146 * Recall that $(d_1)_A = d \mid A \times A$.

 $d(f(x), f(y)) \le d(f(x), f(a_i)) + d(f(a_i), f(a_i))$ $+ d(f(a_j), f(y)) \leq 2 + L.$

If x and y belong to A, there are $1 \le i \le n$ and $1 \le j \le n$ such that $x \in V_{\delta}(a_i)$ and $y \in V_{\delta}(a_j)$. Hence

 $d_2(f(x_1), f(x_2)) < \varepsilon$

whenever x_1 and x_2 belong to A and $d(x_1, x_2) < \delta$.

and only if, for every $\varepsilon > 0$ there exists some $\delta > 0$ such that

Hence, the function $f: A \to X_2$ is uniformly continuous on A if

If $A \subset X_1$, we say that $f: A \to X_2$ is uniformly continuous on A if

f is uniformly continuous in the sense of Definition 17.1.

considered as a mapping "of the metric space" $(A, (d_1)_A)$ into (X_{z_2}, d_2) ,"

Since δ depends on ε , we often use some notation to indicate this. For instance, we may write δ_{ε} or $\delta(\varepsilon)$ instead of δ .

We obtain, obviously, an *equivalent* definition if $(d_2(f(x_1), f(x_2)) < \varepsilon$ and $d_1(x_1, x_2) < \delta$, are replaced by

 $(d_2(f(x_1), f(x_2)) \le \varepsilon \text{ and } d_1(x_1, x_2) \le \delta.)$

whenever x_1 and x_2 belong to X_1 and $d_1(x_1, x_2) < \delta$.

 $d_2(f(x_1), f(x_2)) < \varepsilon$

 X_1 if for every $\varepsilon > 0$ there exists some $\delta > 0$ such that

17.1 Definition.—We say that $f: X_1 \to X_2$ is uniformly continuous on

whenever x and y belong to A and $d_1(x, y) < \delta$. Since A is totally bounded, there is a finite family $(a_j)_{1 \le j \le n}$ of elements of A such that $(V_{\delta}(a_j))_{1 \le j \le n}$ is a covering of A. Let

 $L = \sup \{ d(f(a_i), f(a_j)) \mid 1 \le i \le n, \ 1 \le j \le n \}$

of uniform continuity, δ_{ε} does not depend on a.

the set f(A) is bounded. $A \subset X_1$ totally bounded and $f: A \to X_2$ uniformly continuous. Then *Example* 1.—Let (X_1, d_1) and (X_2, d_2) be two metric spaces,

Since f is uniformly continuous, there is $\delta > 0$ such that

 $d_2(f(x), f(y)) < 1$

17.2 Theorem.—Let $A \subset X_1$ and let $f: A \to X_2$ be uniformly con-

 $\delta_{\epsilon} > 0$ such that *Proof*—Let $\varepsilon > 0$. Since f is uniformly continuous, there is

 $d_2(f(x_1), f(x_2)) < \varepsilon$

Chapter 17

Functions

Uniformly Continuous

that whenever x_1 and x_2 belong to A and $d(x_1, x_2) < \delta_{\epsilon}$. Let $a \in A$; we deduce

 $d_2(f(a), f(x)) < \varepsilon$

f is continuous on A. deduce that f is continuous at a (see 13.18). Since $a \in A$ was arbitrary, whenever $x \in A$ and $d(a, x) < \delta_{\epsilon}$. Since $\epsilon > 0$ was arbitrary, we

Z is continuous. We shall see in Example 2 that the converse is not We have shown, therefore, that a uniformly continuous function

continuous. true; that is, that there exist continuous functions that are not uniformly

any metric space can be embedded in a complete metric space. having metric spaces for domain and range. We shall also prove that

We denote by (X_1, d_1) and (X_2, d_2) two metric spaces.

