LECTURE 20: HAHN-BANACH THEOREM

Theorem 45: [Hahn-Banach for real normed vector spaces]. Let $(M, \|\cdot\|)$ be a normed space, let $N \subseteq M$ be a subspace, and let

 $F: N \to {\rm I\!R} \quad \text{be a linear functional which is bounded on } N \quad \text{with}$ norm $\|F\|_N.$ Then there is a bounded linear functional

$$G:M \to \mathbb{R}$$
 with $F(f) = G(f) \ \forall \ f \in \mathbb{N}$ and $\|G\|_{M} = \|F\|_{N}$.

<u>Proof:</u> (a) First we extend F to a subspace of I higher dimension: let $g \in M \mathbb{N}$, if f', $f'' \in \mathbb{N}$

$$\begin{split} F(f'' - f'') &\leq \|F\|_{N} \|f' - f''\| \\ &= \|F\|_{N} \|(f' + g) - (f'' + g)\| \\ F(f') - F(f'') &\leq \|F\|_{N} \|f' + g\| + \|F\|_{N} \|f'' + g\| \end{split}$$

$$\Rightarrow - \|F\|_{N} \|f'' + g\| - F(f'') \le \|F\|_{N} \|f' + g\| - F(f')$$

 \Rightarrow sup{LHS : $f'' \in \mathbb{N}$ } \leq inf{RHS : $f' \in \mathbb{N}$ }

let $\gamma \in \mathbb{R}$ satisfy $\sup\{\text{LHS}\} \leqslant \gamma \leqslant \inf\{\text{RHS}\}$ and let f'' = f' = f. Then $-\|F\|_N \|f + g\| \leqslant F(f) + 1 \cdot \gamma \leqslant \|F\|_N \|f + g\|$ - (1)

(b) Let $V=\{f+\alpha g: f\in N, \alpha\in \mathbb{R}\}$. Then N is a subspace of V which is also a subspace of M. If $x\in V$ then

$$x = f + \alpha g = f' + \alpha' g \Rightarrow N \ni f - f' = g(\alpha' - \alpha) .$$

If $\alpha \neq \alpha'$ then $g \in \mathbb{N}$ which is false. Thus $\alpha = \alpha'$ and also f = f' after cancelling $\alpha g = \alpha' g$.

Therefore given $x \in V$, f and α are well determined.

Define $G:V \to \mathbb{R}$ by $G(x) = F(f) + \alpha.\gamma$. Then G is linear and if $x \in \mathbb{N}$, $\alpha = 0$ and so G(x) = F(x). We need to prove that $\|G\|_V = \|F\|_N$.

|H| = |A| |A|

 $\|H\|_V = \|H\|_{W^{-1}}.$ If $V \subset V$ and $H^*(x) = H(x)$ and and Define

Let $P=\{(V,H): N\subset V\subset M, V$ a subspace, $H:V\to \mathbb{R}$ bounded and linear extending F on N and

We require the following set theoretic axiom: Sorn's "Lemma": If each chain in $\,^P$ has a maximal element.

p ≥ a ∀ a ∈ A.

We say $\alpha \in P$ is $\frac{naximal}{naximal}$ if $\forall b$, $\alpha \leqslant b \Rightarrow \alpha = b$. A subset $A \subset P$ is a chain or linearly ordered subset if $\forall \alpha$, $b \in A$, $b \leqslant \alpha$ or $\alpha \leqslant b$. An element $b \in P$ is an upperbound for a subset $A \subset P$ if

Let (P, \leqslant) be a partially ordered set i.e. i.e. $x \leqslant x$, $x \leqslant y$ and $y \leqslant x \Rightarrow x = y$, and i.e. $x \leqslant y$, $y \leqslant z \Rightarrow x \leqslant z$ for all $x, y, z \in P$.

two and involves a so called transfinite construction.

(c) The next step is radically different from the previous

.(1) at n-1/t vd t explace t by t/-a in (1).

Case III: $\alpha > 0$ replace f by f/α in (1)

 $\cdot \beta - f = x$ loj

Hence $\|G(x)\| \leqslant \|F\|_{N} \ \|x\| - (2) \ \text{since} \ x = f + 1.9 \ .$ The opposite inequality is almost immediate since $\|G\|_{V} \leqslant \|F\|_{N}. \ \text{The opposite inequality is almost immediate since}$ G is an extension of F. Next replace f by -f in (1) to obtain (2)

 $\|\mathcal{S} \cdot \mathcal{I} + \mathcal{J}\|^{N} \|\mathcal{J}\| \geqslant |\mathcal{L} \cdot \mathcal{I} + (\mathcal{J})\mathcal{J}|$

Firstly if $\alpha = 1$ by equation (1) above

Since $(N,F) \in P$, $P \neq \emptyset$.

It is not difficult to verify that < is indeed a partial order on P.

Firstly we show that each chain in P has an upper bound. Let $\{(V_{\lambda}, H_{\lambda})\}$ be a chain indexed by $\lambda \in \Lambda$. Let $V = \bigcup \{V_{\lambda} \colon \lambda \in \Lambda\}$.

Then V is a subspace: if $x, y \in V$ then $\exists \lambda$ with $x \in V_{\lambda}$ and a γ with $y \in V_{\gamma}$. Then $V_{\lambda} \subseteq V_{\gamma}$ or $V_{\gamma} \subseteq V_{\lambda}$; in either case $x + y \in V_{\lambda} \cup V_{\gamma} \subseteq V$. Define G on V as follows: if $x \in V$ then $x \in V_{\lambda}$ some λ . Let $G(x) = H_{\lambda}(x)$. Then G is well defined since if $x \in V_{\gamma}$ also we must have $H_{\lambda}(x) = H_{\gamma}(x)$.

Then (V,G) is an upper bound for the chain since given $\lambda \in \Lambda$, (1) $V_{\lambda} \subset V$ and $\forall \ x \in V_{\lambda}$, (2) $G(x) = H_{\lambda}(x)$, and lastly (3) $\|G\|_{V} = \|H_{\lambda}\|_{V_{\lambda}}$: to see this let $x \in V$. Then $x \in V_{\beta}$ for some β . Thus $|G(x)| = |H_{\beta}(x)| \leq \|H_{\beta}\|_{V_{\beta}} \|x\| = \|H_{\lambda}\|_{V_{\lambda}} \|x\|$, since given any pair β, λ we must have $(V_{\lambda}, H_{\lambda}) \leq (V_{\beta}, H_{\beta})$ or the reverse and so $\|H_{\beta}\|_{V_{\beta}} = \|H_{\lambda}\|_{V_{\lambda}}$. Therefore $\|G\|_{V} \leq \|H_{\lambda}\|_{V_{\lambda}}$. The reverse inequality follows as before. By (1), (2), (3) (V, G) is an upper bound for the chain.

(d) By Zorn there is a maximal element (W,H) say in P.

If $W \neq M$ we can extend by 1 dimension as in step (a) above obtaining

$W \subset W' \subset M$ with $W \neq W'$

and then extend H to H' so that $\|H\|_{\widetilde{W}} = \|H^*\|_{\widetilde{W}}$, as above. But then $(W,H) < (W^*,H^*)$ which is impossible since (W,H) is maximal. Therefore H and H extends F to M. This completes the proof.

Example: given $x \neq 0$ in \mathbb{R}^n it is easy to find a (continuous) linear map π with $\pi(x) \neq 0$. However for infinite dimensional normed spaces we need the power of Hahn-Banach to show that such a continuous π exists.