
ficiently large. Let the set of primes which are both lower and upper flat
which are less than x be given by

B(x) = {p ≤ x : ∃e ≥ 1, f ≥ 1 and odd square free u, v so p− 1 = 2ev,
p+ 1 = 2fu}.

Then

B(x) = A2Li(x) +O(
x

logH x
)

where the constant

A2 =
∏

p odd

(
1− 2

p2 − p
)

= 0.53538 · · · .
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Proof. Let e, f ≥ 1 and define the sets:

Le := {p ≤ x : ∃ odd square free v so p− 1 = 2ev}
Uf := {p ≤ x : ∃ odd square free u so p+ 1 = 2fu}.

Then L1 ∩ U1 = ∅ and Le ∩ Uf = ∅ for all e ≥ 2, f ≥ 2 so we can write

B(x) = {∪f≥2L1 ∩ Uf} ∪ {∪e≥2U1 ∩ Le}

where all of the unions are disjoint.
Now fix e ≥ 2. We will first estimate the size of U1 ∩ Le,where

U1 ∩ Le = {p ≤ x : ∃ odd square free u, v so p+ 1 = 2u, p− 1 = 2ev}.

Then

#U1 ∩ Le =
∑

p≤x
{

∑
p+1=2u,
p−1=2ev,

u, v odd and square free

1}

=
∑

p≤x
{

∑

a,b odd,(a,b)=1,

p≡−1 mod a2,
p≡1 mod b2,

p≡1+2e mod 2e+1

µ(a)µ(b)}

=
∑

p≤x
{

∑

a,b odd,(a,b)=1,

p≡u mod 2e+1a2b2

µ(a)µ(b)}

=
∑

p≤x
τ∗(d){

∑

d odd,
p≡u mod 2e+1d2

µ(d)}

where u, the residue obtained through an application of the Chinese Re-
mainder Algorithm, is dependent on d and e, and τ∗(d) is the number of
unitary divisors of d, a multiplicative function with τ∗(p) = 2.

We then split and reverse the sum in a similar manner as in the proof of
Theorem 3.1 to arrive at

#U1 ∩ Le =
( ∑

d≥1,d odd

τ∗(d)
φ(2e+1d2)

)
Li(x) +O

( x

logH+1 x

)

=
1
2e
∏

p odd

(
1− 2

p2 − p
)
Li(x) +O

( x

logH+1 x

)
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Summing over e ≥ 2 and, noticing that the sizes for each corresponding
L1 ∩ Ue are the same, we obtain the stated value of B(x).

Figure 3 compares the number of primes up to 80, 000 with the number
of primes up to 80, 000 which are both lower and upper flat.

20000 40000 60000 80000

0.532

0.534

0.536

0.538

0.542

FIG. 3. The ratio B(x)/π(x) for 1 ≤ x ≤ 8 · 104.

Corollary 3.2. It follows from Theorems 3.1 and 3.2 that the set of
rational primes may be divided into 4 disjoint classes: those both lower and
upper flat - about 54%, those either lower or upper flat but not both - each
about 21%, and those neither upper nor lower flat - 4%.

4. THIN PRIMES

In the paper [19, Theorem 3] a proof is set out for a result given below on
the number of primes up to x giving a lower bound for the number primes
with fixed consecutive values of the number of distinct prime divisors of
shifts of the primes by a, with the parameter a having the explicit value
2. It is remarked that a similar proof will work for all integer (non-zero)
a. Here is the statement taken from Mathematical Reviews (although the
lower bound for m is not given):

Let a be a non-zero integer and (for m ≥ 1) define

P(m,x, ω) := #{p : p ≤ x, ω(p+ a) = m}.
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Then there exist positive absolute constants b and c such that as x→∞

P(m,x, ω) + P(m+ 1, x, ω) ≥ cx(log log x)m−1

(m− 1)! log2 x

holds for 1 ≤ m ≤ b log log x.
If we use the result in case a = 1, we are able to show the number of

thin primes is infinite.
To see this let a = 1, m = 1 and x be sufficiently large. Then

T (x) +M(x) = P(1, x, ω) + P(2, x, ω)
= #{p ≤ x : p+ 1 = 2e or p+ 1 = 2eqf , e ≥ 1, f ≥ 1, or p = 2}

where

M(x) := #{p ≤ x : p+ 1 = 2eqf , e ≥ 1, f ≥ 2}.
Then

M(x) ≤
log x∑
e=1

log x∑

f=2

π((
x

2e
)

1
f ) +O(log x)

� log x
log x∑
e=1

π(
√
x

2e
)

� log2 x π(
√
x)� √x log x

Therefore, by the quoted result above, the number of thin primes less than
or equal to x is bounded below by a constant times x/ log2 x, so must be
infinite.

However there are parts of the proof of [19, Theorem 3] that do not
appear to work, even for the given case a = 2, and, in addition, the implied
lower bound should be m ≥ 2. Apparently the best available safe result,
using the method of Chen, appears to be that of Heath-Brown [8, Lemma
1] from which we can easily show that the number of primes H(x) such
that p ≤ x and either p+ 1 = 2p1 or p+ 1 = 2p1p2, with the pi being odd
primes, is infinite, indeed H(x)� x/ log2 x.

Based on this evidence, the Bateman-Horn conjecture set out in Section
5 below, and numerical evidence, we are led to the conjecture:

Conjecture: The number of thin primes up to x satisfies

T (x)� x

log2 x
.