In this chapter, we shall discuss uniformly continuous functions

Z in the definition of continuity of f at a (see, for instance, 13.18), given $\varepsilon > 0$, the corresponding neighborhood of a depends not only on ε by any supplementary symbol). Expressed with inequalities, this but also on $a \in A$ (although we usually do not indicate this dependence If we compare 17.1 with the definition of continuity, we see that

means that " δ_{ϵ} " depends not only on ϵ , but also on a. In the definition

tinuous. Then f is continuous on A.

UNIFORMLY CONTINUOUS FUNCTIONS 147

Since x and y were arbitrary elements of A, we deduce that $\delta(f(A)) \leq 2 + L$. Hence, f(A) is bounded.

If (X_2, d_2) is the metric space **R**, then f(A) is bounded if and only if there is $K \in \mathbf{R}_+$ such that $|f(x)| \leq K$ for all $x \in A$.

Example 2.—The mapping $x \mapsto 1/x$ of (0, 1) into **R** is not uniformly continuous.

Let $L \ge 0$. By Archimedes' property, there is $p \in \mathbb{N}$ satisfying p > L. Hence $x_0 \in (0, 1)$ and $|1/x_0| = p > L$ if $x_0 = 1/p$. Hence there is no L satisfying $|1/x| \le L$ for all $x \in (0, 1)$, and hence (by the result in Example 1), the mapping $x \mapsto 1/x$ of (0, 1) into **R** is not uniformly continuous.

Example 3.—The mapping $x \mapsto 1/x$ of \mathbb{R}^* into \mathbb{R} is not uniformly continuous.

We leave the details to the reader.

17.3 Theorem.—Let (X_1, d_1) and (X_2, d_2) be two metric spaces, $A \subset X_1$ compact and $f: A \to X_2$ continuous. Then f is uniformly continuous.

Proof.—Let $\varepsilon > 0$ and let $t \in A$. Since $f: A \to X_2$ is continuous, there is $\delta(t) > 0$ such that $x \in V_{\delta(t)}(t)$ implies that

$d_2(f(x), f(t)) < \varepsilon/2.$

Clearly, $(V_{\delta(t)/a}(t))_{t \in A}$ is an open covering of A. Since A is compact, there exists a finite family $(t_i)_{1 \leq j \leq n}$ of elements of A such that $(V_{\delta(t_j)/a}(t_j))_{1 \leq j \leq n}$ is a covering of A. Let $\delta = \inf \{\delta(t_1)/2, \ldots, \delta(t_n)/2\}$. Now let x and y in A be such that $d(x, y) < \delta$. Since $(V_{\delta(t_j)/a}(t_j))_{1 \leq j \leq n}$ is a covering of A, there exists $1 \leq j_0 \leq n$ such that $x \in V_{\delta(t_j)/a}(t_j)_{1 \leq j \leq n}$ Hence,

and

 $d_1(t_{j_0}, x) < \delta(t_{j_0})/2 < \delta(t_{j_0})$

$$egin{aligned} &d_1(t_{i_0},y) < d_1(t_{j_0},x) + d_1(x,y) < \delta(t_{i_0})/2 \,+\,\delta \ &< \delta(t_{i_0})/2 \,+\,\delta(t_{i_0})/2 \,=\,\delta(t_{j_0}). \end{aligned}$$

Hence, $d_1(t_{i_0}, x) < \delta(t_{i_0})$ and $d_1(t_{i_0}, y) < \delta(t_{i_0})$. We obtain, then,

$$\begin{split} d_{2}(f(x), f(y)) &< d_{2}(f(x), f(t_{i_{0}})) + d_{2}(f(t_{i_{0}}), f(y)) \\ &< \varepsilon/2 + \varepsilon/2 = \varepsilon. \end{split}$$

Since $\varepsilon > 0$ was arbitrary, we conclude that f is uniformly continuous.

