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Asymptotic expressions are derived for several divisor sums restricted by the
size of the divisors or the range of values of the divisor summand argument.
This is motivated by an expression for the class number of binary quadratic
forms over the rational integers, in terms of a restricted divisor sum, which is
also derived.
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1. INTRODUCTION

There is a body of work in the literature on various restricted sums of the number
of divisors of an integer function including that described in [3, 5, 6, 7, 8, 9, 11, 4] and
summarised in Section 2 below. In this paper asymptotic expressions are derived for
sums of the form

∑

1≤n≤x

dα(f(n))

where the function f(n) is n, n2 or n2 + n + p+1
4 , where p ≡ 3 mod 4 is a rational prime,

and where

dα(n) = #{d : d|n and 1 ≤ d ≤ α}
for real α ≥ 1.

Motivation for considering these sums comes from an expression which is derived for
the class number of a quadratic field with discriminant −p, in terms of a certain restricted
divisor sum. This sum is currently too difficult to estimate, in that the restrictions on
divisors depend on the summation variable n.

In deriving asymptotic expressions for the sum
∑

1≤n≤x

dα(n2)

1
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it is natural to introduce two so-called integer square root functions r+(n) and r−(n).
Both are multiplicative and take integer values. Their Dirichlet series are expressible in
a compact rational form in terms of the Riemann zeta function.

2. THE CLASS NUMBER

Define for positive integral n and real a, b with a < b, the restricted divisor function:

d(n, (a, b)) = #{d : d|n and a < d < b} (1)

Theorem 2.1. Let p be a rational prime with p > 3 and p ≡ 3 mod 4. Then the class
number for quadratic forms with discriminant −p can be expressed in the form:

h(−p) = 1 + 2
∑

0≤n≤ 1
2

√
p
3−1

d
(
n2 + n +

p + 1
4

, (2n + 1,

√
n2 + n +

p + 1
4

)
)

(2)

Proof. If f(x, y) = ax2 + bxy + cy2 in Z[x, y] is a quadratic form then it is primitive if

(i) 0 ≤ b ≤ a = c or
(ii) −a < b < a < c or

(iii) 0 < b = a < c

The discriminant

−p = b2 − 4ac (3)

so b 6= 0.
Corresponding to each triple (a, b, c) satisfying (i), (ii) or (iii) there is a form, and

different triples correspond to inequivalent forms.
In case (i) p = (2a)2 − b2 = (2a + b)(2a− b) so 2a + b = p and 2a− b = 1. Therefore

a = p+1
4 and b = p−1

2 so there is one solution at most. But b ≤ a implies p ≤ 3, so there
are no solutions in case (i).

In case (ii) assume 1 ≤ b ≤ a < c, since if b is a solution so is −b and vice versa.
By (3) b is odd. Since also p ≡ 3 mod 4

ac =
b2 + p

4

is an integer. Hence a| b2+p
4 and a < c therefore a <

√
b2+p

4 hence 4a2 − p < b2 < a2 so

a <
√

p
3 (5) and b ≤ √

p
3 − 1.
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Similarly a < c if and only if a <
√

b2+p
4 (7).

In case (iii), 1 ≤ b = a < c so p = a(4c − a). The relation a = p is imposible, since
then 4c− a = 1 and c = p+1

4 < p = a.
If a = 1 and 4c− a = p we obtain c = p+1

4 leading to the so called principal solution

(a, b, c) = (1, 1,
p + 1

4
)

Conversely, if a|p+b2

4 and b < a <
√

p+b2

4 with 1 ≤ b ≤ √
p
3 − 1, then −p = b2 − 4ac and

1 ≤ b < a < c.
For each odd value of b satisfying 1 ≤ b ≤ √

p
3 − 1 we count the number of divisors

a of b2+p
4 satisfying b < a <

√
b2+p

4 , double to account for each solution (a,−b, c), and
add 1 for the principal solution to obtain

h(−p) = 1 + 2
∑

1≤b≤
√

p
3−1

b odd

d
(p + b2

4
, (b,

√
p + b2

4
)
)

Finally, let b = 2n + 1 to obtain formula (2).

Corollary 2.1. The class number h(-p) is odd.

Corollary 2.2. For all primes p ≡ 3 mod 4 with p > 3,

h(−p) ≥ d(
1 + p

4
)

since 1+p
4 is never a square.