The order of difficulty of this conjecture appears to be similar to that
there are an infinite number of twin primes or Sophie Germain primes. As
usual upper bounds are much easier to obtain.
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Theorem 4.1. As x→∞

T (x)� x

log2 x
.

Proof. First let e ≥ 1 be fixed and apply the sieve of Brun in the same
manner as for the classical twin primes problem (for example [18, Theorem
4]) or [3, Theorem 13.1]) to count

Je(x) := #{p ≤ x : 2ep− 1 is prime},

noting that if

A = {m(2em− 1) : m ≤ x}

and ρ(d) is the number of solutions modulo d which satisfy

m(2em− 1) ≡ 0 mod d,

then ρ is a multiplicative function, ρ(2) = 1 and ρ(p) = 2 for odd primes p
leading to the same bound as in the twin primes problem, namely

Je(x)� x

log2 x
.

Now we use the fact, proved using induction for m ≥ 4, that, for all
m ≥ 1,

m∑
n=1

2n

n2
< 5

2m

m2
(2).

(For sufficiently large m, the 5 can be replaced by 2 + ε but we don’t need
this.)
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Finally, let x be large and choose m ∈ N so 2m ≤ x < 2m+1. Then

T (x) =
b log x

log 2 c∑
e=1

(
Je(

x

2e
) +O(1)

)

�
b log x

log 2 c−1∑
e=1

x

2e
1

log2 x
2e

+O(log x)

≤
b log x

log 2 c−1∑
e=0

x

2e
1

log2 x
2e

+O(log x)

≤
b log 2m+1

log 2 c−1∑
e=0

2m+1

2e
1

log2 2m+1

2e

+O(log x)

=
1

log2 2

m∑
e=0

2m−e+1

(m+ 1− e)2
+O(log x)

=
1

log2 2

m+1∑
n=1

2n

n2
+O(log x)

< 5
1

log2 2
2m+1

(m+ 1)2
+O(log x) by (2)

< 10
1

log2 2
2x log2 2

log2 x
+O(log x)

� x

log2 x
,

completing the proof of the theorem.

So the asymptotic bound is the same as that for twin primes. In the
same manner as originally derived by Brun for the sum of reciprocals of
the twin primes (for example [12, Theorem 6.12]) we obtain:

Corollary 4.1. The sum of the reciprocals of the thin primes is finite.

Proof. If pn is the n’th thin prime then, by Theorem 4.1,

n = T (pn)� pn

log2 pn

� pn
(log n)2

so

1
pn
� 1

n log2 n
.
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5. HARDY-LITTLEWOOD-BATEMAN-HORN
CONJECTURES

The well known Hardy-Littlewood-Bateman-Horn conjectures [7, 3] give
an asymptotic formula for the number of simultaneous prime values of sets
of polynomials in Z[x], with some restrictions on the polynomials. In the
case of twin primes the polynomials are fo(x) = x, f1(x) = x+ 2 and if

π2(x) := #{p ≤ x : p+ 2 is prime}

then the formula predicted is

π2(x) ∼ 2C2

∫ x

2

du

log2 u

where C2 is the so-called twin prime constant [13] defined by

C2 :=
∏
p>2

(
1− 1

(p− 1)2

)
.

In the case of thin primes the conjectures only apply to forms with fixed
e ≥ 1 with polynomials f0(x) = x, fe(x) = 2ex− 1. If

Te(x) := #{p ≤ x : p+ 1 = 2eq}

Then the formulas predict

Te(x) ∼ 2C2

2e

∫ x

2

du

log2 u
.

The factor 1/2e occurs simply because p ≤ x + 1 if and only if q ≤ x/2e.
Hence

T (x)
π2(x)

∼
∑log x/ log x
e=1 Te(x)

π2(x)
∼ 1.

To test this numerically we evaluated the ratio of the number of thin primes
up to x to the number of twin primes up to x for x up to 4× 106 in steps
of 105 and obtained the following values:

{1., 1.20343, 1.16852, 1.17134, 1.16036, 1.15882, 1.14819, 1.1447,
1.14499, 1.1428, 1.13515, 1.12896, 1.12543, 1.1234, 1.11715,
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1.1184, 1.11729, 1.11438, 1.11168, 1.1099, 1.11169, 1.1106,
1.11125, 1.11095, 1.11221, 1.11317, 1.1134, 1.11251, 1.1118,
1.11306, 1.11179, 1.11015, 1.10986, 1.1096, 1.10876, 1.10924,
1.10912, 1.10676, 1.10623, 1.10536}.

demonstrating some convergence towards the predicted value 1. If the
relationship between the thin and twin primes could be made explicit this
would assist in a proof of the twin primes conjecture.
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16. Sierpiński, W. Sur un problém concernant les nombres k · 2n + 1, Elem. Math. 15
(1960), p73-74, Corrigendum 17 (1962), p85.



16 BROUGHAN AND ZHOU

17. Suryanarayana, The number of k-free integers ≤ x which are coprime to n, Indian
J. Math. 11 (1969), p131-139.

18. Tenenbaum, G. Introduction to analytic and probabilistic number theory, Cambridge,
1995.

19. Timofeev, N. M. The Hardy-Ramanujan and Halasz inequalities for shifted primes,
Mathematical Notes, 57 (1995), p522-535.