Exercise.—Let X be a metric space, $A \subset X$, and let $C_{\mathbf{R}}^{u}(A)$ be the set of all mappings $f: A \to \mathbf{R}$ uniformly continuous on A. (a) Show that, endowed with the usual addition and scalar multiplication, $C_{\mathbf{R}}^{u}(A)$ is a vector space. (b) Show that if f and g belong to $C_{\mathbf{R}}^{u}(A)$, it is not necessarily true that fg belongs to A. (Hint: Let $A = X = \mathbf{R}$ and let j be the mapping $x \mapsto x$ of \mathbf{R} into \mathbf{R} ; then $j \in C_{\mathbf{R}}^{u}(A)$, whereas $j^{2} \notin C_{\mathbf{R}}^{u}(A)$.)

Again, let (X_1, d_1) and (X_2, d_2) be two metric spaces

17.4 Definition.—Let $A \subset X_1$ and $f: A \to X_2$. We say that f is a Lipschitz function* if there is $L \ge 0$ such that

 $d_2(f(x), f(y)) \leq Ld_1(x, y)$

for all x and y in A.

It is easy to see that a Lipschitz function is uniformly continuous. In fact, let $\varepsilon > 0$ and let $\delta_{\varepsilon} = \varepsilon/(L+1)$. Then x and y in A and $d_1(x,y) \leq \delta_{\varepsilon}$ imply that

 $d_2(f(x), f(y)) \leq L\varepsilon/(L+1) \leq \varepsilon.$

Since $\varepsilon > 0$ was arbitrary, it follows that f is uniformly continuous on A.

Example 4.—For each non-void set $A \subset X_1$, the mapping $f: x \mapsto d_1(x, A)$ of X_1 into **R** is a Lipschitz function.

In fact, (see 13.6),

 $|f(x) - f(y)| \le d_1(x, y)$ for all x and y in X_1 .

Recall that we have already proved that f is continuous on X_1 (see 13.19).

Before proceeding farther, we shall make the following remarks: Let (X, d) be a metric space, $(x_n)_{n \in \mathbb{N}}$ a sequence of elements of X that converges to a, and $(y_n)_{n \in \mathbb{N}}$ a sequence of elements of X that converges to b. Then:

17.5(i) $\lim_{n \in \mathbb{N}} d(x_n, y_n) = d(a, b);$ (ii) $a = b \Leftrightarrow \lim_{n \in \mathbb{N}} d(x_n, y_n) = 0.$

* Lipschitz functions having for domain a part of ${f R}$ have been introduced in Example 5,

Chapter 5.

150 UNIFORMLY CONTINUOUS FUNCTIONS

We leave to the reader the proof of 17.5 (hint: Use Theorem 13.21).

Let (X_1, d_1) and (X_2, d_2) be two metric spaces

17.6 Definition.—Suppose $A \subset X_1$. A mapping $\varphi: A \to X_2$ is an isometry if

 $d_2(\varphi(x), \varphi(\mathcal{Y})) = d_1(x, \mathcal{Y})$

for all x and y belonging to A.

The metric spaces (X_1, d_1) and (X_2, d_2) are said to be *isometric* if there is an isometry of X_1 onto X_2 or an isometry of X_2 onto X_1 . We notice that:

17.7 If $\varphi: A \to X_2$ is an isometry, then φ is an injection.

In fact, if x and y belong to A, and $x \neq y$, then

 $d_2(\varphi(x), \varphi(y)) = d_1(x, y) \neq 0,$

so that $\varphi(x) \neq \varphi(y)$. Since x and y were arbitrary, φ is injective.

17.8 If $\varphi: A \to X_2$ is an isometry, then φ is a Lipschitz function.

17.9 Let $\varphi: A \to X_2$ be an isometry. Consider φ as a bijection of A onto $\varphi(A)$. If φ^{-1} is the inverse of this mapping, then $\psi: x \mapsto \varphi^{-1}(x)$, on $\varphi(A)$ to X_{12} is an isometry.

17.10 Let $\varphi: A \to X_2$ be an isometry and $(x_n)_{n \in \mathbb{N}}$ a sequence of elements of A. Then $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence if and only if $(\varphi(x_n))_{n \in \mathbb{N}}$ is a Cauchy sequence.