Corollary 2.3. The following upper bound is an immediate consequence:

h(−p) ≤ (1− 1
2

√
p

3
) +

∑

0≤n≤ 1
2

√
p
3−1

d(n2 + n +
p + 1

4
)

Example 2.1. If p = 59 a set of inequivalent representatives is {(1, 1, 15), (3, 1, 5), (3,−1, 5)}
and h(-59)=3.
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If p = 151

d(38, (1, 6]) = 1
d(40, (3, 6]) = 2
d(44, (5, 6]) = 0
d(50, (7, 7]) = 0

so h(−151) = 1 + 2(1 + 2) = 7.

3. EXISTING RESULTS

To begin with there is Dirichlet’s famous divisor sum theorem of 1850, and its im-
provements due to Voronoi in 1903 and van der Corput in 1922.

D(x) =
∑

n≤x

d(n) = x log x + (2γ − 1)x + O(f(x))

where f(x) = xa with a = 12
37 + ε, due to Kolesnik [13], f(x) = xa logb x with a = 23

73
and b = 461

146 due to Huxley [?] are the best known published results.
In 1952 Erdös [3] showed that, if f is an polynomial with integer coefficients, there are

positive constants A1 and A2 such that

A1x log x <
∑

n≤x

d(f(n)) < A2x log x

where the constants Ai depend on the coefficients (and hence also the degree) of f .
In [11] Scourfield quoting a result of Bellman-Shapiro states that if f is an irreducible

quadratic polynomial with integral coefficients

∑

n≤x

d(f(n)) = Ax log x + O(x log log x)

where the constant A depends on the coefficients of f . This result was improved by
McKee in [7, 8, 9] who derived an error bound of O(x).

In 1963 Hooley [5] considered the special case of
∑

n≤x d(n2 +a) and found asymptotic
expressions for the cases a = −k2 and a 6= −k2.

Other results for restricted divisor sums include divisors in short intervals [3, 10] and
a number of results for divisors in arithmetic progressions. The monograph [4] covers in
depth a range of related concepts.

In this article we begin the task of analysing the class number divisor sum derived
in Theorem 2.1 above by looking at the sums where the divisors are restricted in size,
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independent of the summation range. This is done first for f(n) = n then f(n) = n2 and
finally f(n) = n2 + n + p+1

4 . In each case asymptotic expressions are derived.

4. SUMS RESTRICTED BY DIVISOR SIZE

Theorem 4.1. Let 1 ≤ α ≤ x be real numbers. Then

D(x, α) =
∑

1≤n≤x

dα(n) = x log α + xγ + O(
x

α
) + O(α)

Proof. Simply count the lattice points below the curve uv = x and above the interval
[1, α]:

D(x, α) =
∑

1≤j≤α

bx
j
c

=
∑

1≤j≤α

(
x

j
− {x

j
})

= x(log α + γ + O(
1
α

)) + O(α)

= x log α + xγ + O(
x

α
) + O(α)

where γ is Euler’s constant.

5. INTEGER SQUARE ROOTS

In this section we will derive an asymptotic expression for the restricted divisor sum

D2(x, α) =
∑

1≤n≤x

dα(n2)

by first expressing it in terms of the integer square root function r+(n) defined as follows:
If n is a positive integer, r+(n)|n and n|r+(n)2, and if d is such that d|n with n|d2 then
r+(n)|d. This defines r+(n) uniquely.

Let r−(n) = n/r+(n). Then if

n =
m∏

i=1

pαi
i
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we have

r+(n) =
m∏

i=1

p
dαi

2 e
i , and

r−(n) =
m∏

i=1

p
bαi

2 c
i

Note that r+(n)2 = n if and only if n is a perfect square, that for all primes p, if p|n
then p|r+(n), r+(n)r−(n) = n and

√
n ≤ r+(n) ≤ n. Also (r+(n), r+(m)) = r+((n,m))

where (n, m) is the greatest common divisor. Finally, both r+ and r− are multiplicative,
but not completely multiplicative.

