Chapter 7: Properties of differentiable functions

Theorem: (Rolle's Theorem) Suppose that $a<b$ and $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$. If $f(a)=f(b)$ and f is differentiable on (a, b) then there exists a point $x_{0} \in(a, b)$ such that $f^{\prime}\left(x_{0}\right)=0$.

Figure 18: Rolle's Theorem.

Proof:

1. If f is constant on $[a, b]$ then $f^{\prime}(x) \equiv 0$ on (a, b). Hence we may suppose that f is not constant on $[a, b]$.
2. Therefore, either (i) $\max \{f(x): x \in[a, b]\}>f(a)=f(b)$ or (ii) $\min \{f(x): x \in$ $[a, b]\}<f(a)=f(b)$. We shall only consider case (i) as case (ii) is similar.
3. Choose $x_{0} \in(a, b)$ such that $f\left(x_{0}\right)=\sup \{f(x): x \in[a, b]\}$. Then since $f(x) \leqslant f\left(x_{0}\right)$ for all $x \in[a, b],\left(f(x)-f\left(x_{0}\right)\right) /\left(x-x_{0}\right) \leqslant 0$ for all $x \in[a, b]$ with $x_{0}<x$.
4. Therefore, $f_{+}^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}^{+}}\left(f(x)-f\left(x_{0}\right)\right) /\left(x-x_{0}\right) \leqslant 0$.
5. On the other hand, $f(x)-f\left(x_{0}\right) \leqslant 0$ for all $x \in[a, b]$ with $x<x_{0}$ and so $(f(x)-$ $\left.f\left(x_{0}\right)\right) /\left(x-x_{0}\right) \geqslant 0$ for all $x \in[a, b]$ with $x<x_{0}$.
6. Therefore, $f_{-}^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}^{-}}\left(f(x)-f\left(x_{0}\right)\right) /\left(x-x_{0}\right) \geqslant 0$.
7. Now since f is differentiable at $x_{0}, f_{+}^{\prime}\left(x_{0}\right)=f_{-}^{\prime}\left(x_{0}\right)$ and so

$$
f^{\prime}\left(x_{0}\right)=f_{+}^{\prime}\left(x_{0}\right)=f_{-}^{\prime}\left(x_{0}\right)=0
$$

Exercise: Let $f:[-1,1] \rightarrow \mathbb{R}$ be defined by, $f(x):=(x+1)^{m}(x-1)^{n}$. Show that $f^{\prime}\left(x_{0}\right)=0$, where $x_{0}:=(m-n) /(m+n)$.
Example: Consider the function $f:[-1,1] \rightarrow \mathbb{R}$ defined by, $f(x):=|x|$. Show that $f^{\prime}(x)$ never equals 0 . Does this contradict Rolle's theorem?
Answer: First, note that $f^{\prime}(0)$ does not exist and $f^{\prime}(x)=1$ if $x>0$ and $f^{\prime}(x)=-1$ if $x<0$. Therefore, $f^{\prime}(x)$ never equals 0 . However, this does not contradict Rolle's theorem,

Figure 19: Continuity on $[\mathrm{a}, \mathrm{b}]$ is needed for Rolle's Theorem.
because although f is continuous on $[-1,1]$ and $f(-1)=f(1), f$ is not differentiable on $(-1,1)$.

Theorem: (Mean Value Theorem) Suppose that $a<b$ and $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$. If f is differentiable on (a, b) then there a point $x_{0} \in(a, b)$ such that

$$
f^{\prime}\left(x_{0}\right)=\frac{f(b)-f(a)}{b-a}
$$

Figure 20: Mean Value Theorem .

