LECTURE 28: THE PROJECTION THEOREM

Theorem 57: Let $K \subseteq H$ be a closed convex subset of a hilbert space H. Then if $x_0 \in H \setminus K$, there exists a unique element $y_0 \in K$ with

$$||x_0 - y_0|| = \inf\{||x_0 - y|| \ y \in K\} = d.$$

That is, there exists a point y_{∂} in K closest to x_{∂} .

Proof: (1) Existence

There exists a sequence of points (y_n) in K with

$$d = \lim_{n \to \infty} \|x_0 - y_n\|$$
Now $\|y_m - y_n\|^2 = 2\|y_m - x_0\|^2 + 2\|y_n - x_0\|^2 - \|(y_m - x_0) + (y_n - x_0)\|^2$

by applying the parallelogram law to the pair

$$\begin{aligned} y_m - x_0, & y_n - x_0. \\ \text{Now} & \|y_m - x_0 + (y_n - x_0)\|^2 = \|y_m + y_n - 2x_0\|^2 \\ &= 4 \|\underline{y_m + y_n} - x_0\|^2 \\ &\geq 4d^2. \end{aligned}$$

This follows since K is assumed convex $\Rightarrow \frac{y_m + y_n}{2} \in K$ for $y_m, y_n \in K$.

Thus
$$\|y_m - y_n\|^2 \le 2\|y_m - x_0\|^2 + 2\|y_n - x_0\|^2 - 4d^2$$

the whole expression on the RHS tends to zero as $m, n \rightarrow \infty$.

Thus (y_n) is a Cauchy sequence in K. Since H is complete (y_n) is convergent $y_n \to y_0$ in H, K is closed $\Rightarrow y_0 \in K$ and

$$d = \lim_{n \to \infty} ||x_0 - y_n|| = ||x_0 - y_0||$$
 since the norm is continuous.

The last term is just

$$4\|\frac{y_0^{+z_0}}{2} - x_0^{-}\|^2 \le 4d^2 \text{ since } \frac{y_0^{+z_0}}{2} \in K.$$

So the entire expression is <

$$2d^2 + 2d^2 - 4d^2 = 0 \implies ||y_0 - z_0|| = 0 \implies y_0 = z_0$$
.

Hence the point y_0 is unique in K.

Let M be a closed subspace of H.

Let $M^{\perp} = \{ y \in H : y \perp x \ \forall \ x \in M \}$

Then M^\perp is a closed subspace of $H:M^\perp$ is closed for if $(y_n)\in M^\perp$ and $y_n\to y$ in H then if $x\in M$

$$(y_n, x) = 0 \Rightarrow \qquad (y, x) = \lim_{n \to \infty} (y_n, x) = 0$$

$$\Rightarrow y \in M^{\perp}.$$

Now $H = M \oplus M^{\perp}$ since each $x_0 \in H$ is given by $x_0 = (x_0 - y_0) + y_0$

and
$$M \cap M^{\perp} = \{0\}$$
.

Theorem 58: $x_0 - y_0 \in M^{\perp}$.

Proof: Let
$$y \in M$$
, $\alpha \in \mathbb{C} \Rightarrow y_0 + \alpha y \in M$

$$||x_0 - (\alpha y + y_0)||^2 \ge ||y_0 - x_0||^2$$

$$\Rightarrow -\bar{\alpha}(x_0 - y_0, y) - \alpha(y, x_0 - y_0) + |\alpha|^2 ||y||^2 \ge 0$$

Let
$$\alpha = \varepsilon > 0$$

$$\varepsilon(x_0 - y_0, y) + \varepsilon(y, x_0 - y_0) \le \varepsilon^2 \|y\|^2 \Rightarrow 2\operatorname{Re}(x_0 - y_0, y) \le 0.$$