We will develop four Dirichlet series for these functions:

ψ±(s) =
∞∑

n=1

r±(n)
ns

φ±(s) =
∞∑

n=1

1/r±(n)
ns

Theorem 5.1. For σ = <(s) sufficiently large, the Dirichlet series satisfy the follow-
ing:

φ+(s) =
ζ(2s + 1)ζ(s + 1)

ζ(2s + 2)
, (σ > 0)

φ−(s) =
ζ(2s + 1)ζ(s)

ζ(2s)
, (σ > 1)

ψ+(s) =
ζ(2s− 1)ζ(s− 1)

ζ(2s− 2)
, (σ > 2)

ψ−(s) =
ζ(2s− 1)ζ(s)

ζ(2s)
, (σ > 1)
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Proof. If p is a prime then r+(pα) = pd
α
2 e so

φ+(s) =
∏
p

(
1 +

1
r+(p)ps

+
1

r+(p2)p2s
+ · · · )

=
∏
p

(
1 +

1
pps

+
1

pp2s
+

1
p2p3s

+
1

p2p4s
+ · · · )

=
∏
p

(
1 +

ps

(pp2s)1
+ (

1
pp2s

)1 +
ps

(pp2s)2
+ (

1
pp2s

)2 + · · · )

=
∏
p

( 1
1− 1

pp2s

+
ps/pp2s

1− 1
pp2s

)

=
∏
p

(
1− 1

p2s+1

)−1(1 +
1

ps+1

)

But

ζ(2s)
ζ(s)

=
∏
p

(
1 +

1
ps

)−1

Hence

φ+(s) =
ζ(2s + 1)ζ(s + 1)

ζ(2s + 2)

Finally σ + 1 > 1, 2σ + 1 > 1 and 2σ + 2 > 1 if σ > 0.
Next, to derive the expression for ψ−(s) use

ψ−(s) =
∞∑

n=1

r−(n)
ns

=
∞∑

n=1

1/r+(n)
ns−1

= φ+(s− 1)

The other two derivations follow in a similar manner.

Lemma 5.1.

D2(x, α) =
∑

1≤j≤α

b x

r+(j)
c

Proof. If 1 ≤ j ≤ α and jm = n2 for some n ≤ x, let j0 be such that jj0 = n2
0 is the

smallest multiple of j which is a square: if

j =
m∏

i=1

pαi
i
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then

j0 =
m∏

i=1

pαi mod 2
i

and (αi + αi mod 2)/2 = dαi

2 e so r+(j) = n0.
Then

D2(x, α) =
∑

1≤j≤α

∑

ji=n2
n≤x

1

=
∑

1≤j≤α

∑

jj0m2=n2
n≤x

1

But jj0m
2 = n2 ⇐⇒ n2

0m
2 = n2 ⇐⇒ n0m = n, n ≤ x ⇐⇒ m ≤ x/n0.

Hence

D2(x, α) =
∑

1≤j≤α

b x

r+(j)
c

Example 5.1. An elementary derivation leads to an asymptotic formula for the
partial sums of the square free reciprocals:

F (x) =
∑

1≤n≤x

n squarefree

1
n

=
log x

ζ(2)
+ O(1)

To see this
∑

1≤n≤x

µ(n)2 =
∑

1≤n≤x

1
∑

d2|n
µ(d)

=
∑

d≤√x

µ(d)b x

d2
c

= x
∑

d≤√x

µ(d)
d2

+ O(
√

x)]

= x

∞∑

d=1

µ(d)
d2

+ O(
√

x)

=
6
π2

x + O(
√

x)

The result now follows by Abel’s Theorem for partial summation.
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A more precise result was found by Suryanarayana [12]. It is this form which we use
in the restricted divisor derivation below, so we state it as a lemma.

Lemma 5.2 (Suryanarayana).

F (x) =
1

ζ(2)
(log x + γ − 2

ζ ′(2)
ζ(2)

) + O(
1√
x

)

Theorem 5.2. For x →∞ and 1 ≤ α ≤ x:

D2(x, α) =
x log2 α

4ζ(2)
+

x log α

ζ(2)
[
3γ

2
− ζ ′(2)

ζ(2)
] + O(x) + O(α)

Proof. Using Lemma 5.1:

D2(x, α) =
∑

n≤α

b x

r+(n)
c

= x
∑

n≤α

1
r+(n)

+
∑

n≤α

{ x

r+(n)
}

= xS(α) + O(α)

where

S(x) =
∑

n≤x

1
r+(n)

Now let x = y2 and for d = 1, 2, 3, . . . let Sd be the set of positive integers n ≤ x with
largest squared factor d2. Note that if Q(x) is defined to be the set of square free integers
less than or equal to x then Sd has |Q(y2

d2 )| elements. Note also that if n is square free,
r+(nd2) = nd. Then

S(y2) =
∑

d≤y

∑

n∈Q(y2/d2)

1
r+(nd2)

=
∑

d≤y

∑

n∈Q(y2/d2)