This follows immediately from the equation,

$$d_2(\varphi(x_n), \varphi(x_m)) = d_1(x_n, x_m)$$

for $n \in \mathbb{N}$, $m \in \mathbb{N}$.

17.11 Let $\varphi: A \to X_2$ be an isometry, $(x_n)_{n \in \mathbb{N}}$ and $(\mathcal{Y}_n)_{n \in \mathbb{N}}$ two sequences of elements of A that converge to an element* $a \in X_1$. Assume that (X_2, d_2) is complete. Then $(\varphi(x_n))_{n \in \mathbb{N}}$ and $(\varphi(\mathcal{Y}_n))_{n \in \mathbb{N}}$ are convergent

(*) $\lim_{n \in \mathbb{N}} \varphi(x_n) = \lim_{n \in \mathbb{N}} \varphi(y_n)$.

* Notice that we do not assume that $a \in A$.

Since $(x_n)_{n\in\mathbb{N}}$ is convergent, it is Cauchy. By 17.10, $(\varphi(x_n))_{n\in\mathbb{N}}$ is a Cauchy sequence. Since (X_{2}, d_2) is complete, $(\varphi(x_n))_{n\in\mathbb{N}}$ is convergent. In the same way, we show that $(\varphi(y_n))_{n\in\mathbb{N}}$ is convergent. Since

 $\lim_{n\in\mathbb{N}}x_n=\lim_{n\in\mathbb{N}}y_n=a,$

we deduce from 17.5(ii) that

$$\lim_{n\in\mathbb{N}}d_1(x_n,y_n)=0.$$

Since φ is an isometry, we have

 $\lim_{n\in\mathbb{N}} d_2(\varphi(x_n), \varphi(y_n)) = 0.$

Using 17.5(ii), again, we conclude that

 $\lim_{n\in\mathbb{N}} \varphi(x_n) = \lim_{n\in\mathbb{N}} \varphi(\mathcal{Y}_n).$

17.12 Theorem.—Let (X_1, d_1) and (X_2, d_2) be two complete metric spaces, A_1 a dense part of X_1, A_2 a dense part of X_2 , and $\varphi: A_1 \to X_2$ an isometry such that $\varphi(A_1) = A_2$. Then there exists an isometry $\overline{\varphi}$ of X_1 onto X_2 such that $\overline{\varphi} \mid A_1 = \varphi$.

Proof.—Let $x \in X_1$ and let $(x_n)_{n \in \mathbb{N}}$ be a sequence of elements of A_1 that converges to x. Then $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence. By 17.10, $(\varphi(x_n))_{n \in \mathbb{N}}$ is a Cauchy sequence; since (X_2, d_2) is complete, $(\varphi(x_n))_{n \in \mathbb{N}}$ is convergent. Let

 $\bar{\varphi}(x) = \lim_{n \in \mathbb{N}} \varphi(x_n).$

By 17.11, $\bar{\varphi}(x)$ does not depend on the particular sequence that converges to x. Since $x \in X_1$ was arbitrary, we defined this way a mapping $\bar{\varphi}: X_1 \to X_2$. Clearly, $\bar{\varphi} \mid A_1 = \varphi$.

Let x and y be two elements belonging to X_1 . Let $(x_n)_{n\in\mathbb{N}}$ and $(\mathcal{Y}_n)_{n\in\mathbb{N}}$ be sequences of elements of A_1 that converge to x and y, respectively. Using 17.5(i), we obtain

$$\begin{split} l_2(\bar{\varphi}(x),\,\bar{\varphi}(\mathcal{Y})) &= \lim_{n\in\mathbb{N}} \, d_2(\bar{\varphi}(x_n),\,\bar{\varphi}(\mathcal{Y}_n)) \\ &= \lim_{n\in\mathbb{N}} \, d_1(x_n,\mathcal{Y}_n) = d_1(x,\mathcal{Y}). \end{split}$$

Since x and y were arbitrary, it follows that $\bar{\varphi}$ is an isometry.

