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Abstract

The asymptotic order of the logarithm of the square-free part of n! is shown to be (log 2)n
with error O(

√
n).

1. Introduction

If the standard prime factorization of n! is considered over a range of values of n then a
number of patterns are apparent:

10! = 28 · 34 · 52 · 7
20! = 218 · 38 · 54 · 72 · 11 · 13 · 17 · 19

30! = 226 · 314 · 57 · 74 · 112 · 132 · 17 · 19 · 23 · 29

40! = 238 · 318 · 59 · 75 · 113 · 133 · 172 · 192 · 23 · 29 · 31 · 37.

All the primes up to n appear. If p and q are primes appearing in the factorization with
p < q and α, β are the highest powers of p and q dividing n! respectively, then α ≥ β, i.e.
the smaller the prime, the larger the power. Even though sometimes a given power does
not appear (the power 3 is missing from 20! even though the powers 2 and 4 appear),
the power 1 always appears.

The square-free part of n! is the number a, with no square factors, which appears in
the factorization

n! = ab2.

It is easy to see that a is exactly the product of each of the primes which appear to
an odd power in the standard factorization, and in particular is divisible by the primes
appearing to power 1 in that factorization.

Two natural questions arise: what is the size of the square-free part a of n! and what
proportion of a is the product of the primes which occur to power 1 ? In this note it
will be shown that, asymptotically, the square-free part of n! has order 2n and that the
proportion of primes to power 1 is about 72%.
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2. Integer Square Roots

For each whole number n let the integer lower square root be defined by

r−(n) =
∏

pα||n
pb

α
2
c

and the integer upper square root by

r+(n) =
∏

pα||n
pd

α
2
e.

If n = ab2 and cn = d2 with a and c square-free, then

b = r−(n), d = r+(n), a = c =
r+(n)

r−(n)
.

This pair of functions r± is quite useful. They are multiplicative, can be generalized
to integer k’th roots and are related to the integer conductor or square-free core. For
examples and applications see [3, 4].

3. Computing the square-free part of n!

To obtain some idea of the behavior of the square-free part of n!, for large n, it pays
to do some computations. However, for numbers of quite small size, say n = 400, n! is
a number with over 800 digits, so finding the square-free part should not be attempted
directly. The following strategy was adopted:

For each n ≥ 1, let θn be the square-free part of n + 1, i.e.,

θn = r+(n + 1)/r−(n + 1).

Because an+1b
2
n+1 = (n + 1)n! = (n + 1)anb

2
n and n + 1 = θnc

2 for some integer c, we
have θnanb2

n = an+1b
2
n+1.

If a prime p | (θn, an), then p occurs as a factor in both θn and an, so must occur to
an odd power in both n! and n + 1, and therefore to an even power in (n + 1)!. Hence it
does not occur in an+1. If a prime occurs in just one of θn and an, then it must occur in
an+1. This leads directly to the formula:

(1) an+1 =
anθn

(an, θn)2
.

Note that this formula can be used to evaluate the sequence (an) recursively, so the
values of log an can be plotted, revealing a nice approximately linear dependence on n.
See Figure 1.
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Figure 1: The sequence log an as a function of n.

4. Asymptotic orders

The result of these computations of the square-free part of n! leads to two natural tasks:
determining the slope of a line approximating the graph of log an, and finding an upper
bound for the error in this approximation. The completion of both tasks is summarized
in the next theorem.

Theorem 1: For each n ∈ N let n! = anb2
n where a1 = b1 = 1 and where for all

n ≥ 1, an is square-free.

log an = n log 2 + O(
√

n),Then

log bn =
1

2
n log n− 1 + log 2

2
n + O(

√
n).and

Proof:

Consider the central binomial coefficient
(
2n
n

)
= tns

2
n where tn is square-free. Then

b2
2na2n = (2n)! = (n!)2s2

ntn

so tn = a2n for all n ∈ N . By the main result in [7], there is a real strictly positive
constant c such that for all ε > 0 and all n sufficiently large

(c− ε)
√

n < 2 log sn < (c + ε)
√

n.