Then set $\alpha = i\epsilon$, $\epsilon > 0$

and obtain

$$2\operatorname{Im}(x_{0}-y_{0},y) \leq \varepsilon \|y\|^{2}$$
 $\Rightarrow 2\operatorname{Im}(x_{0}-y_{0},y) \leq 0.$

Replace y by -y and use same argument as above:

$$-2\operatorname{Re}(x_{0} - y_{0}, y) \leq 0$$

$$-2\operatorname{Im}(x_{0} - y_{0}, y) \leq 0$$

$$(x_{0} - y_{0}, y) = 0 \Rightarrow x_{0} - y_{0} \in M^{\perp}.$$

Projection maps:

Given $H = M \oplus M^{\perp}$ define a projection map

$$p: H \to M$$
 by $p(x_0) = y_0$ where $x_0 = (x_0 - y_0) + y_0$ Theorem 59:

Properties of the projection map p

- (1) p is linear
- (2) p is idempotent, $p^2 = p$
- (3) bounded, ||p|| = 1
- (4) p is onto M
- (5) $M^{\perp} = (I p)(H)$.

Proofs: Exercise.

Theorem 60: H is isomorphic to H' = (set of bounded linear functions).

Proof:
$$|(x_0, y_0)| \le ||x_0|| ||y_0||$$

Define $F_{y_0}(x) = (x, y_0) \in \mathbb{C}$.

 F_{y_0} is linear and

$$\|F_{y_0}\| \le \|y_0\| \Rightarrow F_{y_0}$$
 is bounded. Let $y_0 \ne 0$.

$$F_{\mathcal{Y}_{O}}\left(\left\| y_{O} \right\|_{\left\| \mathcal{Y}_{O} \right\|} \right) = \left(\left\| y_{O} \right\|_{\left\| \mathcal{Y}_{O} \right\|}, y_{O} \right) = \left\| \left\| y_{O} \right\|_{\left\| \mathcal{Y}_{O} \right\|}^{2} / \left\| y_{O} \right\| = \left\| y_{O} \right\|$$

By alternate definition of $\|F\|: \|F_{\mathcal{Y}_{\mathcal{O}}}\| \ge \|\mathcal{Y}_{\mathcal{O}}\| \implies \|F_{\mathcal{Y}_{\mathcal{O}}}\| = \|\mathcal{Y}_{\mathcal{O}}\|.$

Define $\varphi: H \to H', \varphi(y_0) = F_{y_0}; \quad \varphi(\alpha x + by) = \overline{\alpha}\varphi(x) + \overline{b}\varphi(y)$.

Claim φ is an onto map:

Let $F \in H'$ we will prove that $\exists ! y_0 \in H : F(x) = (x,y_0). F = 0$ is the trivial case.

 $F \neq 0$. Let $N = \ker F = F^{-1}(0)$. F is continuous $\Rightarrow N$ is closed, F linear $\Rightarrow N$ is a subspace, $F \neq 0 \Rightarrow N$ is a proper subspace.

Let $x_{\mathcal{O}} \in \mathbb{N}^{\perp}$ and $y_{\mathcal{O}} = \alpha x_{\mathcal{O}}$ be chosen so that

$$F(x_0) = (x_0, y_0) = (x_0, ax_0) = \bar{a} \|x_0\|^2$$
. That is $a = \frac{F(x_0)}{\|x_0\|^2}$.

Let
$$x \in H$$
 and $b = F(x)/F(x_0)$ then $F(x - bx_0) = F(x) - \frac{F(x)}{F(x_0)} F(x_0)$

Thus
$$(x,y_0) = (x - bx_0,y_0) + (bx_0,y_0)$$
 since $y_0 \in \mathbb{N}^{\perp}$
= $b(x_0,y_0) = \frac{F(x)}{F(x_0)}$. $F(x_0) = F(x)$.

Therefore ϕ is onto and normpreserving. Hence $\mbox{\it H}$ and $\mbox{\it H}^{\mbox{\tiny I}}$ are (nearly) linearly isometric.