Now let $y \in X_a$ and let $(y_n)_{n \in \mathbb{N}}$ be a sequence of elements of A_2 that converges to y. Since $\varphi(A_1) = A_2$, we deduce that for each $n \in \mathbb{N}$ there is $x_n \in A_1$ such that $\varphi(x_n) = y_n$. By 17.10, $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence. Since (x_1, d_1) is complete, $(x_n)_{n \in \mathbb{N}}$ converges to some

element $x \in X_1$. We deduce that

$$y = \lim_{n \in \mathbb{N}} \varphi(x_n) = \bar{\varphi}(x).$$

Since $y \in X_2$ was arbitrary, we conclude that $\bar{\varphi}(x_1) = x_2$.

Corollary 7.21. The uniqueness of $\bar{\varphi}$ follows from the fact that $\bar{A}_1 = X_1$ and from

Hence, Theorem 17.2 is completely proved

Suppose that (X_{2}, d_{2}) is complete. Then there exists a unique uniformly dense part of X_1 and $f:A_1 \to X_2$ a uniformly continuous function. continuous mapping $f: X_1 \to X_2$ such that $f \mid A_1 = f$. *Exercise.*—Let (X_1, d_1) and (X_2, d_2) be two metric spaces, A_1 a

We shall first establish certain results that will be used in the proof. that any metric space can be embedded in a complete metric space. We shall prove the result stated at the end of Chapter 15; namely,

sequences of elements of X. For Let (X, d) be a metric space and let \mathscr{C} be the set of all Cauchy

$$\mathbf{x} = (x_n)_{n \in \mathbb{N}} \in \mathscr{C}$$
 and $\mathbf{y} = (\mathcal{Y}_n)_{n \in \mathbb{N}} \in \mathscr{C}$,

we write

$$x \equiv \mathbf{y}(S) \Leftrightarrow \lim_{n \in \mathbf{N}} d(x_n, y_n) = 0;$$

we define thus an equivalence relation in C.

We shall now show that:

 $(d(x_n, y_n))_{n \in \mathbb{N}}$ is convergent. 17.13 If $\mathbf{x} = (x_n)_{n \in \mathbb{N}}$ and $\mathbf{y} = (y_n)_{n \in \mathbb{N}}$ are elements of \mathscr{C} , then

 $(\mathcal{Y}'_n)_{n\in\mathbb{N}}$ are elements of \mathscr{C} , and if $\mathbf{x} \equiv \mathbf{x}'$ and $\mathbf{y} \equiv \mathbf{y}'$, then 17.14 If $\mathbf{x} = (x_n)_{n \in \mathbb{N}}$, $\mathbf{x}' = (x'_n)_{n \in \mathbb{N}}$, $\mathbf{y} = (y_n)_{n \in \mathbb{N}}$, and $\mathbf{y}' =$

$$\operatorname{im}_{n\in\mathbb{N}} d(x_n, y_n) = \operatorname{lim}_{n\in\mathbb{N}} d(x'_n, y'_n).$$

Proof of 17.13.—For all $n \in \mathbb{N}$ and $m \in \mathbb{N}$, we have

$$d(x_n, y_n) \leq d(x_n, x_m) + d(x_m, y_m) + d(y_m, y_n)$$

and

$$d(x_m, y_m) \le d(x_m, x_n) + d(x_n, y_n) + d(y_n, y_m);$$

hence

$$|d(x_n, y_n) - d(x_m, y_m)| \le d(x_n, x_m) + d(y_n, y_m).$$

convergent. We deduce that $(d(x_n, y_n))_{n \in \mathbb{N}}$ is a Cauchy sequence, and hence