Proof:

1. Let $h:[a, b] \rightarrow \mathbb{R}$ be the equation of the line joining the points $(a, f(a))$ and $(b, f(b))$, ie:

$$
h(x):=\frac{f(b)-f(a)}{b-a}(x-a)+f(a) .
$$

2. Now let us consider the function $g:[a, b] \rightarrow \mathbb{R}$ defined by $g(x):=f(x)-h(x)$, ie: $g(x)$ is the difference between $f(x)$ and the line described by h.
3. Then g is continuous on $[a, b]$, differentiable on (a, b) and $g(a)=g(b)$.
4. Therefore by Rolle's theorem there exists a point $x_{0} \in(a, b)$ such that $g^{\prime}\left(x_{0}\right)=$ $f^{\prime}\left(x_{0}\right)-h^{\prime}\left(x_{0}\right)=0$, ie: $f^{\prime}\left(x_{0}\right)=h^{\prime}\left(x_{0}\right)=\frac{f(b)-f(a)}{b-a}$.
Example: Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable. Show that f is increasing if, and only if, $f^{\prime}(x) \geqslant 0$ for all $x \in \mathbb{R}$.
Answer: Suppose that $f^{\prime}(x) \geqslant 0$ for all $x \in \mathbb{R}$.
Let a, b be any real numbers such that $a<b$; we need to show that $f(a) \leqslant f(b)$.
First we note that f is continuous on $[a, b]$ and differentiable on (a, b). Therefore, by the mean value theorem there exists a point $x_{0} \in(a, b)$ such that

$$
f(b)-f(a)=f^{\prime}\left(x_{0}\right) \cdot(b-a) \geqslant 0 .
$$

From this it follows that $f(a) \leqslant f(b)$.
Conversely, suppose that f is increasing on \mathbb{R}. Let x_{0} be any point in \mathbb{R} and let $x_{0}<x$. Then $f(x) \geqslant f\left(x_{0}\right)$, ie: $f(x)-f\left(x_{0}\right) \geqslant 0$. Therefore,

$$
\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \geqslant 0
$$

for all $x>x_{0}$ and so

$$
f^{\prime}\left(x_{0}\right)=f_{+}^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}^{+}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \geqslant 0
$$

Exercise: Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable. Show that f is strictly increasing if $f^{\prime}(x)>0$ for all $x \in \mathbb{R}$.
We now show that the derivative of an (everywhere) differentiable function satisfies an intermediate value property similar to that satisfied by continuous functions, despite the fact that f^{\prime} may not be continuous.
Lemma: Suppose that $a<b$ and $f:[a, b] \rightarrow \mathbb{R}$ is differentiable at both a and b. If,
(i) $f^{\prime}(a)>0$ then there exists a $\delta>0$ such that $f(x)>f(a)$ for all $x \in[a, b]$ with $a<x<a+\delta$;
(ii) $f^{\prime}(b)<0$ then there exists a $\delta>0$ such that $f(x)>f(b)$ for all $x \in[a, b]$ with $b-\delta<x<b$.

Proof: We shall only consider case (i) as case (ii) is similar. Since $f^{\prime}(a)>0$ there exists a $\delta>0$ such that $(f(x)-f(a)) /(x-a)>0$ for all $a<x<a+\delta$. Therefore, for all $x \in[a, b]$ with $a<x<a+\delta$,

$$
f(x)-f(a)=\frac{f(x)-f(a)}{x-a} \cdot(x-a)>0 .
$$

Figure 21: Positive derivative means increasing.

Theorem: (Darboux's Theorem) Suppose that $a<b$ and $f:[a, b] \rightarrow \mathbb{R}$ is differentiable on $[a, b]$. If $f^{\prime}(a)>k>f^{\prime}(b)$ (or vice versa) then there exists a point $x_{0} \in(a, b)$ such that $f^{\prime}\left(x_{0}\right)=k$.

Figure 22: Darboux's Theorem.
Proof: 1. Suppose that $f^{\prime}(a)>k>f^{\prime}(b)$ and consider the function $g:[a, b] \rightarrow \mathbb{R}$ defined by, $g(x):=f(x)-k x$.
2. Since g is continuous on $[a, b], g$ attains its maximum value at some point $x_{0} \in[a, b]$.
3. Moreover, since $g^{\prime}(a)>0$ and $g^{\prime}(b)<0$ it follows from the previous Lemma that $x_{0} \in(a, b)$.
4. The result now follows as in Rolle's theorem by showing that $g^{\prime}\left(x_{0}\right)=0$. The proof for the case $f^{\prime}(a)<k<f^{\prime}(b)$ is similar.