1
nd

=
∑

d≤y

1
d

∑

n∈Q(y2/d2)

1
n

=
∑

d≤y

1
d
F

(y2

d2

)
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Now let

β = γ − 2
ζ ′(2)
ζ(2)

and apply Lemma 5.2:

S(x) =
∑

n≤√x

1
n

F
( x

n2

)

=
1

ζ(2)
[(log x + β)(

∑

n≤√x

1
n
− 2

∑

n≤√x

log n

n
] + O(

1√
x

∑

1≤√x

1)

=
1

ζ(2)
(log x + β)(log

√
x + γ + O(

1√
x

))− 2
ζ(2)

(
1
2

log2√x + A + O(
log x√

x
)) + O(1)

=
1

4ζ(2)
log2 x +

log x

ζ(2)
(
3γ

2
− ζ ′(2)

ζ(2)
) + O(1)

for some constant A. Therefore

D2(x, α) = x[
log2 α

4ζ(2)
+

log α

ζ(2)
(
3γ

2
− ζ ′(2)

ζ(2)
) + O(1)] + O(α)

=
x log2 α

4ζ(2)
+

1
ζ(2)

x log α[
3γ

2
− ζ ′(2)

ζ(2)
] + O(x) + O(α)

6. BOUNDS FOR RESTRICTED SUMS FOR QUADRATIC FORMS

Theorem 6.1. Let f(n) be an irreducible polynomial with f(n) > 0 for n = 1, 2, . . . .
If 1 ≤ α ≤ x are real then there exist positive constants c1 and c2 such that

c1x log α ≤
∑

1≤n≤x

dα(f(n)) ≤ c2x log α

Proof. Define the three functions θ, ρ and N by

θ(i, j) =
{

1 if i|f(j)
0 if i - f(j)

ρ(i) = #{j : i|f(j), 1 ≤ j ≤ i}
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N(x, i) = #{j : i|f(j), 1 ≤ j ≤ x}
Then, since i|f(j) ⇐⇒ i|f(i + j) we have

bx
i
cρ(i) ≤ N(x, i) ≤ (bx

i
c+ 1)ρ(i) (5)

and so
x

2i
ρ(i) ≤ N(x, i) ≤ 2x

i
ρ(i)

Therefore
∑

1≤i≤α

x

2i
ρ(i) ≤

∑

1≤i≤α

∑

1≤j≤x

θ(i, j) ≤
∑

1≤i≤α

2x

i
ρ(i)

and so
x

2

∑

1≤i≤α

ρ(i)
i
≤

∑

1≤j≤x

∑

1≤i≤α

θ(i, j) ≤ 2x
∑

1≤i≤α

ρ(i)
i

or
x

2
R(α) ≤

∑

1≤j≤x

dα(f(j)) ≤ 2xR(α)

where

R(x) =
∑

1≤i≤x

ρ(i)
i

By Lemma 9 and Section 5 of [3],

2c1 log x ≤ R(x) ≤ 1
2
c2 log x

and the conclusion of the theorem follows directly.

In case f is quadratic, then the previous result can be strengthened to give an asymp-
totic formula, using the results of McKee [7, 8, 9].

Theorem 6.2. Let f(n) = an2 + bn + c be an irreducible quadratic polynomial with
f(n) > 0 for n = 1, 2, . . . . Let ∆ = b2 − 4ac < 0 not be a perfect square. If 1 ≤ α ≤ x
are real then there exists positive constant Af such that

∑

1≤n≤x

dα(f(n)) = Afx log α + O(x)

where

Af =
6H(∆)
π
√−∆

∏

p|a
(1− 1

p + 1
)
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where H(∆) is the weighted class number (namely, the number of primitive and imprim-
itive forms Ax2 + Bxy + Cy2 with B2 − 4AC = ∆, giving weight one half to forms
proportional to x2 + y2, and one third to those proportional to x2 + xy + y2).

Proof. Using the same notation as in the previous theorem, it follows directly from
equation (5) that

N(x, i) = x
ρ(i)
i

+ O(ρ(i))

Using the same argument as that used in the theorem it follows that

∑

1≤n≤x

dα(f(n)) = x
∑

1≤i≤α

ρ(i)
i

+ O(
∑

1≤i≤α

ρ(i))

Using the results of the paper [9] given in Lemma 7 and Lemma 8 for the two sums in this
formula, we obtain the result of the theorem with the given value for the constant Af .
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