Proof of 17.14.—For all $n \in \mathbb{N}$ and $m \in \mathbb{N}$, we have

and
$$\begin{aligned} d(x_n,y_n) &\leq d(x_n,x'_n) + d(x'_n,y'_n) + d(y'_n,y_n) \\ d(x'_n,y'_n) &\leq d(x'_n,x_n) + d(x_n,y_n) + d(y_n,y'_n) \end{aligned}$$
hence

$$|d(x_n, y_n) - d(x'_n, y'_n)| \le d(x_n, x'_n) + d(y_n, y'_n).$$

We deduce that

$$\lim_{n\in\mathbb{N}}|d(x_n,y_n)-d(x'_n,y'_n)|=0.$$

by 17.5(ii), By 17.13, $(d(x_n, y_n))_{n \in \mathbb{N}}$ and $(d(x'_n, y'_n))_{n \in \mathbb{N}}$ are convergent, and then,

$$\lim_{n \in \mathbb{N}} d(x_n, y_n) = \lim_{n \in \mathbb{N}} d(x'_n, y'_n).$$

complete metric space (\hat{X}, d) and an isometry φ of X into \hat{X} such that $\varphi(X) = \hat{X}$. 17.15 Theorem.—Let (X, d) be a metric space. Then there exists a

& onto X *Proof.*—Let $\hat{X} = \mathscr{C}/S$ and let $\mathbf{x} \mapsto \hat{\mathbf{x}}$ be the canonical mapping of

C), we define If $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ belong to \hat{X} (so that $\mathbf{x} = (x_n)_{n \in \mathbb{N}} \in \mathscr{C}$ and $\mathbf{y} = (y_n)_{n \in \mathbb{N}} \in \mathscr{C}$

$$d(\mathbf{\hat{x}}, \mathbf{\hat{y}}) = \lim_{n \in \mathbb{N}} d(x_n, y_n).$$

It is easy to see that d is a metric on \hat{X} . Thus the metric space (\hat{X}, d) is By 17.13 and 17.14, d is well-defined as a mapping of $\hat{X} \times \hat{X}$ into **R**.

 $x_n = x$ for all $n \in \mathbb{N}$. Let $\varphi(x) = \hat{\mathbf{x}}^*$ for $x \in X$. If x and y belong to X, we deduce, from the definition of d, that defined. For each $x \in X$, let **x**^{*} be the Cauchy sequence $(x_n)_{n \in \mathbb{N}}$ where

$$\hat{d}(\varphi(x), \varphi(y)) = \hat{d}(\hat{\mathbf{x}}^*, \hat{\mathbf{y}}^*) = d(x, y).$$

is a Cauchy sequence, there is $p \in \mathbb{N}$ such that $m \ge p$ and $n \ge p$ imply Since x and y were arbitrary, $\varphi: X \to \hat{X}$ is an isometry. Now let $\mathbf{x} \in \hat{X}$, where $\mathbf{x} = (x_n)_{n \in \mathbb{N}}$, and let $\varepsilon > 0$. Since $(x_n)_{n \in \mathbb{N}}$

that

Then $d(x_m, x_n) \leq \varepsilon.$

Since $\hat{\mathbf{x}} \in \hat{X}$ and $\varepsilon > 0$, we deduce that $\varphi(X) = \hat{X}$.

 $d(\hat{\mathbf{x}}, \hat{\mathbf{x}}_{p}^{*}) = \lim_{n \in \mathbb{N}} d(x_{n}, x_{p}) \leq \varepsilon.$

Thus the isometry $\varphi: X \to \hat{X}$ is defined and we have shown that $\overline{\varphi(X)} = \hat{X}$. Now let $(\hat{\mathbf{x}}_n)_{n \in \mathbf{N}}$ be a Cauchy sequence of elements of \hat{X} . For each $n \in \mathbf{N}$, let $y_n \in X$ be such that

$$l(\hat{\mathbf{x}}_n, \varphi(\mathcal{Y}_n)) \leq 1/n.$$

Then $(\varphi(y_n))_{n \in \mathbb{N}}$ is a Cauchy sequence of elements of \hat{X} . Since φ is an isometry, we deduce (see 17.10) that $\mathbf{y} = (y_n)_{n \in \mathbb{N}}$ is a Cauchy sequence of elements of X.