Therefore log sn = O(
√

n).
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Stirling’s approximation for n! [8] is n! ≈ √
2πn(n/e)n. It leads to the formula:

log n! = n log n− n + O(log n).

log a2n = log

(
2n

n

)
− 2 log snConsequently:

= 2n log 2n− 2n− 2n log n + 2n + O(
√

n)

= 2n log 2 + O(
√

n).

log a2n+1 = log a2n + log θ2n − 2 log(a2n, θ2n)By equation (1)

= log a2n + O(log n) since θ = O(n)

= (2n + 1) log 2 + O(
√

n)

log an = n log 2 + O(
√

n).and therefore

But, by Stirling’s approximation again and this estimate for log an:

2 log bn = n log n− n− n log 2 + O(
√

n)

= n log n− (1 + log 2)n + O(
√

n)

and therefore log bn = 1
2
n log n − 1+log 2

2
n + O(

√
n). This completes the proof of the

theorem.

It follows also that the square-free part of
(
2n
n

)
, namely tn, satisfies log tn = 2n log 2+

O(
√

n), giving the asymptotic order. This relates to the solved conjecture of Erdős [5]
that the binomial coefficient

(
2n
n

)
is not square-free for n > 4. It relates also to the parity

of the exponents of the prime factors of n!, [2].

5. Primes dividing n!

Lemma 1: Let k ≥ 1 and let p be a prime integer. If n ≥ k(k + 1) then pk‖n! if and
only if n

k+1
< p ≤ n

k
.

Proof If n
k+1

< p ≤ n
k

then k ≤ n
p

< k + 1, so therefore

k = bn
p
c.

Since k(k + 1) ≤ n we have k ≤ n
k+1

< p, so therefore

b n

p2
c <

k + 1

p
≤ 1.

It follows that b n
p2 c = 0, by Legendre’s formula

αp =
∞∑

j=1

b n

pj
c = bn

p
c = k.
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Conversely, if pk‖n! then k = bn
p
c+ · · · . Thus bn

p
c ≤ k, which implies n

k+1
< p, so k < p.

In addition k < n
k+1

, therefore n
p2 ≤ k

p
< 1 so b n

p2 c = 0 and k = bn
p
c, which shows p ≤ n

k
.

This completes the proof of the lemma.

For x > 0 let
θ(x) =

∑
2≤p≤x

log p,

Chebychev’s function [1], where the sum is over all primes less than or equal to x. If
x ≥ 563 then θ(x) is close to x in that [6]

x
(
1− 1

2 log x

)
< θ(x) < x

(
1 +

1

2 log x

)
.

If follows that if n ≥ nk

|θ(n

k

)− θ
( n

k + 1

)− n

k(k + 1)
| ≤ n

k log n
k

By Lemma 1, the logarithm of the product of primes which appear in n! to the k’th
power is

log
∏

n
k+1

<p≤n
k

p =
∑

n
k+1

<p≤n
k

log p

= θ
(n

k

)− θ
( n

k + 1

)

=
n

k(k + 1)
+ Ok

( n

log n

)
,

so the asymptotic order of the product is n
k(k+1)

as n →∞.

Therefore, by Theorem 1, the asymptotic proportion of the square-free part of n! due
to primes appearing to powers 1, 3, . . . , 2k − 1 is

1− 1
2

+ 1
3
− 1

4
+ · · ·+ 1

2k−1
− 1

2k

log 2
.

For example, primes to power one contribute 1/2
log 2

or about 72%, and those to power

one or three to 7/12
log 2

, or about 84% of the square-free part.
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[5] A. Granville and O. Ramaré, Explicit bounds on exponential sums and the scarcity
of square-free binomial coefficients, Mathematica 43 (1996), 73-107.

[6] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime
numbers, Illinois J. Math. 6 (1962), 64-94.
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