Let $\varepsilon > 0$ and let $n_{\varepsilon} \in \mathbb{N}$ be such that $1/n_{\varepsilon} \le \varepsilon/2$ and $d(y_n, y_m) \le \varepsilon/2$ if $n \ge n_{\varepsilon}$, $m \ge n_{\varepsilon}$. Then, if $n \ge n_{\varepsilon}$

$$\begin{split} \hat{d}(\mathbf{\hat{x}}_{n},\mathbf{\hat{y}}) &\leq \hat{d}(\mathbf{\hat{x}}_{n},\varphi(\mathcal{Y}_{n})) + \hat{d}(\varphi(\mathcal{Y}_{n}),\mathbf{\hat{y}}) \\ &\leq \frac{1}{n} + \hat{d}(\varphi(\mathcal{Y}_{n}),\mathbf{\hat{y}}) \\ &= \frac{1}{n} + \lim_{m \in \mathbf{N}} d(\mathcal{Y}_{n},\mathcal{Y}_{m}) \end{split}$$

Hence, $\hat{d}(\hat{\mathbf{x}}_{n,\hat{\mathbf{y}}}) \leq \varepsilon$ if $n \geq n_{\varepsilon}$; since $\varepsilon > 0$ was arbitrary, $(\hat{\mathbf{x}}_{n})_{n \in \mathbb{N}}$ converges to \mathbf{y} .

 $\leq 2(\varepsilon/2) = \varepsilon.$

Thus we have shown that (\hat{X}, \hat{d}) is complete, and hence Theorem 17.15 is proved.

Remarks.—The metric space (\hat{X}, \hat{d}) is called the completion of (X, d). If we identify X with $\varphi(X)$, then:

(i) $X \subset \hat{X}$;

(ii) $\hat{d} \mid X \times X = d;$

(iii) $\overline{X} = \hat{X}$.

We shall show below that, in a certain sense, (\hat{X}, \hat{d}) is "unique."

17.16 Theorem.—Let (X, d) be a metric space, (X', d') a complete metric space, φ' an isometry of X into X' such that $\overline{\varphi'(X)} = \frac{X'}{X'}, (X'', d'')$ a complete metric space, and φ'' an isometry of X into X'' such that $\overline{\varphi''(X)} = X''$. Then (X', d') and (X'', d'') are isometric.

for $x \in X$. Then ψ is an isometry of A' into X'' such that $\psi(A') = A''$. By Theorem 17.12, (X', d') and (X'', d'') are isometric.

Exercises for Chapter 17

1. Let (X_1, d_1) and (X_2, d_2) be metric spaces and let $f:X_1 \to X_2$ be a Lipschitz function. If A is a totally bounded subset of X_1 , then f(A) is totally bounded in X_2 .

2. Let d be the usual metric on **R** and δ the metric on **R** defined in Example 6, Chapter 15. Show that the mapping $f: \mathbf{R} \to \mathbf{R}$ defined by f(x) = x for $x \in \mathbf{R}$ is uniformly continuous as a mapping of (\mathbf{R}, d) into (\mathbf{R}, d) , but is *not* uniformly continuous as a mapping of (\mathbf{R}, δ) into (\mathbf{R}, d) .

3. Let f be the mapping $x \mapsto 1/x$ of $(0, \infty)$ into **R**. Show that for every n > 0, $f \mid [n, +\infty)$ is uniformly continuous (although f is not uniformly continuous).

4. Generalize the results stated in Exercises 5, 6, and 9 at the end of Chapter 5 to Lipschitz functions having for domain a subset of a metric space and for range \mathbf{R} (see Example 4).

 $\psi(\varphi'(x)) = \varphi''(x)$

Proof.—Let $A' = \varphi'(X)$, $A'' = \varphi''(X)$, and let $\psi: A' \to A''$ be

defined by